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Practice points

e Recent studies continue to expand the role of nondopaminergic pathways in Parkinson’s disease (PD)
pathophysiology.

e The nondopaminergic system includes glutamatergic, adrenergic, adenosine, serotonergic, histaminic, opioids and
cholinergic pathways.
e Dysfunction in the nondopaminergic system may underlie motor and nonmotor symptoms of PD.

e (linical trials testing novel nondopaminergic medications, as an adjunctive therapy to levodopa, have shown
benefits in motor complications. However, to date, no nondopaminergic target is as effective as levodopa in
improving motor symptoms of PD.

e Therapeutic options for nonmotor symptoms targeting the nondopaminergic system have also been investigated,
particularly for cognition, sialorrhea and orthostatic hypotension.

Parkinson’s disease is primarily caused by dysfunction of dopaminergic neurons, however,
nondopaminergic (ND) systems are also involved. ND targets are potentially useful to reduce
doses of levodopa or to treat nonlevodopa-responsive symptoms. Recent studies have
investigated the role of ND drugs for motorand nonmotor symptoms. Adenosine A, receptor
antagonists, mixed inhibitors of sodium/calcium channels and monoamine oxidase-B
have recently been found to improve motor fluctuations. N-methyl-p-aspartate receptor
antagonists and serotonin 5HT  receptor agonists demonstrated benefit in levodopa-
induced dyskinesia. Conversely, studies using antiepileptic drugs and adrenoreceptor
antagonist had conflicting results. Moreover, metabotropic glutamate receptor antagonists
also failed to improve symptoms. The current review summarizes the most recent findings
on ND drugs over the last 2 years.
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Background

Parkinson’s disease (PD) is a progressive neurodegenerative disorder manifesting with both motor
and nonmotor symptoms, primarily secondary to degeneration of dopaminergic nigrostriatal path-
way. Ongoing studies in animal models have shown new insights regarding the pathophysiology
of PD, that continue to suggest that the nondopaminergic (ND) system is also affected [12] and
may correlate with multiple PD symptoms. The ND system includes several neurotransmitter and
neuromodulatory systems within the basal ganglia and related target areas, including glutamatergic,
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adrenergic, adenosine, serotonergic, histaminic,
opioids and cholinergic pathways [3.4].

Dopaminergic medications are currently
the most effective treatment for both motor
and nonmotor symptoms, but may lead to
complications such as motor fluctuations and
levodopa-induced dyskinesia (LID). In addi-
tion, dopaminergic medication can also induce
or aggravate nonmotor symptoms, which often
manifest as nonmotor fluctuations related to
OFF periods (transient worsening of symp-
toms due to oscillations in levodopa levels).
Consequently, new therapeutic targets through
alternative pathways, such as ND system, have
been investigated and many are in the pipeline.

The goal of this article is to review advances
in ND treatment in PD, for both motor (Table 1)
and nonmotor symptoms (Table 2) over the last
2 years. Important ND targets that were previ-
ously evaluated are also mentioned if no further
studies have been performed, using this target,
in the past 2 years. The paper is divided into sec-
tions according to ND-specific pharmacological
target; with coverage of all possible symptoms a
single ND agent may treat. Readers are referred
to Tables 1 & 2 for categorization of targets
according to symptoms.

Methods

e Search & selection criteria

We reviewed English-written papers pub-
lished in PubMed between January 2014 and
September 2015 using the keywords Parkinson’s
disease’ and one of the following: ‘adenosine’,
‘glutamate’, ‘serotonin’, ‘adrenergic’, ‘cholinester-
ase’, ‘botulinum toxin’, ‘histamine’, ‘antiepilep-
tic’ and ‘opioid’. The yielded results were further
filtered for Phase II/III clinical trials. We also
reviewed the ongoing clinical trials using similar
key words in the website Clinicaltrials.gov. The
text is organized according to ND target, and
the reader is referred to the tables for classifica-
tion of each ND target according to clinical use.
An extensive review of preclinical background
and earlier studies is beyond the remit of this
paper and readers are referred to referenced
reviews in each section.

Nondopaminergic treatments

¢ Adenosine pathways

Adenosine A, receptor antagonists
Adenosine A, receptors are localized mainly
within the striatum; activation causes stimula-
tion of the indirect basal ganglia pathway, which
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modulates the output from globus pallidus inter-
nus (GPi) and substantia nigra (SN). Blockade
of the adenosine A, receptor in striatopallidal
neurons reduces postsynaptic effects of dopa-
mine depletion, improving motor deficits in PD
animal models without inducing LID [66,67].
Despite optimistic results in preclinical stud-
ies, clinical trials to date have shown variable
efficacy to improve motor fluctuations (68].

Istradefylline was the first A , receptor
antagonist evaluated as an adjunctive therapy
with levodopa in PD patients with motor fluc-
tuations (Table 1). Several Phase III studies have
already been conducted with generally positive
results. The most recent study was in 373 PD
patients over 12 weeks again showing signifi-
cant reduction in OFF time with 20 mg/day
(-0.99 h, p < 0.003) and 40 mg/day (-0.96 h; p
<0.003) compared with placebo (-0.23 h) 5. An
open-label phase (6] showed reduction in daily
OFF time by -0.65 h in week 2. Dyskinesia was
the most common side effect. Due to positive
results, istradefylline was licensed in Japan in
2013. However, a US based Phase I1I study pub-
lished in 2012 (69] failed to reach significance and
as such, FDA approval was not given. A further
multicenter Phase III trial is ongoing [7].

Preladenant is the second A, antagonist eval-
uated to treat motor fluctuations in PD (Table 1).
Initially, a Phase II study revealed reduction in
mean daily OFF time with preladenant 5 mg
(-1.0 h; p = 0.0486) and preladenant 10 mg
(-1.2 h; p = 0.019) [70]. Two large Phase IIT tri-
als, however, did not reach a significant differ-
ence in OFF time [8]. Development for PD has
now ceased.

Tozadenant is the third A, antagonist aiming
to treat motor fluctuations in PD (Table 1). In a
Phase IIb trial, the mean daily OFF time was
significantly reduced in the tozadenant 120 mg
group (-1.1 h; p = 0.0039) and the tozadenant
180 mg group (-1.2 h; p = 0.0039) [9]. The most
common adverse events were dyskinesia, nausea
and dizziness. A Phase I11 is currently active [10].

Caffeine is a nonselective adenosine antago-
nist recently investigated in a 6-week rand-
omized controlled trial (RCT) using caffeine
100 mg twice daily for 3 weeks, then increasing
to 200 mg twice daily for the next 3 weeks and
matching placebo. Despite revealing nonsignifi-
cant reduction in Epworth Sleepiness Scale score
for daytime somnolence or difference in motor
fluctuations or dyskinesia, caffeine reduced

the total UPDRS score (-4.69 points) and the
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phosphorylation of secondary messengers. This
functional link between dopamine D1 and
NMDA neurotransmission leads to a form of
synaptic plasticity similar to long-term potentia-
tion (LTP) underlying learning and memory;
thus in the striatum in LID, excessive LTP
may contribute to the development of motor
fluctuations [74].

Nonselective antagonism of NMDA recep-
tors in nonbasal ganglia areas, however, has been
implicated in side effects; and thus more selec-
tive targeting of subtypes of NMDA receptor,
in particular the NR2B subtype that appear
to be selectively localized within the striatum,
have been investigated in preclinical studies with
efficacy in LID [72]. However, to date, few clini-
cally available subtype-selective NMDA receptor
antagonists have been available for evaluation,
to determine whether this approach translates
into better clinical efficacy in PD patients.
Nonselective NMDA antagonists thus remain
the drug target available for clinical use.

Amantadine is a nonselective NMDA
antagonist currently in clinical use to treat
LID (Table 1) [75]. However, side effects can occur
including confusion and visual hallucinations
(VH). A longer acting preparation has been sug-
gested to improve side effects profile by reducing
nighttime drug levels. ADS-5102 is a long-acting,
formulation of amantadine HCl extended release
administered as a capsule once daily before bed-
time. ADS-5102 has been shown to achieve high
plasma amantadine concentrations in the early
morning that are sustained throughout the after-
noon and are lower in the evening. A Phase I1/111
study assessed 83 PD patients receiving ADS-
5102 for 8 weeks and reported significant reduc-
tion of dyskinesia compared with placebo (27%
reduction in Unified Dyskinesia Rating Scale —
UDysRS, p = 0.005), as well as increased ON
time without troublesome dyskinesia [15]. The
most common side effect was constipation. A
Phase I trial is ongoing [76]. Another long-acting
formulation of Amantadine HCl extended release
is also being evaluated in two Phase III RCTs dur-
ing 16 weeks (ALLAY-LID I) (16] and 26 weeks
(ALLAY-LID II) 7). Amantadine formulation is
a tablet administered as a single dose daily in the
morning so that amantadine concentrations are
maintained throughout the day.

Dextromethorphan is another NMDA recep-
tor antagonist that has been combined with
quinidine, a CYP2D6 inhibitor responsible
for reducing and stabilizing the metabolism of

Neurodegener. Dis. Manag. (2016) 6(3)

dextromethorphan into a single drug prepara-
tion. This combination of dextromethorphan
combined with quinidine (AVP923) is clinically
available in the USA for treatment of pseudobul-
bar affect [77]. Due to the clinical availability of
this agent, and earlier studies showing efficacy,
a small Phase Ila study in PD to treat LID is
ongoing (Table 1) [18,78].

Memantine, another clinically available non-
selective NMDA antagonist, has been previously
evaluated for PD motor symptoms without ben-
efit. This agent was originally developed as an
alternative NMDA antagonist due to the prop-
erties of uncompetitive binding with a lower
affinity and more rapid off-rate kinetics at the
NMDA receptor with theoretical better tolera-
bility. Recently, in a small crossover trial (n = 15)
memantine (20 mg) for 3 weeks revealed no
change in dyskinesia ratings. Memantine was
well tolerated and six patients reported nonspe-
cific symptoms including tiredness and vertigo.
No serious adverse events occurred [19].

Glutamate neurotoxicity via NMDA recep-
tors is also thought to underlie dementia, and
memantine is approved and in clinical use for
treatment of Alzheimer’s disease (AD). NMDA
receptor antagonists have thus been evaluated
for cognitive impairment in PD. Memantine has
been evaluated in two prior RCTs and demon-
strated efficacy in Dementia with Lewy Bodies
(DLB) and possibly in PD dementia (PDD),
with generally good tolerability [79). Further stud-
ies have investigated the role of memantine in
mild cognitive impairment (MCI) and a recent
24-week trial of memantine (20 mg/day) showed
improvement in choice reaction time, immediate
and delayed word recognition (Table 2) [s4].

o-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor antagonists
o-amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionic acid (AMPA) receptors are another
subtype of inotropic glutamate receptor and are
expressed at relevant excitatory synapses within
the SN pars compacta, SN pars reticulata and
striatum. Although AMPA antagonists have
shown limited benefit as monotherapy for symp-
tomatic relief in PD, preclinical studies suggest
possible potentiation of the effects of levodopa
and also improvement in LID [72]. Talampanel
previously showed improvement in motor symp-
toms in PD animal models [80]. However, three
Phase II trials were never published [81-83].
Perampanel is a selective, noncompetitive AMPA

future science group



receptor antagonist developed to treat epilepsy.
Perampanel failed to improve motor fluctuations
and LID in clinical trials [84.85] and development
for PD has now ceased.

Topiramate is another antiepileptic drug with
several mechanism of action including inhibi-
tion of voltage-gated sodium and calcium chan-
nels, reduction of glutamate-related excitatory
neurotransmission via AMPA receptors and
enhancement of GABA effect. Previous studies
have shown that topiramate significantly reduced
LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP-lesioned) animal models [86,87].
Contrary to preclinical studies, a recent crosso-
ver trial in 15 PD patients using topiramate
100 mg/day showed significant increase in dys-
kinesia severity and medication was poorly toler-
ated (dry mouth and hallucinations) (Table 1) [20].
A Phase I1 trial assessing topiramate combined to
amantadine is listed as currently active, but no
recent data have been reported [21].

Metabotropic glutamate receptor antagonist
Modulating excessive glutamate neurotrans-
mission via mGluRs has been proposed to be
potentially effective at reducing LID in PD,
with a wider therapeutic index. Metabotropic
glutamate receptors (mGluRs) are divided into
subtypes according to receptor structure and
activity [73]. Thus preclinical evidence dem-
onstrates that group I mGluR antagonism and
groups IT and IIT mGluR activation improves
motor symptoms and decreases LID in PD
animal models [73.88].

Mavoglurant (AFQ056) is a selective mGluR5
inhibitor. Three previous studies revealed mild
improvement in dyskinesia (Table 1) [22.23]. Open-
label Phase II results are pending [89]. Recently,
a Phase I1 trial (n = 154) revealed no significant
change on mAIMS [24]. Development for PD has
ceased due to lack of efficacy [90].

Dipraglurant (ADX48621) is another selec-
tive mGluR5 antagonist. Results of a Phase Ila
study [25) published in abstract form showed
reduction in mAIMS (peak dose) at day 1
(p = 0.042) and 14 (p = 0.034), but no signifi-
cant difference was detected at study end point
(day 28) (Table 1). Currently, there are no known
plans for future studies in PD.

Comments

Glutamate antagonists continue to be an
important ND target, due to the integral com-
ponent that the glutamate system plays in PD.

future science group
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Amantadine is the only clinically available glu-
tamate antagonist that can reduce LID, but side
effects, including hallucinations, means toler-
ability can be poor. The longer acting version
in development appears to be equally effective,
and is thought to reduce nighttime complica-
tions. Amantadine, however, has other ND
actions including muscarinic antagonist activity,
which can also induce other side effects such as
constipation. The effectiveness of metabotropic
glutamate receptors, with potentially better tol-
erability, has not yet been proven despite good
preclinical data, and development of this class
appears to have stalled. The other inotropic
glutamate target, AMPA receptor antagonists,
although theoretically useful, in complementing
both NMDA and mGluRS5 activity, has generally
shown very poor efficacy and tolerability.

The rationale for NMDA antagonist use in
PDD has been that cognitive function due to
altered NMDA transmission underlying LTP is
also implicated in PD as well as non-PD demen-
tias such as AD. However, to date, there is lit-
tle direct evidence of this process in PDD and
the varied cognitive profile of PDD versus AD,
may underlie differences in pathophysiology
and hence treatment strategies. In fact a recent
meta-analysis reviewed ten trials of agents for
PD dementia using memantine and cholinest-
erase inhibitors and showed overall small global
efficacy; however, only the cholinesterase
inhibitors significantly improved Mini-Mental
State Examination (MMSE) [91] suggesting the
pathophysiology of PDD is more cholinergic
than glutamatergic. In clinical practice, trigger-
ing hallucinations are also of concern in the PD
population with glutamate agents.

Mixed monoamine-B & glutamate release
inhibitors

The clinical use of MAOB-I, selegiline and
rasagiline in PD is well known to enhance the
duration of action of levodopa, and thus to
improve wearing-off. Clinical use of MAOB-I,
can, however, often increase peak-dose LID.
Safinamide is a reversible and highly selective
MAOB-I, with additional properties including
sodium channel antagonism and N-type calcium
channel modulator with consequent inhibition
of excessive glutamate release. Theoretically, the
action of safinamide was to improve duration of
levodopa action, without increased risk of LID
due to the glutamate antagonistic properties. A
24-week RCT, demonstrated that safinamide,
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50 and 100 mg/day significantly increased ON
time without increasing dyskinesia (Table 1) [11].
Subsequently, an 18-month study indicated no
significant change in a Dyskinesia Rating Scale
(DRS; the primary end point); while second-
ary end points of mean daily ON time with-
out troublesome dyskinesia improved by 1.01 h
(50 mg/day; p = 0.0031) and 1.18 h (100 mg/day;
p =0.0002) [12]. Recently, a 24-month treatment
study reported that safinamide 100 mg/day signif-
icantly improved the DRS score (p = 0.0488) [13].
Safinamide was recently licensed for use in PD in
the European Union.

A similar agent, zonisamide was originally
developed as an antiepileptic, but also has mul-
tiple mechanism of action such as inhibition
of sodium/calcium channels, monoamine-B
(MAO-B) activity and GABA transmission.
In a recent trial, daily OFF time reduced sig-
nificantly (-0.719 h) in zonisamide 50 mg/day
group (p = 0.005) (Table 1) [14]. Dyskinesia dura-
tion decreased in placebo group at week 12
(-0.027 h/day) and increased 0.197 h/day
(p =0.103) for zonisamide 25 mg, and 0.138 h/day
(p = 0.235) for zonisamide 50 mg. Further analy-
sis revealed that zonisamide did not increase trou-
blesome dyskinesia, however, the dose of levo-
dopa in the trial is lower than commonly used in
western populations. Zonisamide is licensed for
treatment of motor fluctuations in Japan; further
global licensing is unlikely.

Comments

Safinamide and zonisamide both appear to
reduce wearing-off in PD, but the ability to
do this without exacerbating peak dose LID is
not yet clear. The current clinical availability of
safinamide will enable real-world experience to
show whether the theoretical benefit is present
in day-to-day practice.

¢ Serotonin pathways

Serotonin (SHT) receptors are located in the
raphe nuclei of the brainstem and are involved
in several basic brain functions including cog-
nition, emotion, circadian rhythms as well as
motor behavior [92]. Serotonergic neuronal loss
and presence of Lewy bodies in the raphe nuclei
has been described in PD as well as changes in
cortical SHT), receptors implicating SHT dys-
function in mood and psychosis in PD [2,92,93].
Dysfunction in the serotonin system may play a
role in LID, as 5HT loss is less than dopamine
loss. In addition, ectopic levodopa converted to

Neurodegener. Dis. Manag. (2016) 6(3)

dopamine, with resultant unregulated dopamine
release, can occur from remaining SHT termi-
nals [94,95]. Listed below are several clinically
available drugs with SHT binding properties
that have been recently evaluated for a range
of clinical indications in PD, including PD
psychosis, LID, anxiety and depression.
Clozapine is a dibenzodiazepine with anti-
Jsc Feceptor
antagonist) [96] that is not only a very effective

serotoninergic properties (5-HT

drug for the treatment of neuropsychiatric symp-
toms in PD [97] due to a lack of PD motor side
effects, but also a potential therapeutic tool for
LID (3.96]. The practical issue limiting clozapine
use is mandatory blood monitoring due to low
risk of agranulocytosis. A recent new selective
SHT,, inverse agonist, pimavanserin, has shown
success in a single Phase IIT RCT in reducing
hallucinations in PD, without worsening PD
motor symptoms, and no requirement for blood
monitoring (Table 2) [40].

Buspirone is a mixed al adrenergic recep-
tor and 5-HT |, agonist with potential anti-
dyskinetic role in animal models [98]. A single
acute dose study showed possible benefit in PD
patients with LID (Table 1) [99]. A Phase I evalu-
ating the efficacy of buspirone in combination
with amantadine and a Phase I1I trial (buspirone
monotherapy) are currently active [26.27].

Eltoprazine is a combined 5-HT,, and
5-HT |, agonist, originally developed to treat
aggressive behavior. An antidyskinetic role in PD
animal models has been recently proposed [100].
In a Phase Ila study (n = 22) eltoprazine 5 mg
improved LID measured by the area under
the curves of Clinical Dyskinesia Rating Scale
(-1.02; p = 0.004) and Rush Dyskinesia Rating
Scale (-0.15; p = 0.003) (Table 1) [28]. Nausea and
dizziness were the most common side effects.
Another Phase II trial is currently active [29].

Extending the hypothesis that SHT recep-
tor agonists may reduce LID, a recent study
suggested that PD patients exposed to selective
serotonin reuptake inhibitors (SSRIs) may have
delayed onset of LID [i01]. Forty-nine patients
received SSRIs concomitant to levodopa for at
least 2 years (mean exposure 5.1 + 4.1 years);
86 were never treated with antidepressants.
Patients were exposed to sertraline, fluoxetine,
paroxetine, citalopram and escitalopram. No
significant difference between the groups was
observed (p = 0.897) in the prevalence of LID.
However, patients exposed to SSRIs developed
LID later compared with nonexposed group
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(6.48 vs 5.70 years between PD diagnosis and
LID onset; p = 0.020). The median dyskine-
sia severity score was 0 in the exposed group
versus 1 in nonexposed patients (p = 0.025).

Serotonin is also implicated in cognitive
function and ligands binding to several 5SHT
receptors have been proposed as potential ther-
apeutic targets in AD [s8]. SYN120 is a dual
5-HT,/5-HT, antagonist evaluated in AD; and
a Phase Ila is currently recruiting PD patients
with dementia (Table 2) [59].

Comments

The serotonergic system continues to be investi-
gated for both motor and nonmotor PD symp-
toms. In reducing LID, 5HT,, agonists have
had mixed benefits with prior drugs such as
sarizotan, a mixed SHT,, agonist and possible
dopamine D, antagonist, failing to show signifi-
cant benefit compared with a marked placebo
effect, and also having issues with worsening of
PD motor symptoms [102]. Despite this, recent
studies continue to evaluate clinically available
SHT,, agonists due to the theoretical ability to
reduce release of dopamine from aberrant SHT
terminals. Buspirone and eltoprazine may be
useful.

Current treatments for anxiety and depression
in PD continue to rely on classical SHT reuptake
inhibitors (SSRIs) and SHT antagonists (tricy-
clics), and thus one serotonergic drug such as
SHT,, agonist, could theoretically help both
motor (LID) and nonmotor (anxiety) symptoms
in a PD patient. Another potential ‘multi-use’
drug is the atypical antipsychotic drug, clozap-
ine that at low doses is a SHT,, , . antagonist,
and can reduce PD psychosis, as well as LID,
and also tremor, without worsening PD motor
symptoms (unlike other antipsychotics). The
newly developed SHT),, inverse agonist, pima-
vanserin, appears promising for use in PD psy-
chosis. However, relative clinical efficacy com-
pared with the currently clinically used drugs
(quetiapine and clozapine) remains unknown.

¢ Adrenergic pathway

Extensive noradrenergic denervation in the
frontal cortex, cerebellum, striatum, thalamus
and hypothalamus along with Lewy bodies
in the axons of noradrenergic neurons of the
locus coeruleus have been described in PD
brains (93]. Thus the adrenergic system may
have a role in the pathophysiology of several PD
symptoms, including autonomic failure and

future science group
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gait; in addition, o -adrenoreceptors in striatal
GABAergic neurons have also been suggested
as a potential therapeutic target for LID [103].

Adrenergic receptor agonists

Treatment of symptomatic neurogenic ortho-
static hypotension (OH) currently relies on
nonpharmacological approaches including addi-
tional fluids and salt supplementation, compres-
sion stockings and reduction of antihypertensive
drugs. Pharmacological management of OH
aims to increase standing blood pressure in PD
patients, however, due to lack of level 1 RCT
specifically in this population, general pressor
agents, such as adrenergic receptor agonists, are
commonly used [43].

Midodrine is a directly acting a1-adrenoceptor
agonist with short action duration (2-4 h). It has
been extensively and successfully used for symp-
tomatic neurogenic OH for more than 20 years,
even though use in PD has not yet been validated
in clinical trials (Table 2) [43]. A crossover study is
currently active [44].

Droxidopa (t-threo-3,4-dihydroxyphenylser-
ine) is an artificial amino acid converted both
peripherally and centrally into norepineph-
rine [104]. FDA recently approved the use of
droxidopa for the treatment of symptomatic OH
(Table 2). The main studies included Phase 111
trial (n = 162, mixed population with OH, n = 35
had PD) revealed mild, short-term (1 week)
improvement in total score and subscores of
OH questionnaire [45]. Mean standing systolic
blood pressure (SBP) increased by 11.2 versus
3.9 mm Hg (droxidopa vs placebo; p < 0.001).
The adverse events were headache and dizzi-
ness. A recent Phase III trial in PD only showed
improvement in OH questionnaire and with
mean increase in SBP at week 1 of 6.4 mmHg
for droxidopa compared with 0.7 mmHg in
placebo (p = 0.032) [46]. A Phase III trial is cur-
rently active and will assess benefit and safety of
Droxidopa 600 mg/day for both freezing of gait
(FoG) and cognition in PD [37].

Noradrenergic reuptake inhibitor

Methylphenidate is a known stimulant that
blocks both dopamine and noradrenaline reup-
take through inhibition of the presynaptic dopa-
mine transporter in the striatum and prefrontal
cortex [105]. Recent studies have shown a possible
benefit for gait and FoG in PD patients (Table 1).
The mechanism of action is unclear but theoreti-
cally degeneration of locus coeruleus brainstem
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noradrenergic circuits may affect gait and bal-
ance, as well as enhanced noradrenaline cortical
activation, with enhanced attention, having an
indirect effect on preventing falls. A 6-month
crossover study (n = 27) revealed slight improve-
ment in the gait score during OFF period, but
did not improve the FoG score or UPDRS motor
score [36]. In a 3-month trial in 69 PD patients
with severe gait problems despite the optimi-
zation of drugs and subthalamic stimulation
parameters, FoG was less frequent in the meth-
ylphenidate group during ON or OFF condi-
tions [106]. Improvement in apathy and modest
effects in attention were seen [106].

o,,-adrenergic receptor antagonist

Fipamezole is an a.,-adrenoceptor antagonist that
has been shown to suppress LID in PD animal
models [107]. A trial conducted in the USA (115
PD patients) and India (64 PD patients) showed
no statistically significant results, however, a
subgroup analysis of US patients only reported
significant LID reduction in LID scale com-
pared with placebo (-1.9 points; p = 0.047) [108].
Nausea and transient blood pressure elevation
were the most reported adverse events. To date,
no newer o.,-adrenoceptor antagonists have been
evaluated in PD.

Comments

The noradrenergic system is implicated in auto-
nomic function and thus targeting adrenergic
receptors appears to have potential to improve
symptomatic OH in PD. The issue of supine
hypertension, however, still remains a potential
side effect. The role of the noradrenergic system
in motor function to date remains less clear.
Although preclinical studies have suggested
reduced LID with o -adrenoceptor antagonists,
clinical studies have not yet shown convincing
results. Interesting observations with methyl-
phenidate and ongoing studies with droxidopa
suggest that enhanced adrenergic function may
help gait, again it is unclear how, above general
increased alerting effects and thus improved
attention.

¢ Cholinergic pathways

The cholinergic system is also affected in PD.
In particular pathological studies from patients
with PD and dementia (PDD) have shown
greater loss of cortical cholinergic function
compared with AD [109]. In addition, there is
a suggestion that cholinesterase inhibitors are

Neurodegener. Dis. Manag. (2016) 6(3)

particularly useful in PDD patients with visual
hallucinations, to reduce such psychotic symp-
toms. Preclinical studies have also shown that
central cholinergic nicotinic receptors are impli-
cated in basal ganglia motor function and LID.
Autonomic failure is a common clinical issue in
PD, and thus peripheral cholinergic muscarinic
receptors in the parasympathetic system can be
targeted to reduce bladder overactivity, constipa-

tion as well as reducing saliva to reduce drooling
in PD.

Cholinesterase inhibitors
Donepezil is an acetylcholinesterase inhibitor
that showed benefit originally in AD, and is
now used clinically in PD for treating cognitive
impairment. Previous RCT of donepezil (5 or
10 mg) in PDD demonstrated improvement in
executive function and attention despite no sig-
nificant benefit in activities of daily living [110].
The current dose range is 5-10 mg. However,
higher doses (once daily sustained-release 23 mg)
have been used in moderate-to-severe AD [111].
A Phase II trial of donepezil 23 versus 10 mg
donepezil in PDD is ongoing [56].
Rivastigmine is another cholinesterase inhibi-
tor that is used clinically in PDD (Table 2). Oral
and patch preparations are available with efficacy
and better tolerability using the patch [o1112]. A
recent trial in 176 PD patients evaluating riv-
astigmine 3 mg twice daily for 12 months showed
higher MoCA scores (p = 0.002) and reduced
the number and the incidence of falls (p < 0.01)
compared with placebo [57]. Rivastigmine has
also been evaluated in 28 PD patients with MCI
treated with rivastigmine (patch) 9.5 mg/day
(4.6 mg/day during the initial 4 weeks); how-
ever, only a trend toward improved global rat-
ing of cognition was seen versus placebo after
24 weeks [55]. A Phase IV trial assessing rivastig-
mine 6 mg twice daily (orally) for 24 months
is also underway in nondemented PD patients
to determine if early treatment delays the
progression of minor VH to major VH [41.
Pyridostigmine is a peripheral inhibitor
of acetylcholinesterase used for treatment
of OH (Table 2), however; literature in PD is
scarce [47]. A Phase II crossover trial is currently
ongoing comparing pyridostigmine versus
fludrocortisone [48].

Muscarinic receptor antagonists

Muscarinic cholinergic antagonists have been
used in the treatment of PD for decades, Recent
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evidence-based medicine reviews considered
trihexyphenidyl and benztropine likely effica-
cious for PD tremor [75]. However, side effect
profile of oral anticholinergic has limited use for
tremor as well as other indications. Thus topi-
cal/local applications have been evaluated for
reducing saliva in sialorrhea.

Glycopyrrolate is a muscarinic competitive
antagonist currently used to reduce saliva-
tion (Table 2). Glycopyrrolate 1 mg three-times
per day (TID) for 4 weeks in 23 PD patients
improved mean sialorrhea score from 4.6 with
placebo to 3.8 with glycopyrrolate (mean differ-
ence 0.8; p = 0.011) [49]. A Phase II trial is ongo-
ing evaluating 0.5 mg t.i.d. for 4 days, followed
by an increase to 1.0 mg t.i.d. for 4 days and to
1.5 mg t.i.d. at day 8 (target dose) for a longer
period of 90 days [s0].

Tropicamide is a short-acting muscarinic
receptor antagonist with pharmacodynam-
ics similar to atropine, but fewer side effects.
A recent pilot study tested a slowly dissolving,
mucoadhesive intra-oral thin film containing
tropicamide (NHO004) and reported a visual
analog scale (VAS) reduction of -0.55, -1.08,
-1.53 and -0.81 for placebo and 0.3, 1 and 3 mg
tropicamide, respectively (p = 0.6) [113]. No
adverse effects were detected.

Nicotinic receptor agonists

The role of nicotine in PD has been of interest
for many years due to the epidemiological obser-
vations that PD is less likely in individuals who
are smokers. Clinical studies evaluating non-
selective nicotinic agents, however, have been
poorly tolerated and shown no clinical benefit in
PD. More recently preclinical data have shown
certain subtypes of nicotinic receptors (nAchR)
maybe implicated in PD and LID. AQW051
is a selective a a7-nAChR partial agonist and
studies in PD animal models have shown no
worsening in motor symptoms, reduced dyski-
nesia score and extended levodopa antiparkinso-
nian response in MPTP-lesioned monkey [114].
Phase II trial results are pending (Table 1) [30].
NPO002 (nicotine tablets) is another nAChR
agonist with potential antidyskinetic role in PD
patients [31,115]. Results of a small Phase II trial
were never published [32].

Botulinum toxin

Botulinum toxin (BoNT) also decreases cholin-
ergic action, by reducing release of acetylcholine
in muscle terminal endplates. Focally injected
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BoNT is currently used in PD patients and is
the most effective treatment for focal dystonia,
blepharospasm and eyelid apraxia (level A rec-
ommendation) [60]. Despite this no RCTs have
been reported evaluating use specifically in PD.

There have been several studies inves-
tigating BoNT injections for PD tremors
(Table 1). A 38-week open-label study assessed
28 PD patients receiving incobotulinumtoxinA
(BoNT-A) at weeks 0, 16 and 32 in the upper
limbs and revealed reduction in severity of rest
tremor (UPDRS item 20) from 2.7 + 0.6 at week
0 to 2.0 £ 0.8 at week 16 (p = 0.006) and to
2.1 + 0.7 at week 32 (p = 0.014) 33]. Ten par-
ticipants reported mild muscle weakness accord-
ing to self-reporting Likert scale following the
third treatment, which did not interfere with
performing activities of daily living. Preliminary
data of a Phase II trial (30 patients) revealed
improvement in the UPDRS tremor scale after
4 weeks of BONT-A injections (p = 0.0007) in
8 patients [34]. A Phase II trial is ongoing [33].

BoNT injections are established as effective
treatment for overactive bladder in PD and hyper-
hidrosis (level A recommendation) (Table 2) [60].
There are two active Phase IV trials testing BoONT
injections for neurogenic bladder in PD [61].

A Phase IV trial is ongoing to assess the effi-
cacy and safety of BoNT (onabotulinum toxin
A) for limb pain (Table 2). Injections target
painful muscles (upper or lower limbs) and are
compared with placebo injections [és].

BoNT injections are effective for sialorrhea in
PD patients (Table 2) [60,116,117]. A recent trial fol-
lowed for 8 years 32 amyotrophic lateral sclerosis
(ALS) and 33 PD patients with severe sialorrhea
receiving at least two ultrasound-guided intras-
alivary glands abobotulinumtoxin A (A/Abo)
250 U or rimabotulinumtoxinB (B/Rima)
2500 U injections [51]. Compared with base-
line, A/Abo and B/Rima induced a clear ben-
efit in 89% of treatments and PD patients had
a longer duration of benefit (p < 0.001). The
overall mean duration was 87 days similar for
both serotypes (p = 0.392). BoNT did not lose
efficacy over time in up to 8 years of repeated
treatments and authors observed failures in 11%
of treatments. Injection-related adverse effects
complicated 1.5% of treatments, unrelated to
BoNT serotype: pain at injection sites (0.6%),
subcutaneous hematoma (0.3%) and mouth
bleeding (0.6%). No patients reported dyspha-
gia or facial weakness. Two Phase III trials are
currently active [52.,53].
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Comments

The concern with manipulation of the choliner-
gic system in PD is balancing benefit with side
effects. Muscarinic cholinergic antagonists are
very effective treatments for PD tremor, but with
significant side effects that limit use, including
dry mouth, aggravating constipation and caus-
ing hallucinations, confusion and drowsiness.
Cholinesterase inhibitors by enhancing central
cholinergic function may reduce cognitive issues
and visual hallucinations but can conversely
increase PD tremor. Oral and sublingual mus-
carinic antagonists used to treat sialorrhea,
should thus theoretically act locally within the
parasympathetic system of the salivary glands
and not cross the blood—brain barrier. Reducing
peripheral muscarinic neurotransmitter release
with injection of botulinum toxins, that will
not induce central side effects, has been used
successfully for several symptoms of PD. The
newer selective nicotinic agonists studied for
potential to reduce LID are thought to have less
side effects than nicotine, due to selective basal
ganglia targeting but further studies are needed.

¢ Histamine pathways

Histamine pathways have also been implicated
in the motor function. Histaminic receptors
are divided in four subtypes (H-H,) and H,
is highly expressed in the basal ganglia includ-
ing striatum, GP and SN and involved in the
GABAergic striatopallidal and striatonigral
pathways [118,119]. Famotidine is a clinically
available histaminic receptor antagonist that
has shown antidyskinetic properties in MPTP
animal models [118]. Recently, a Phase Ila (n = 7)
study using famotidine 80, 120 and 160 mg/day
revealed no significant change in UDysRS
part IIT or UPDRS part III. There were no sig-
nificant adverse events [120]. To date, no further
studies evaluating histamine targets are ongoing.

¢ Anti-epileptics

Levetiracetam is a synaptic vesicle glycoprotein
(SV2A) modulator and largely used for epilepsy
treatment. Previously, levetiracetam (60 mg/kg)
has shown significantly antidyskinetic efficacy in
the MPTP-treated macaque [121]. A crossover trial
assessed levetiracetam 1000 mg/day for treatment
of LID in 38 PD patients and reported a reduc-
tion in ON period with LID (assessed by patient
diaries) by 37 min (p = 0.02) at 500 mg/day
and 75 min (p = 0.002) at 1000 mg/day [122].
However, another crossover trial analyzed 16
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PD patients on levetiracetam 2000 mg/day
with hourly-videotaped LID assessments scored
by the Goetz method and hourly UPDRS motor
subscale demonstrating slightly less LID on pla-
cebo (p = 0.26) including patient diary records
(p = 0.10) (123]. Additionally, UPDRS motor
subscale worsened on levetiracetam, but with
borderline statistical significance (p = 0.05).

Comments

Using clinically available drugs is of benefit in
translational studies in PD due to reduced time
to reach clinical use. Several such anti-epileptic
drugs, due to the respective pharmacological
profiles, have been evaluated in PD. However,
to date, results have been disappointing. Thus
levetiracetam, perampanel and topiramate
failed to significantly improve symptoms in
PD. Tolerability was also an issue, reflecting the
variable sensitivity to such agents in epilepsy and
PD patients.

¢ Opioids

Opioids and opioid receptors play a role in
the pathophysiology of LID, however; clini-
cal studies in PD patients with LID have been
disappointing due to lack of clinically available
subtype-selective opioid receptor binding
drugs [124].

Opioids are well known to be involved in pain
and studies have investigated opioids for treat-
ment of nonmotor symptoms in PD, particularly
pain. PD-related pain has a complex physiopa-
thology including peripheral mechanism and
also changes in pain processing. Patients may
experience musculoskeletal, central or visceral
and limb pain. Given the lack of RCTs specifi-
cally assessing pain management in this popula-
tion, two recent studies have investigated clini-
cally available general analgesics such as opioids,
in PD patients.

Oxycodone-naloxone prolonged release is a
combination of oxycodone (opioid analgesic) with
naloxone (opioid receptor antagonist) to reduce
constipation. A Phase II trial revealed no signifi-
cant difference in pain score compared with pla-
cebo after 16 weeks (difference -0.6; p = 0.058)
(Table2) 62]. Side effects were nausea and constipa-
tion. A smaller trial (n = 16) showed reduced pain
scores with fewer side effects [¢3]. A Phase II/11I
is currently active [64].

Another use of opioid-binding agents in PD
has been to extend the use of clinically available
nonselective opioid antagonist, naltrexone used
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in treatment of addiction, into the PD field. Thus
arecent RCT evaluated 50-100 mg/day naltrex-
one in 50 PD patients with impulsive compul-
sive disorders (ICDs) over 8 weeks and showed
nonsignificant reduction in ICD severity using
clinical global impressions scale (p = 0.5) [42].

Conclusion

In summary, ND medications have been
extensively investigated lately with significant
advances. Adenosine A, antagonists seem to be
potentially useful adjuncts for wearing off and
have shown benefit compared with controls in
RCTs. Glutamate antagonists such as amanta-
dine can reduce LID, but side effects are still
a concern. Metabotropic glutamate receptor
antagonists failed to show clear clinical improve-
ment and, therefore, development appears to
have ceased. AMPA receptor antagonists had
very poor efficacy and tolerability. Moreover,
antiepileptics such as topiramate and leveti-
racetam failed to reduce LID in PD patients.
The clinically available serotonergic anxiolyt-
ics, buspirone and eltoprazine, may have use
in reducing LID but further studies in PD are
needed.

Concomitantly, additional studies have inves-
tigated ND medications as therapeutic options
for nonmotor symptoms. NMDA antagonist
such as memantine, despite being efficacious
for AD, has shown limited benefit for PDD.
Serotonergic medications have been investigated
for PD psychosis, most recently pimavanserin, a
SHT,, inverse agonist, has demonstrated poten-
tial for reducing hallucinations. Adrenergic med-
ications including droxidopa may be a therapeu-
tic option for OH according to recent studies,
but benefit is short term, and comparison with
other agents not yet known. Cholinergic medi-
cations such as muscarinic receptor antagonists
(glycopyrrolate and tropicamide) can reduce
sialorrhea, without causing central side effects.
The newer nicotinic agonists due to selective tar-
geting are expected to cause fewer side effects,
however, this drug target is still under devel-
opment. BoNT remains a very effective treat-
ment for sialorrhea, bladder overactivity, focal
dystonia and blepharospasm. In addition, BONT
has shown a potential therapeutic benefit for
parkinsonian tremor in recent studies. Opioids
agonists (oxycodone) revealed modest benefit for
pain control with significant side effects and opi-
oid antagonist (naloxone) did not demonstrate
benefit for impulsive compulsive disorders.
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Future perspective

The ND system continues to be recognized as
a potential therapeutic target for motor and
increasingly, nonmotor symptoms in PD. Most
trials in Phase II or III have focused predomi-
nantly on the management of motor fluctuations
and LID, where ND drugs are used as adjunc-
tive therapy to extend the duration of action,
and allow reduction in doses of levodopa. Thus
adenosine A, antagonists along with mixed
MAO-B and glutamate release inhibitors (safi-
namide and zonisamide) seem to be potentially
useful adjuncts for motor fluctuations and have
shown significant benefit. The ‘real-world’ use
of such drugs will determine how useful such
targets are in comparison to currently avail-
able drugs for wearing off (e.g., dopamine ago-
nists, MAOB-I and COMT-I). Head-to head
RCTs of efficacy as add-on therapy for motor
fluctuations between these drugs are unlikely
to occur; thus evidence of relative efficacy will
have to be determined retrospectively. Due to
different mechanisms of action, in theory, addi-
tion of an adenosine A, antagonist should be
useful in a patient already taking an MAOB-I
and COMT-I. Tolerability with these newer
agents appears overall good. The risk of trigger-
ing or exacerbating LID appears common with
all agents that are add-on for wearing off and
strategies to reduce peak-dose levels of dopamine
(e.g., decrease levodopa doses) may be the key
to overall benefit.

In terms of LID management, glutamate
antagonism still appears the most effective
option. The longer acting amantadine prepa-
rations may help reduce nighttime side effects,
but all other known side effects with immediate
release amantadine (e.g., livido reticularis, leg
edema, anticholinergic issues) will still likely
occur even with this preparation. The lack of
clinical efficacy with metabotropic glutamate
receptor antagonists has been disappointing
and remains unclear. Other ND drugs for LID
that show potential include SHT, agonists to
reduce ectopic dopamine release. Clinically
available serotonergic drugs, buspirone and
eltoprazine, have shown promising results, but
longer duration studies in PD are needed.

Historically, translational studies evaluating
new ND drugs for LID have been difficult, with
good preclinical efficacy rarely replicated at the
clinical level. There are many reasons that this
may have occurred; including inherent differ-
ences in animal models from PD patients and
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issues with trial design, for example, large pla-
cebo effects masking potential efficacy and vari-
ability in outcome measures of LID in patients.
Efforts to address these issues are ongoing
(e.g., new preclinical models of PD [125]) and
development of more reliable measure of LID,
with hopefully improved drug development.

More importantly, nonmotor symptoms
play a significant role in the quality of life of
PD, requiring new therapeutic approaches.
ND drugs have emerged as relevant alterna-
tives for the management of several nonmotor
features, particularly due to a poor response to
dopaminergic therapy. Control of PD psycho-
sis is particularly challenging without worsen-
ing PD motor symptoms. Thus pimavanserin
(SHT,, inverse agonist) has potential to control
psychosis and hallucinations without the risk of
agranulocytosis caused by clozapine.

In most other clinical situations ND drugs
for controlling nondopaminergic symptoms have
not been developed purely for PD, but rather
used clinically available drugs from the non-PD
field. Recent successful examples have included
cholinesterase inhibitors for PDD, botulinum
toxin for drooling, adrenergic agents for OH.
Such approaches assume the same, or similar,
pathophysiology underlying the nonmotor
symptoms in PD as in non-PD. This may be
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