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Abstract

Event recognition is the most fundamental and critical task in event-based natural language
processing systems. Existing event recognition methods based on rules and shallow neural
networks have certain limitations. For example, extracting features using methods based
on rules is difficult; methods based on shallow neural networks converge too quickly to a
local minimum, resulting in low recognition precision. To address these problems, we pro-
pose the Chinese emergency event recognition model based on deep learning (CEERM).
Firstly, we use a word segmentation system to segment sentences. According to event ele-
ments labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words,
participants, objects, time and location. Each word is vectorized according to the following
six feature layers: part of speech, dependency grammar, length, location, distance between
trigger word and core word and trigger word frequency. We obtain deep semantic features
of words by training a feature vector set using a deep belief network (DBN), then analyze
those features in order to identify trigger words by means of a back propagation neural net-
work. Extensive testing shows that the CEERM achieves excellent recognition perfor-
mance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-
supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine
layer by monitoring its training performance. Test analysis reveals that the new DBN
improves recognition performance and effectively controls the training time. Although the F-
measure increases to 88.11%, the training time increases by only 25.35%.

Introduction

Natural-language organized texts express higher-level semantic information through events.
Recognizing those events can help computers easily understand the exact meaning of texts and
lay a solid foundation for realizing event-based natural language processing (NLP) systems [1,
2]. We use trigger words to label events in texts. Typically, a trigger word is a major indicator
of an event occurring and contains the maximum amount of information in a sentence. For

» o«

example, in the sentence “Wenchuan suffered an earthquake on July 20, 2008.”, “earthquake”
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is a trigger word and therefore this event can be classified as an “earthquake” event. Its location
element is “Wenchuan”. Differing from other elements that may be absent in an event, the trig-
ger word is absolutely necessary for any event. Therefore, the essence of event recognition is
trigger word recognition.

Current, widely-used trigger-word recognition methods are based on rules or shallow neural
networks. However, these methods have certain limitations. For example, for methods based
on rules, extracting features is difficult. They also have a poor portability. Methods based on
shallow neural networks can not realize complex function approximations and suffer from the
vanishing gradient problem, resulting in low recognition precision. In recent years, deep learn-
ing (DL) within the machine learning field [3] has shown that it can be successfully applied to
reduce the data dimension by layer-wise training, abstract deep features of data and use those
features to considerably improve classification precision. DL mimics the human brain’s infor-
mation processing mechanism [4-6] in an unsupervised manner to learn a deep nonlinear net-
work structure, achieves complex function approximations, obtains the feature functions of
high-dimensional data and ultimately improves the accuracy of classification or prediction. DL
has achieved breakthroughs in image identification, audio processing and video recognition.
There are also preliminary applications of DL in many NLP fields such as syntactic analysis,
entity relation extraction and emotional analysis. Glorot et al. [7] analyzed current recommen-
dations and reviews on the internet, the number of which is exponentially increasing. As label-
ing these data is difficult, the researchers proposed a novel unsupervised study model based on
DL which learns how to extract meaningful information from recommendation and review
data on the internet. Xi et al. [8] proposed a Chinese anaphora resolution model based on deep
belief networks (DBN). Although the recognition ability of the proposed method is not better
than that of traditional support vector machine (SVM) anaphora resolution algorithms, the
study provides a meaningful application of DL to Chinese NLP. Comparing to DL, Weng pro-
posed a Finite Automaton in Developmental Network (FA-in-DN) [9], which incrementally
learns the FA but takes sensory images directly and produces motor images directly.

Although DL can be applied to these fields on a preliminary basis [10, 11], there are few
studies which show that the method can successfully extract deep semantic information in the
tield of event recognition. In this study, we propose a Chinese emergency event recognition
model (CEERM) based on deep learning. We use a DL mechanism to mine deep semantic fea-
tures automatically and analyze the role that these features play in event recognition. Using a
feature analysis method, we abstract six feature layers of words in texts and then vectorize
every word to a feature vector set. Finally, we analyze the feature vector sets using the CEERM
to obtain recognition results. Test analysis shows that recognition performance in our model is
better than that of existing methods.

Our model has some attractive features:

1. Based on a deep learning framework, it can approximate complex functions to obtain word
semantics features effectively and contribute to classification.

2. Two types of classifiers are used in our model: unsupervised and dynamical supervised. One
can alternate the classifier based on the application, which enhances the scalability and flexi-
bility of the model.

3. It can overcome some of the shortcomings of exiting event recognition methods that are
based on rules or shallow neural networks and can therefore improve recognition
performance.

4. The model conducts a meaningful exploration for the application of DL to the NLP field
and provides a foundation for its wider application in NLP.
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Related work

As a popular research field in NLP, event recognition technology has been widely applied to
automatic summarization [12-15], automatic question answering [16-19] and information
retrieval [20-23]. Existing event recognition methods are primarily divided into two types:
those based on rules and those based on shallow neural networks. Methods based on rules
commonly use predetermined rules to design templates for event recognition. For example,
Yankova et al. [24] proposed a football event extraction system, and Lee et al. [25]developed a
meteorological event extraction system based on ontology. Jiang [26]proposed a portable event
pattern acquisition method which manually defines events, extracts tasks and automatically
obtains a new event pattern from a raw corpus by building the mapping between event targets
and corresponding event roles. Chen et al. [27] proposed an information extraction model
based on event frames and built a catastrophic event frame which uses inheritance and induc-
tive characteristics of the frames to simplify system implementation processes and summarize
event information. Feng [28] proposed an emergency event information extraction method
base on frames. It uses a predetermined event frame to extract news elements and examines
new aspect information that was not pre-established in the frame as a complement to that
same frame.

Methods based on shallow neural networks focus on constructing a classifier and the discov-
ery, combination and selection of features. These methods consider event recognition as a clas-
sification problem and thus selecting appropriate features is critical for event classification. In
2002, Chieu and Ng introduced a maximum entropy classifier [29] and applied it for the pur-
pose of recognizing events and their elements. For addressing the problem that existing event
recognition methods did not consider context, Fu et al. proposed an event extraction method
based on weight features of event elements in the event ontology [30]. In 2006, Ahn [31] pro-
posed a method to recognize event classes and elements. In Ahn’s method, the most important
step is identifying the most suitable trigger word to describe an event, then, use a classifier to
recognize the class of this event, and lastly use the event class information to construct classifi-
ers for each event element class to recognize them. Wang et al. [32] proposed a verb-driven
method to extract event semantic information (5W1H) from Chinese texts. They proved its
reliability and feasibility through extensive experimental data. Yankova et al. [24] proposed an
event extraction method that integrates machine learning and semantic role labeling based on
the PropBank corpus. This method achieved satisfactory results when applied to English lan-
guage texts. McCracken et al. [33] extracted multiple elements using a syntax tree pattern
matching method. Kim et al. [34] used a method that combines lexical semantics and semantic
roles to recognize and classify events automatically.

Although current event recognition methods are efficient, certain limitations exist. Methods
based on rules lack portability and robustness, have difficulties extracting features and need
update rules to maintain optimal performance for new field texts. This requires many scientists
with specialized knowledge, experienced linguists and time. Methods based on shallow neural
networks search for optimal solutions by using a gradient descent algorithm. However, the non-
linear mapping between input and output of the algorithm converts the network error function
space into a nonlinear one consisting of multiple minimal points. The gradient search direction
is the only direction that reduces network errors; therefore, it always converges to a local mini-
mum, with worsening performance as the number of network layers increases [35], critically
affecting recognition performance. Considering the aforementioned problems, we propose the
CEERM, which uses a DL model to obtain deep semantic features of event trigger words without
manually designed rules and overcomes the local minimum problem. The model not only com-
pletes event recognition tasks, but also helps to recognize other event elements.
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Fig 1. RBM structure.
doi:10.1371/journal.pone.0160147.g001

Materials and Methods
Study Model

Restricted Boltzmann machine(RBM). RBM is a generative stochastic neural network
proposed by Hinton and Sejnowsk [36] and is illustrated in Fig 1. This network consists of
some visible units (mapping to visible variables that are data samples) and some hidden units
(mapping to hidden variables). Visible or hidden variables are both binary variables whose
state belongs to 0,1. The entire network is a bipartite graph and an edge connection exists only
between visible and hidden units. This means that no edge connection exists within visible or
hidden units. This represents the major difference between RBM and a general Boltzmann
machine.

The energy function of the network structure is defined by Eq (1).

E,)(v,h) = —ia,vi - ibjhj

_Zzhiwfivi

Where h and v represent hidden and visible layers, w represents the weight value between visi-
ble and hidden layers, and a and b represent their offset values, respectively. According to the
known node value of a visible layer, we can obtain that of a hidden layer using the joint proba-
bility distribution equation [36] given by

(1)

1

1+ exp(—b; — ij_,.vi)
i=1

J

(2)

According to [36], RBM is a symmetric network. Therefore, we can obtain the node value of
a visible layer from a known node value of a hidden layer using the equation as follows.

P(y, = 1]h) = Lo 3)

1+ exp(—a, — ij‘ihj)
=1

The goal of training the RBM is to obtain the parameters 8(w, g, b), which maximize the
joint probability p(v,h). The usual approach used to solve this problem is the Markov chain
Monte Carlo(MCMC) algorithm. This approach constantly updates the node values of the hid-
den and visual layers until the Markov chain approach tends to be stable; thus, the joint proba-
bility p (v;h) reaches the maximum value [37]. The derivatives of the maximum and initial
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joint probability distributions are then obtained. Finally, the weight value 0 is updated using
the following equation, where 7 is the iteration number and 7 is the learning speed.

OlogP(v, h)
T (4)

ot — g +
Input vector +° of the RBM is the vector of the visible layer when t = 0. Based on Eq (2), vec-
tor h° of the hidden layer is obtained by v and v' is the vector of the visible layer when time
t = 1, obtained through h° using Eq (3). In addition, v** and 4™ are the vectors of the visual
and hidden layers, respectively, when time t = co. The slope of the joint probability distribution
can be obtained by using the following equation.

dlog P(v, h
n% =< W —v)) >
<V — B > e (5)

=< hlv] > — <hXv® >

In Eq (5), h%? is the average value of point multiplication of the input feature vector and its
corresponding feature vector in the hidden layer and h°°v™ is the average value of the feature
vector of the visible layer at the end of the Markov chain and its corresponding feature vector
in the hidden layer. The Markov chain converges at 4/°°v>°. From Eq (5), the slope of the joint
probability distribution is unrelated to the intermediate state and is concerned only with the
initial and final states of the RMB network. According to Eq (4), the updated parameter 0 can
be obtained in order to implement self-training. In a traditional Markov chain approach, when
solving for the maximum joint probability P(h°°v°°) and initial joint distribution probability p
(v;h), guaranteeing the convergence rate is difficult. Moreover, the step oo is also difficult to
calculate. Therefore, Hinton [38] proposed using contrastive divergence (CD) guidelines,
which can speed up calculation without compromising accuracy. The Kullback-Leibler(KL)
distance is used to measure the “difference” of two probability distributions, expressed as KL
(P||P), shown in the following equation.

CD, = KL(P[|P,,) — KL(P,[|P,) (6)

CD,, can be understood as a position measurement of p,, between p, and p... Constantly
assigning p,, to po, we can obtain new values of p, and p,, [39]. Experiments demonstrate that
CD,, tends to 0 after r times of calculating the slope correction parameter, and the accuracy
using the method is similar to that of the Markov chain approach. Therefore, this study uses
the RBM network training method based on CD guidelines [40].

Deep belief network based on dynamic supervised learning. In the existing DBN net-
work, the training way of each RBM layer is unsupervised; however, it is finally reverse super-
vised fine-tuned using the back propagation network (BP). The structure can improve training
speed, but no supervision training exists between RBM layers. This can cause errors bottom-up
propagation in RBM layers, which ultimately affects recognition performance. Therefore, we
propose DBN based on dynamic supervision. In this network, RBM training results are esti-
mated. Determining the use of BP training with supervision depends on the results, as shown
in Fig 2. The average error and its standard deviation are used as evaluation criteria. If one of
these is greater than the given threshold value, then the BP algorithm is used to fine-tune the
RBM network parameters in order to perform training with supervision. Therefore, our DBN
can reduce the risk of error propagating in RBM layers and thus improve recognition perfor-
mance. Our method does not require supervised training in all RBM layers. Therefore, it limits
DBN network training time and improves recognition performance.
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Fig 2. Structure of deep belief network based on dynamic supervision.
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Two evaluation parameters of DBN are used based on dynamic supervision: the average
error of one time RBM training, as seen in Eq (7), and the unbiased standard deviation of errors
of one time RBM training, as shown in Eq (8). We define the average value of total error and
the average value of total error standard deviation as thresholds by training unsupervised DBN
several times.

61+62+e3+"'+en22?:16i

(7)

E:

Chinese emergency event recognition model based on deep learning
(CEERM)

CEERM has four main modules: corpus selection, a pre-processing system, feature vector gener-
ation and a deep classifier, as shown in Fig 3. The main function of the pre-processing module is
to segment sentences in the corpus and then classify every word according to its labeled class.
The feature vector generation module generates feature vectors for words based on six feature
layers: part of speech layers (POSL), dependency grammar layers (DPL), length layers (LENL),
location layers (LOCL), distance between trigger word and core word layers (DISL), and trigger

Training Pretreatment Generate training Extract semantic features
corpora system examples of event elements

e -

I |

| | Generate deep Extract semantic features | | Event recognition
| |learning model of event elements results

! t .

|

Classifier
_________________ - l

Testing Pretreatment Determine an event Generate
Corpora system 1o be recognized testing examples

Fig 3. CEERM model frame.
doi:10.1371/journal.pone.0160147.g003
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Table 1. Event Statistics in CEC 2.0.

Corpus Class Section
Earthquake 63
Fire 75
Traffic accident 85
Terrorist attacks 49
Food poisoning 61
Total 333

doi:10.1371/journal.pone.0160147.t001

Sentence Event Sentence Event Ratio of Event Sentences(%)
496 463 1053 93.3
512 473 1216 92.4
561 523 1790 93.2
387 362 823 93.5
439 409 1109 93.2
2395 2230 5991 93.1

words frequency layers (TFWL). Feature vectors are binary patterns. The deep classifier gener-
ates a stable DBN network by training the corpus and recognizing trigger words in the test cor-
pus. We use two types of classifiers: without supervision and with dynamic supervision.

Corpus selection. Chinese Corpus CEC 2.0 (https://github.com/shijiebei2009/
CEC-Corpus) is an event ontology corpus developed by the Semantic Intelligence Laboratory
of Shanghai University. It has collected 333 newspaper texts about earthquakes, fires, traffic
accidents, terrorist attacks and food poisoning. Descriptive statistics for these texts are shown
in Table 1. We labeled event trigger words, participants, objects, time, location and other ele-
ments using a semi-automatic method. The corpus is divided into two parts: training and test.
The training corpus contains 271 newspaper articles of five kinds obtained from CEC 2.0 and
includes 51 articles about earthquakes, 61 about fires, 70 about traffic accidents, 50 about food
poisoning, 39 about terrorist attacks, with a total of 4690 trigger words. The test corpus con-
tains 1301 trigger words in 62 corpora of all five article types including 12 articles about earth-
quakes, 14 about fires, 15 about traffic accidents, 11 about food poisoning and 10 about
terrorist attacks.

LTP segmentation system. The language technology platform (LTP) is a Chinese NLP
system built by the Social Computing and Information Retrieval Research Center at the Harbin
Institute of Technology. LTP has developed five Chinese NLP modules, including word seg-
mentation, named entity recognition, morphology, sentence structure and semantics [41]. LTP
has been widely recognized and praised, and the academic version of LTP has been shared with
more than 500 research institutions free of charge.

Pre-processing system. The main function of the pre-processing system is to process the
XML format corpus files, obtain parts of speech (POS), a dependency grammar (DP) of words
and finally to save the files in XML format. First, LTP segments the sentences into words. We
then compare the words in this sentence with previously labeled trigger words. If the words are
labeled trigger words, we classify them as trigger words. We classify other elements such as par-
ticipants, objects, time and location using the same method. Pre-processing results form the
foundation of feature representation and vector generation, detailed in Fig 4.

Deep classifier. The deep classifier uses word feature vectors as inputs and treats word
classifications as training and test comparison criteria. The manner of training is such that it
involves the training of the small batch pattern. Two kinds of classifiers are employed. One is
an unsupervised DBN which consists of a multiple-layer unsupervised RBM and a single-layer
supervised BP network. The other is based on dynamic supervised DBN and determines
whether a supervised adjustment RBM network is required by analyzing the RBM training
results. It thus controls training time and improves recognition performance.

Feature abstracting. Traditional event recognition methods based on features primarily
use single learning mechanisms during the learning process. They do not consider the impact
of feature layers on system learning; they only consider the role of the feature value. In fact, the
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human cognitive process has an abstract hierarchical nature. Recognizing unknown objects
progresses from the abstract to the concrete. The higher the abstract level, the higher the recog-
nition accuracy. Therefore, layering feature types and allowing them to perform their role ade-
quately during the learning process is necessary.

According to the semantic features of trigger words in texts, we define six feature layers in
order to transform the trigger word recognition into a feature classification problem. As DL
can mine text features more effectively than traditional methods, it can recognize events with
greater accuracy.

POSL: Part of speech is the most basic grammatical feature of a word. In a sentence, gram-
mar imposes great restrictions on POS. For instance, nouns or pronouns can act as a subject,
but using an adverb as the subject is absolutely impermissible. Therefore, taking POS as a fea-
ture layer conforms with the expression characteristics of text semantics information and the
basic cognition when people identify events [42]. In CEC 2.0, trigger words have a centralized
distribution, 80% of trigger words are verbs and 14% are nouns. Therefore, using POSL as a
trigger word’s abstract feature layer can improve recognition accuracy.

DPL: According to dependency grammar, the predicate verb of a sentence is considered the
center that dominates other sentence components. However, a predicate verb itself is not domi-
nated by any other components and all dominated components subordinate to their dominator
in one dependency relationship [43]. As dependency grammar exactly describes semantic role
relationships between words, it has extremely high semantic performance. Containing the
most information and having the clearest expression in a sentence, trigger words, in a certain
sense, play the role as predicate verbs of dependency grammar. According to dependency
grammar analysis of trigger words in CEC 2.0, 62% of their role in dependency grammar is
head and 18% is verb-object. In most cases, the predicate verbs of dependency grammar accord
with trigger words.

LENL: In any sentence, a close connection exists between a word’s length (LEN) and its role
[44]. For instance, the subject and object usually are longer than the predicate because the
predicate more often expresses action. In addition, words of this kind are usually more concise
and provide clearer expression. Length analysis of trigger words in CEC 2.0 shows that the
length of 81% of trigger words is 2 and of 12% of words is 1. Due to its centralized distribution,
this feature is crucial in recognizing trigger words effectively.

LOCL: The word index in a sentence denotes a word’s position, which affects its semantic
information. Word position in a sentence is a kind of specification that takes form gradually
during the writing process. Every language places words having different roles in different posi-
tions based on the language’s unique grammatical logic. Therefore, a word index has a positive
meaning for determining the role a word plays in a sentence [45]. Considering that sentence
lengths are different, we use only 11 location indices (0 to 10) to annotate the abstract layer.
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Table 2. Grade rules of trigger word frequency.

Identifier Feature abstract layer Grade Define
101 TWFL hp Fr>1
102 TWFL a Fr>1and Fr<5
103 TWFL b Fr>5and Fr< 10
104 TWFL c Fr>10and Fr< 20
105 TWFL d Fr>20 and Fr< 30
106 TWFL e Fr> 30 and Fr< 40
107 TWFL f Fr>40 and Fr< 50
108 TWFL g Fr>50

Note: Fr denotes Frequency.

doi:10.1371/journal.pone.0160147.t002

Location (LOC) analysis in CEC 2.0 indicates that 16% of trigger words are in the first position
of sentences and 12% are in the second position. The location feature contributes minimally to
recognition accuracy because of its low distribution concentration degree.

DISL: Core words are the main components of sentences, which means they usually express
the core content of the sentence. Trigger words express the most important content of a sen-
tence [46]. Therefore, trigger words and core words have a high degree of similarity. The
shorter the distance (DIS) between a regular word and a core word, the greater is the possibility
that the former is a trigger word. In this study, a core word refers to a word whose dependency
grammar role is head. Analyzing CEC 2.0, we find that the distance between trigger and core
words in 12% of the cases is 0 and in 27% the distance is 1.

TWFL: Many trigger words reappear in CEC 2.0. Some trigger words appear more often
than others. Trigger word frequency (TWF) is divided into eight grades: hp, a, b, ¢, d, e, f, and
g, definitions of which are as given in Table 2.

Feature representation and samples generation. Feature representation mainly uses a
binary representation model. Feature vector generation of TWFL is accumulated and five other
vector generations of abstract layers follow the same pattern. We describe all feature represen-
tations in detail below.

Feature representation of POSL: Twenty-nine dimensions of POS feature vectors represent
29 types of POS. If the POS of a candidate word corresponds with that of a certain dimension
representation of a feature vector, then the feature vector value of the word at the dimension is
1, whereas that at the remaining 28 dimensions are 0.

Feature representation of DPL: On this feature layer, 14 vector dimensions exist, thus repre-
senting 14 kinds of DP.

Feature representation of LENL: On this layer, the vector dimension is 10, meaning the can-
didate word length ranges from 1 to10. If a word length exceeds 10, then every feature vector
value of the candidate word is 0.

Feature representation of LOCL: The vector dimension is 11, denoting 11 index positions
from 0 to 10. If an index position exceeds 10, then every feature vector value of the candidate
word is 0.

Feature representation of DISL: The vector dimension is 11, representing DIS from 0 to 10.
If it is greater than 10, then each feature vector value of the candidate word is 0.

Feature representation of TWFL: The dimension is 8, representing 8 grades of a trigger
word. This layer’s vector representation uses the accumulation approach. For example, the
grade of the candidate word “earthquakes” is e. Therefore, the feature vector valueis “1 111 1
100
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Table 3. Example of feature representation.

Candidate word Feature abstraction layer Feature vector value Class

last night POSL 00000000000000000100000000000 2
DPL+LENL 00000010000000 0100000000
LOCL+DISL+TWFL 10000000000 00010000000 00000000

police POSL 00000000000100000000000000000 1
DPL+LENL 10000000000000 0100000000
LOCL+DISL+TWFL 01000000000 00100000000 00000000

on the spot POSL 00010000000000000000000000000 4
DPL+LENL 00000010000000 0100000000
LOCL+DISL+TWFL 00100000000 01000000000 00000000

arrested POSL 00000000000000000000000010000 3
DPL+LENL 00000000000001 0100000000
LOCL+DISL+TWFL 00010000000 10000000000 11000000

suspect POSL 00000000000100000000000000000 1
DPL+LENL 01000000000000 0010000000
LOCL+DISL+TWFL 00001000000 01000000000 00000000

doi:10.1371/journal.pone.0160147.t003

Based on the aforementioned feature representations, we give the following example: “The
police arrested the suspect on the spot last night.”. In this sentence, Types 1, 2, 3, and 4 repre-
sents the participant, time, trigger word and location, respectively. The results are shown in

Table 3.

Results

We used the CEC 2.0 Chinese corpus for experimental data and then extracted semantic infor-
mation required for event recognition according to the feature representations described in the
Feature abstracting section. Then, based on the process described in the Feature representation
and samples generation section, training and test samples are generated. We rapidly trained
the training samples using CEERM to generate a stable deep classifier, which could recognize
the events in test samples. The values of deep-classifier-related parameters numepochs, batch-
size, momentum, and alpha are set to 1, 100, 0, and 1, respectively. In our experiments, we used
precision (P), recall rate (R), and F-measure to evaluate recognition performance. In addition,
we used F incremental (FI), F incremental rate (FIR), F comparison incremental (FCI), and F
comparison incremental rate (FCIR) to contrast the recognition performance of the two
classifiers.

Threshold analysis of dynamic supervised classifier

The dynamic supervised classifier monitors the average and standard deviation of training
errors in a single RBM training period. If either exceeds a threshold, the classifier uses the BP
network to fine-tune the RBM layer to achieve the following: ensure error is controlled within
a specific range, reduce the probability of error being propagated layer-wise and improve rec-
ognition performance. However, the choice of the threshold impacts recognition performance
and training time. If the threshold is too low, fine-tuning during each RBM training period is
possible, which greatly improves model training time. If the threshold is too high, it may reduce
the possibility of eliminating those errors in the lower layer in time and may thus propagate to
the upper layer, resulting in low recognition performance. In this study, we use the average and
standard deviation of errors as the threshold values after several rounds training the
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Table 4. Threshold analysis of dynamic supervised classifier.

Model+Abstract Layers Number of vectors RBM1(%) RBM2(%) RBM3(%) RBM4(%) Average(%) Standard deviation(%)
2000 7.25 417 2.61 2.52 4.14 2.21
4000 7.18 4.09 2.52 2.49 4.07 2.2
6000 713 4.09 2.51 2.48 4.05 2.19
DBN4+ 8000 712 4.11 2.52 2.45 4.05 2.19
POSL+DPL+ 10000 7.08 4.01 2.46 2.42 3.99 2.19
IISIIEQLT'II:V(\?IC:;II__+ 12000 7.01 3.99 2.45 2.46 3.98 2.15
14000 6.98 3.97 2.42 2.41 3.95 2.15
16000 6.97 3.93 2.38 2.41 3.92 2.16
18000 6.9 3.89 2.35 2.36 3.88 2.14
20000 6.86 3.91 2.38 2.32 3.87 2.13
Average value 11000 7.048 4.016 2.46 2.432 3.99 217

doi:10.1371/journal.pone.0160147.1004

unsupervised DBN. In Table 4, we increase the amount of test data to obtain test results. In

these tests, the number of RBM layers is four, all feature layers are added and RBM1 represents
the error in the first RBM layer training. Analysis of the parameters in Table 4 enables us to set
the dynamic classifier threshold to an average of 4 and the standard deviation to 2.

CEERM recognition performance of unsupervised classifier

We combine the features of POS, DP, LEN, LOC, DIS and TWF to generate training and test-
ing samples, then use DBNi to complete two sets of experiments. Thereafter, we compare
them. I represents the number of RBM layers contained in DBN with the values set to
1,2,3,4,5,6,7 and 8, respectively. In the first experiment, we test recognition performance with

the same feature layers while the number of RBM layer increases. In the second experiment, we

test the performance when introducing different semantic feature layers with the same RBM

layers.

Table 5 shows the results of the first experiment. An increase in the number of RBM layers
can improve recognition performance when the number is below five. The values of DBN4 per-
formance indices R, P and F are 87.32%, 83.12% and 85.17%, which are highest in all results.
Compared to the result of DBN1, FI and FIR increase by 5.73% and 7.21%. As the model can
extract the main feature information from data using multiple-layer mapping units, its effect is
greater than that of a single-layer structure. However, when the number of RBM layers is

Table 5. Unsupervised CEERM recognition performance based on different numbers of RBM layers.

Model+Abstract Layers R P F Fl FIR(%)
DBN1+POSL+DPL+LENL+LOCL+DISL+TWFL 80.4 78.5 79.44 0 0
DBN2+POSL+DPL+LENL+LOCL+DISL+TWFL 83.2 78.7 80.89 1.45 1.82
DBN3+POSL+DPL+LENL+LOCL+DISL+TWFL 84.7 82.8 83.74 2.85 3.53
DBN4+POSL+DPL+LENL+LOCL+DISL+TWFL 87.32 83.12 85.17 1.43 1.71
DBN5+POSL+DPL+LENL+LOCL+DISL+TWFL 86.13 83.21 84.64 -0.52 -0.61
DBN6+POSL+DPL+LENL+LOCL+DISL+TWFL 85.21 81.21 83.16 -1.48 -1.75
DBN7+POSL+DPL+LENL+LOCL+DISL+TWFL 83.13 81.32 82.22 -0.95 -1.14
DBN8+POSL+DPL+LENL+LOCL+DISL+TWFL 82.59 80.12 81.34 -0.88 -1.07

Note: F, is the F measure when the number of RBM layers is n, Fl is difference between F,, and F,,_4,

FIR is equal to fa-fe=t,
n—1

doi:10.1371/journal.pone.0160147.1005
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Table 6. Unsupervised CEERM recognition performance based on different feature layers.

Model+Abstract Layers R P F Fl FIR(%)
DBN4+POSL 78.13 66.32 71.74 0 0
DBN4+POSL+DPL 92.42 66.52 77.36 5.62 7.83
DBN4+POSL+DPL+LENL 83.87 77.42 80.52 3.16 4.08
DBN4+POSL+DPL+LENL+LOCL 83.87 78.39 81.04 0.52 0.65
DBN4+POSL+DPL+LENL+LOCL+DISL 80.01 86.32 83.05 2.01 2.48
DBN4+POSL+DPL+LENL+LOCL+DISL+TWFL 87.32 83.12 85.17 2.12 2.56

Note: F. is the F measure when the number of feature layers is c, Fl is difference between F. and F._4,

FIR is equal to fe=fe=t,
c—1

doi:10.1371/journal.pone.0160147.1006

greater than four, its recognition performance degrades with each increase in the number of
RBM layers. The values of DBNS result indices R, P and F are only 82.59%, 80.12% and
81.34%. This means that the recognition performance is not directly proportional to the
increase in the number of RBM layers. Therefore, in an actual application, we should choose a
suitable depth of RBM based on extensive testing and analysis. In addition, system training
time increases as the number of RBM layers increases, because the number of neural network
training nodes increases and therefore the workload of combining and training increases dra-
matically. This establishes a higher demand for the processing ability of the system platform.

The second experiment tests the recognition performance of the CREEM model when intro-
ducing different feature layers. The results, shown in Table 6, reveal that introducing different
feature layers can considerably improve overall performance. With an increase in the number
of feature layers, all three performance indices improve. However, different feature layers con-
tribute differently to the improvement in recognition performance. From Table 6, we see that
DPL contributes most to performance, with FI and FIR increasing by 5.62% and 7.83%, because
the DP can precisely describe semantic role relationships. Using relationship information can
therefore add the performance when recognizing events. LENL also has a big contribution to
the performance improvement, with FI and FIR increase by 3.16% and 4.08%. The reason for
this improvement is that many verbs and verb noun phrases are used as trigger words. These
phrases are mainly composed of two or three single words so the model will easily identify such
trigger words through length. LOCL contributes minimally, FI and FIR only increase by 0.52%
and 0.65%, because event sentences don’t have a consistent length. Furthermore, even if two
event sentences have a approximate length, the location of their trigger words may not be con-
sistent leading to a smaller overall contribution. DISL contributes little to recognition perfor-
mance, with FI and FIR increase by 2.01% and 2.48%, because the written style is irregular for
Chinese and the distance between a core word and a trigger word becomes more uncertain. If
we use a corpus of another language with a clear writing style as our experimental data, the
DISL may contribute more. Due to the test corpus and training corpus being disjoint, the
TWEFL only retains the frequency of trigger words in the training corpus. This reduces the con-
tribution to the performance of the model.

CEERM recognition effect comparison of two classifiers

To compare our two classifiers, we test recognition performance as the number of DBN and
feature layers increase. We also compare and analyze the stability of the classifiers with respect
to recognition performance as the number of DBN layers increases to a limited degree. We
then compare their training time.
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Table 7. Comparison of recognition effect between dynamic supervised and unsupervised CEERM based on different numbers of RBM layers.

Model+Abstract Layers

DBN1+POSL+DPL+LENL+LOCL+DISL+TWFL
DBN2+POSL+DPL+LENL+LOCL+DISL+TWFL
DBN3+POSL+DPL+LENL+LOCL+DISL+TWFL
DBN4+POSL+DPL+LENL+LOCL+DISL+TWFL
DBN5+POSL+DPL+LENL+LOCL+DISL+TWFL
DBN6+POSL+DPL+LENL+LOCL+DISL+TWFL
DBN7+POSL+DPL+LENL+LOCL+DISL+TWFL
DBN8+POSL+DPL+LENL+LOCL+DISL+TWFL

R P F FI FIR(%) FCl FCIR(%)

80.4 78.5 7944 |0 0 0 0

89.5 83.6 86.45 | 7.01 8.83 5.56 6.43
89.6 84.7 87.08 | 0.63 0.73 3.34 3.84
90.32 |86 88.11 | 1.03 1.18 2.94 3.34
90.3 85 87.57 | -0.54 -0.61 2.93 3.35
89.7 84.8 87.18 | -0.39 -0.44 4.02 4.61
89.1 84.2 8658 |-06 -0.69 4.36 5.04
90.1 82.4 86.08 |-05 -0.58 474 5.51

Note: F4 is the F measure of the dynamic supervised classifier, F, is the F measure of the unsupervised classifier, FCl is difference between F, and F,,, FCIR

Fg—Fy

is equal to =
u

doi:10.1371/journal.pone.0160147.t007

A comparison of the unsupervised and dynamic supervised classifiers is shown in Table 7.

The average increment of the three indices and the total absolute increment of the dynamic
supervised classifier are greater than that of the unsupervised classifier when the numbers of
RBM layers increases. The highest FCI and FCIR are 5.56% and 6.43%. As the structure of
dynamic supervised DBN can hinder the errors propagating layer by layer, recognition perfor-
mance is increasing. At the same time, we also show that the FI and FIR of the two DBN decline
when the numbers of RBM layers is more than four, but that the rate of decline is small for
dynamic supervised DBN and therefore has a higher stability. We can conclude that adding
dynamic supervised learning can improve recognition performance to a certain extent.

Table 8 shows a comparison of the unsupervised and dynamic supervised classifiers. The

experimental results show that an increasing number of feature layers can considerably
improve overall performance for the two classifiers. DPL contributes the most whereas LOCL
contributes minimally. Each layer’s contribution is the same as that of the unsupervised classi-
fier. The effects of feature layers in event recognition are very similar for the two classifiers.
However, the dynamic supervised classifier has better performance than unsupervised, the
highest FCI and FCIR are 4.89% and 6.83%, the minimal are 1.7% and 2.0%, and the average
are 2.67% and 3.26%. In conclusion, the recognition performance of the dynamic classifier is
better than that of the unsupervised classifier, which means the way of supervision is very
important for the performance of deep learning, and we should treat it as a key factor when

using deep learning in NLP applications.
Fig 5 illustrates our comparisons and analysis of the stability of the classifiers regarding rec-
ognition performance. We analyzed their stability by increasing the number of RBM layers in

Table 8. Comparison of recognition effect between dynamic supervised and unsupervised CEERM based on different feature layers.

Model+Abstract Layers R P F Fl FIR(%) FCI FCIR(%)
DBN4+POSL 75.11 78.21 76.63 0 0 4.89 6.38
DBN4+POSL+DPL 79.13 80.35 79.74 3.11 4.05 2.38 2.98
DBN4+POSL+DPL+LENL 83.21 80.81 81.99 2.26 2.83 1.47 1.79
DBN4+POSL+DPL+LENL+LOCL 87.32 78.61 82.74 0.74 0.91 1.7 2.05
DBN4+POSL+DPL+LENL+LOCL+DISL 91.76 80.28 85.64 2.9 3.51 2.59 3.02
DBN4+POSL+DPL+LENL+LOCL+DISL+TWFL 90.32 86 88.11 2.47 2.88 2.94 3.34

Note: See the note to Table 7.

doi:10.1371/journal.pone.0160147.t008
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Fig 5. Comparison of the stability of the two classifiers.

doi:10.1371/journal.pone.0160147.g005

the same number of feature layers. Fig 5 shows that with an increase in RBM layers, errors at
the bottom layer propagate upward to higher layers and the recognition performance of the
unsupervised classifier declines gradually, the difference between the maximum and minimum
of the three indexes R, P, F are 28.11%, 29.25% and 28.75%. In addition, the classifier has a
large amplitude and poor stability. By contrast, the dynamic supervised classifier has high sta-
bility, the difference between the maximum and minimum of the three indexes R, P, F are
21.97%, 21.83% and 21.91%, which are all lower than the values of the unsupervised classifier.

Table 9 shows the training time of the two deep classifiers. The table shows that the training
time of the dynamic supervised classifier is longer because adding fine-tuning increases the
training time. However, the increase is less than 30%. Considering the improved performance,
we can allow such a limited increase in time. The classifier without supervision has a shorter
training time. We chose the classifier’s way of supervision according to specific situations and
platform performance in actual applications. If training efficiency is emphasized, the classifier
without supervision is the better of the two classifiers. Dynamic supervision is chosen because
of its better recognition performance.

We compared the recognition performance of CEERM based on rules and SVM. Table 10
shows the experimental results. We can conclude from these results that the DL-based method
has the best recognition performance. They also reveal that DL is extremely effective in text
mining and suitable for a wider application in NLP.

Although the method proposed in this paper can overcome the limitations of the existing
event recognition methods and offers a great improvement in the recognition performance and
stability, the analysis of our experimental results reveals that the classification performance
does not reach 100%. This is likely due to a number of different reasons;

Table 9. Comparison of the training time of the two classifiers.

Test condition

All feature layer are the same
Increasing the RBM layers from 1 to 8

RBM layer is fixed
Increasing the feature layers from 1 to 6

Training time of one period U(ms) D(ms) Increment Rate(%)
Average time 1290 1595 23.64
Total time 9761 12235 25.35
Average time 1089 1317 20.94
Total time 6135 7574 23.46

Note: U refers to the unsupervised classifier and D refers to the dynamic supervised classifier.

doi:10.1371/journal.pone.0160147.1009
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Table 10. Recognition performance of CEERM, based on rules and SVM.

Methods Supervision way R P F

CEERM unsupetrvision 87.32 83.12 85.17
CEERM dynamic supervision 90.32 86 88.11
Based on rules -- 80.3 78.6 79.44
Based on SVM -- 84.5 81.1 82.77

doi:10.1371/journal.pone.0160147.t010

1. DBN is an effective multi-classification deep neural network and the recognition perfor-
mance of DBN is generally better than that of shallow layer neural networks. However,
regardless of whether the application is to image recognition or other areas, the method has
not been able to achieve a 100% classification result. This is why the method proposed in
this paper also fails to achieve a perfect recognition result.

2. In this paper, the testing and training corpus are disjoint, leading to the semantic features of
some events in the test corpus not being learned by the deep classifiers, which can affect rec-
ognition performance. But if the testing and training corpus are joint, then the scalability of
the model will be affected to a certain extent. Especially during application, it may be neces-
sary to process a large number of non-labeled texts. This scenario requires that the testing
and training corpus are disjoint.

3. This method is mainly used for event recognition in Chinese texts. Different from English
NLP, Chinese NLP must use word segmentation technology. In this paper, we apply the
LTP of the Harbin Institute of Technology as a segmentation tool, which has a higher recall
and precision rate, but has at the same time still failed to reach 100% recognition perfor-
mance. The errors due to an imperfect application of LTP also influence the model recogni-
tion performance negatively, thereby reducing the overall model recognition performance.

4. In order to improve event recognition performance, this paper proposes a variety of event
recognition features. However these do not capture all features of events, there may be other
potential features to be excavated, which may improve recognition performance of the sys-
tem. In future research, we believe that we need to mine more features so as to achieve the
best possible recognition results.

Discussion

In this study, we examined event recognition problems combining semantic information. We
transformed event recognition into semantic feature classification and proposed CEERM by
applying DL to event recognition. Our method performed better than existing event recogni-
tion methods. Based on the DL framework, CEERM can obtain deep features of text data to
improve event recognition performance. We also designed two kinds of classifiers. One is the
unsupervised classifier, which is efficient but shows poor recognition performance. The other
is the dynamic supervised classifier, which not only improves recognition performance but also
limits training time. Our study shows that the dynamic supervised classifier obtains the most
comprehensive results.

We also tested the recognition performance of CEERM. Experimental results show that rec-
ognition performance can be improved when the number of RBM training layers increases to a
certain extent. Simultaneously, the relationship between recognition performance and increas-
ing number of RBM layers is nonlinear. When the RBM layers reach a certain number, the rec-
ognition performance of the two classifiers diminishes. Therefore, we must choose suitable
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RBM layers based on specific application requirements. Introducing feature layers to CEERM
can help improve recognition performance. In fact, test results show that adding feature layers
can improve system performance regardless of the number of RBM layers in CEERM.

In the future, the performance and scalability of CEERM can be improved. In addition, this
model could be applied to other element recognition in event ontology. Although DL has
achieved breakthroughs in audio and image recognition, it has not yet a considerable influence
on NLP. Thus, the connections between words, sentences and paragraphs are relatively
obscure. A limited RBM structure of an existing DL can not express the vector structure of
texts precisely. Therefore, designing a DL model that is suitable for text analysis may become a
trend in future research.
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