Skip to main content
. 2016 Aug 8;11(8):e0160147. doi: 10.1371/journal.pone.0160147

Table 5. Unsupervised CEERM recognition performance based on different numbers of RBM layers.

Model+Abstract Layers R P F FI FIR(%)
DBN1+POSL+DPL+LENL+LOCL+DISL+TWFL 80.4 78.5 79.44 0 0
DBN2+POSL+DPL+LENL+LOCL+DISL+TWFL 83.2 78.7 80.89 1.45 1.82
DBN3+POSL+DPL+LENL+LOCL+DISL+TWFL 84.7 82.8 83.74 2.85 3.53
DBN4+POSL+DPL+LENL+LOCL+DISL+TWFL 87.32 83.12 85.17 1.43 1.71
DBN5+POSL+DPL+LENL+LOCL+DISL+TWFL 86.13 83.21 84.64 −0.52 −0.61
DBN6+POSL+DPL+LENL+LOCL+DISL+TWFL 85.21 81.21 83.16 −1.48 −1.75
DBN7+POSL+DPL+LENL+LOCL+DISL+TWFL 83.13 81.32 82.22 −0.95 −1.14
DBN8+POSL+DPL+LENL+LOCL+DISL+TWFL 82.59 80.12 81.34 −0.88 −1.07

Note: Fn is the F measure when the number of RBM layers is n, FI is difference between Fn and Fn−1,

FIR is equal to Fn-Fn-1Fn-1.