Skip to main content
. 2016 Aug 8;11(8):e0160147. doi: 10.1371/journal.pone.0160147

Table 7. Comparison of recognition effect between dynamic supervised and unsupervised CEERM based on different numbers of RBM layers.

Model+Abstract Layers R P F FI FIR(%) FCI FCIR(%)
DBN1+POSL+DPL+LENL+LOCL+DISL+TWFL 80.4 78.5 79.44 0 0 0 0
DBN2+POSL+DPL+LENL+LOCL+DISL+TWFL 89.5 83.6 86.45 7.01 8.83 5.56 6.43
DBN3+POSL+DPL+LENL+LOCL+DISL+TWFL 89.6 84.7 87.08 0.63 0.73 3.34 3.84
DBN4+POSL+DPL+LENL+LOCL+DISL+TWFL 90.32 86 88.11 1.03 1.18 2.94 3.34
DBN5+POSL+DPL+LENL+LOCL+DISL+TWFL 90.3 85 87.57 −0.54 −0.61 2.93 3.35
DBN6+POSL+DPL+LENL+LOCL+DISL+TWFL 89.7 84.8 87.18 −0.39 −0.44 4.02 4.61
DBN7+POSL+DPL+LENL+LOCL+DISL+TWFL 89.1 84.2 86.58 −0.6 −0.69 4.36 5.04
DBN8+POSL+DPL+LENL+LOCL+DISL+TWFL 90.1 82.4 86.08 −0.5 −0.58 4.74 5.51

Note: Fd is the F measure of the dynamic supervised classifier, Fu is the F measure of the unsupervised classifier, FCI is difference between Fd and Fu, FCIR is equal to Fd-FuFu.