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Abstract

In the United States, about 600,000 people die of heart disease every year. The annual cost of care 

services, medications, and lost productivity reportedly exceeds 108.9 billion dollars. Effective 

disease risk assessment is critical to prevention, care, and treatment planning. Recent 

advancements in text analytics have opened up new possibilities of using the rich information in 

electronic medical records (EMRs) to identify relevant risk factors. The 2014 i2b2/UTHealth 

Challenge brought together researchers and practitioners of clinical natural language processing 

(NLP) to tackle the identification of heart disease risk factors reported in EMRs. We participated 

in this track and developed an NLP system by leveraging existing tools and resources, both public 

and proprietary. Our system was a hybrid of several machine-learning and rule-based components. 

The system achieved an overall F1 score of 0.9185, with a recall of 0.9409 and a precision of 

0.8972.
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1. Background

In the United States, heart disease is the leading cause of death, accounting for over 600,000 

deaths per year [1]. The American Heart Association reports that the annual total cost of 

care services, medications, and lost productivity exceeds 108.9 billion dollars [2]. The 2014 

i2b2/UTHealth Challenge brought together researchers and practitioners of clinical natural 

language processing (NLP) to tackle problems of common interest, which included the 

identification of heart disease risk factors reported in electronic medical records (EMRs), a 

task that will support prevention, care, and treatment planning of the disease. We 

participated in a track focusing on this task, Track 2 of the 2014 i2b2/UTHealth Challenge.

The goal of the Track-2 task was to annotate diagnoses, risk factors, and associated 

medications at the record (document) level. The challenge organizer provided a training 

corpus with gold annotations at the record level, but also made available raw evidence 

annotations at the phrase level for participants’ system development. The task concerns 

several clinical NLP topics including disease concept identification, medication detection, 

and smoking status classification. Each of these topics may require supporting tasks, such as 

assertion detection, section detection, and temporal information detection, as well as basic 

NLP tasks, such as part-of-speech tagging. Many of these tasks have been studied over the 

years [3–14]. Track 2 of the 2014 i2b2/UTHealth Challenge provided a valuable opportunity 

to determine the generalizability of past research.

Because significant overlap exists between the 2014 Challenge and prior i2b2 Challenges, 

we reviewed successful prior efforts, and discovered a common technique, which was 

termed “hot-spot identification” by Cohen [12]. In this technique, a small amount of 

discriminative words are identified to classify a document. The hot-spot phrases may be 

identified via hand-coded rules or sequence labeling techniques, such as Conditional 

Random Field (CRF) [8]. Hot-spot-based techniques have demonstrated repeated success by 

multiple teams during the 2006 and 2011 i2b2 Challenges.

In the 2006 i2b2 NLP Challenge, hot-spot phrases were leveraged to classify patients’ 

smoking status [9] (non-smoker, current smoker, past smoker, smoker, or unknown). Among 

the best performing systems in the challenge were those developed by Aramaki et al. [10], 

Clark et al. [11], and Cohen [12], which achieved micro-averaged F-measures of 0.88, 0.90, 

and 0.89, respectively. All of these top performers used hot-spot-based techniques. Aramaki 

et al. tackled this task in two steps. In the first step, a single sentence reporting the patient's 

smoking status was selected from a medical record. This selection was based on the 

occurrence of a handful of keywords: “nicotine”, “smoker”, “smoke”, “smoking”, “tobacco”, 

and “cigarette.” In the second step, selected sentences were classified using a k-nearest-

neighbors method, and then predicted classes were assigned to the corresponding host 

documents. The approach by Cohen was similar to Aramaki et al. in that they first identified 

keywords in a medical record which are occurrences of any of the selected stemmed words: 

“nicotine”, “smok”, “tob”, “tobac”, “cig”, and “packs.” He called these keywords “hot-

spots.” Unlike Aramaki et al., however, he did not select a single sentence per document, but 

used words near the hot-spots as features for Support Vector Machine (SVM) classifiers 
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[13]. Clark et al. used both a two-step approach, similar to Aramaki et al., and a one-step 

approach, similar to Cohen.

Hot-spot-based techniques were also successful in the 2011 i2b2/VA/Cincinnati Challenge 

for sentiment analysis of suicide notes [14]. This task was a multi-label/multi-class 

classification of sentences from suicide notes, where there were 16 target classes (Guilt, 
Hopefulness, Love, Thankfulness, etc.). In this task, sentences could sometimes be long, but 

detection of target classes might depend on only a small text segment and often on a very 

limited vocabulary, e.g., the class Thankfulness was mostly associated with the single word 

“thank(s)” and the class Love was associated with the word “love.” Among the best 

performing systems was Hui et al. [15], who used the hot-spot technique through CRF 

models. They manually annotated “cue phrases” that are indicative of sentence classes in a 

development data set, and then trained CRF models to automatically detect the same or 

similar phrases. These “cue phrases” are essentially the same as hot-spot phrases by Cohen, 

Aramaki et al., and Clark et al. Given a new sentence, trained CRF models were used to 

identify cue phrases and, if found, associated classes were assigned to that sentence. 

Leveraging the CRF models, their system achieved the best results in the 2011 Challenge.

After analyzing the 2014 challenge task, we determined that the task was well suited for a 

hot-spot-based approach. In designing our system for the 2014 challenge, we leveraged the 

approaches reported for these past challenge tasks.

2. Materials and Methods

2.1. Annotated corpora

Participants in the Track-2 task were provided with two sets of annotated corpora, the Gold 

corpus and the Complete corpus. Both corpora contain the same source documents that 

consisted of 790 de-identified clinical notes.

In the Gold corpus, each medical record is provided as an XML file, and target concepts, if 

reported anywhere in the record, are annotated with XML tags at the record level (e.g., 
<CAD time=“during DCT” indicator=“mention” />). The tags and associated attribute-vales 

are found in Table 1.

In the Complete corpus, segments of text marked up by three clinicians as evidence 

annotations are also included. In other words, each concept annotated at the document level 

in this data set has a reference to the text segment providing the evidence in the record (e.g., 
<CAD start=“3575” end=“3579” text=“CAD” time=“during DCT” indicator=“mention”/>). 

The corpus is “Complete” in the sense that it includes all the raw annotations by the 

clinicians, who were requested to record at least the first piece of text that provides 

supporting evidence in each record in addition to the document level annotation. There could 

be more than one evidence text segment indicating the same target concept in a record, but 

they were not exhaustively marked up. Besides, unlike corpora created specifically for 

training a sequence-labeling model, the annotation boundaries were determined rather 

arbitrarily.
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After the system development period, the challenge participants were provided with an 

evaluation corpus consisting of 514 medical records, which do not include annotations. 

Participants applied their system to obtain a result, called a run, and submitted up to three 

different runs to the organizer for evaluation. Further information regarding these data sets 

can be found in the overview papers of the 2014 i2b2/UTHealth Challenge [16,17].

2.2. Methods

We built a general text classification system to tackle the diverse sub-tasks in Track 2. Given 

the success of hot-spot features in prior i2b2 Challenges, we focused on this approach. A 

general text classifier, a smoking status classifier, and a CRF-based classifier were created 

that leveraged hot-spot features and also features derived from existing NLP systems. Due to 

the distinctive properties of the smoking status classification sub-task and the potential 

benefit of having a standalone tool for that sub-task, an independent module was developed 

for the sub-task. Different ways of integrating the classification components were explored 

for the submission runs. The UIMA platform [18] and UIMA compliant tools [19,20] were 

used to ease the integration.

2.2.1. General text classifier—The general classifier was designed to handle diverse 

classification sub-tasks in Track 2. In this classification system, each combination of a tag 

and specific attribute-value pairs was regarded as an independent target category. Then, each 

of such categories was applicable to some medical records (positive instances) but not to the 

other records (negative instances). For instance, we considered a tag with specific attribute-

value pairs, <CAD indicator=“mention” time=“before DCT” />, as an independent target 

category, and this category was either applicable to a particular record (i.e., the record does 
contain a mention of CAD as an event that the patient previously had) or not (i.e., the record 

does not contain such information). Then, this view defined a binary classification task. That 

is, in Table 1, each cell with a number entry corresponds to one binary classification task. 

The number represents exactly the quantity of positive instances of the class, and the 

negative instances are therefore the remaining complement (i.e., the total number of 790 

notes in the training set minus the number of positive instances). For example, in Table 1 (a) 

Tag: CAD, a cell with the number 260 in row 2 (time=“before DCT”) column 1 

(indicator=“mention”) corresponds to the binary classification task for the aforementioned 

category, <CAD indicator=“mention” time=“before DCT” />, where the number of positive 

and negative instances are 260 and 530 (= 790 - 260) respectively. The Track-2 task was 

regarded as a collection of many binary classification tasks. For each of these tasks, we 

trained a supervised machine learning model that consisted of a classification rule set 

derived by the RIPPER algorithm [21].

2.2.1.1. General text classifier features

Hot-spot features: For each tag (e.g., “CAD”), phrases frequently annotated as evidence text 

in the Complete corpus (e.g., “coronary artery disease”, “coronary disease”, and “CAD”) 

were hand-selected and used to identify text segments in a medical record that were 

immediately relevant to the current classification purpose. Following Cohen [12], we named 

these selected phrases as hot-spot phrases. Then, selected phrases with similar patterns/

concepts were manually grouped together, and a binary feature was defined for the group. 
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For instance, “coronary artery disease”, “coronary disease”, and “coronary heart disease” 

were grouped together, and if any of these phrases was found in a given medical record, a 

corresponding feature was set to be 1, or 0 otherwise. The same approach was applied to the 

MEDICATION tag. For instance, in the Complete corpus, evidence phrases annotated for 

the ACE inhibitor type (i.e., <MEDICATION type1=“ACE inhibitor” type2=“...” 

time=“...” />) was predominantly “lisinopril”, followed by “zestril”, “captopril”, etc. These 

phrases were hand-coded as hot-spot phrases just as those coded for the disease tags.

Hot-spot phrases involving numeric values were also considered with special care for the 

value range. For instance, a report on high blood pressure was associated with the target 

category <HYPERTENSION indicator=“high bp” time=“...” />, where the corresponding 

evidence phrases were often of the form “Blood pressure #/#” or “BP: #/#” (“#” being some 

numerical value). Any such phrase was considered as a hot-spot if the first value was above 

140 (e.g., “Blood pressure 160/58”) and/or the second value was above 90 (“BP: 126/92”), 

as specified in the annotation guidelines [16]. For each hot-spot feature, n-grams (n from 1 

to 5) within ±50 tokens from the hot-spot phrase were also extracted and represented as 

binary features.

Hot spot modifier features: Certain phrases repeatedly observed near the hot-spot phrases 

were hand-selected as hot-spot modifier features. Similar to hot-spot phrases, identified 

patterns were grouped together, and aggregated features were derived. These features were:

• Disease-related hot spot modifier features:

A hot-spot modifier feature, HISTORY_OF, is set when a hot-

spot phrase selected for a disease concept (CAD, DIABETES, 

HYPERLIPIDEMIA, HYPERTENSION, or OBESE) is 

preceded by selected keywords, such as “history of”, “hx of”, 

“known”, or “previous”, unless it is preceded by a negation 

word (e.g., “no”, “denies”, or “denied”). Similarly, the 

STATUS_POST feature is set when the preceding word is 

“status post”, “sp”, or “s/p”. These features were frequently 

observed with time=“before DCT”.

• Medication-related hot spot modifier features:

The ONGOING feature is set for keywords “ongoing”, 

“recurrent”, “recurring”, “frequent”, and “progressive”, which 

commonly precede MEDICATION hot-spot keywords, such as 

“lisinopril”. Similarly, the START feature is set for the 

preceding keywords “add”, “prescribe”, “start”, or “try”, and 

the STOP feature for the preceding keywords “discontinue”, 

“stop”, or “hold.” When these phrases were looked up in text, 

inflected forms (e.g., “adds” and “added” in addition to “add”) 

and words in upper case (e.g., “Stop” as well as “stop”) were 

also considered.
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Disease concept features: An in-house clinical NLP system nQuiry was used to identify 

disease concepts reported in medical records. Some of its components are described 

previously in [22,20]. The system detects disease mentions in text, normalizes them to 

concept IDs (UMLS CUIs), and further determines the assertion classes: if they are reported 

to be present in the patient (e.g., whether the disease mention is negated, reported about a 

family member, or stated as hypothetical). Different combinations of the detected CUI, the 

assertion class, and the phrase in text were considered as features represented as binary 

values (e.g., CUI alone, CUI with the assertion class, CUI with the assertion class and the 

phrase). Additionally, from the sentence where a concept was detected, n-grams (n from 1 to 

5) were extracted and used as features indicating local contexts of the concept mention.

Medication features: The MedEx system [23] identifies medication information in text and 

reports normalized drug name, brand name, generic name, and UMLS CUIs, along with the 

identified phrase. Each of these values was used as a binary classification feature. Similar to 

the disease concept features described above, n-grams were additionally extracted from the 

same sentence as medication mentions.

2.2.1.2. Machine learning component: We used the Weka machine learning suite [24] to 

explore several different choices of supervised machine learning classifiers, including Naïve 

Bayes, SVM, Decision Tree, Random Forest, and RIPPER. Different features, such as hot-

spot phrases, were gradually enriched and revised, while experimenting with different 

machine learning methods. In an early stage of our development, however, we decided to 

employ, RIPPER [21], a rule learner producing a set of if-then rules, which performed as 

good as or better than other algorithms. In the training of a RIPPER classification model, 

rules were generated and pruned over randomized training data and, hence, the training 

program had a random seed value as a parameter. By varying this parameter, we built 21 

models and used majority vote to form an ensemble classifier.

As described in the previous sections, many feature values were extracted using existing 

tools and custom rules, e.g., hot-spot phrases, disease concepts, medication information, n-

grams near each concept. Extracted feature values were distinguished by the extraction 

methods (e.g., n-grams are prefixed by the extraction method names), but the information 

contents might be essentially redundant sometimes. For example, a medication name may be 

extracted as a hot-spot by a hand-coded rule or as a phrase identified by MedEx. Before 

applying the RIPPER training program, collected feature values were filtered and reduced to 

500 using the information gain measure. Information gain, also known as mutual 

information, is a widely used measure to quantify the significance of individual features in 

machine learning classification tasks. For the formula and computation of information gain, 

we refer to existing literature, such as Forman [25]. Given a training data set in a 

classification problem, features can be ranked according to assigned information gain values. 

Only the top ranked features may be used in a classifier to mitigate the training cost and/or 

to improve the classifier performance. In our task, upfront reduction of features sped up the 

training time (since we used the ensemble of 21 RIPPER models) and, thus, eased our 

development efforts, but it did not improve classifier performance. This may be 
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understandable as the RIPPER algorithm uses information gain internally to select features 

and, hence, prior filtering of features using the same selection method has little impact.

The procedures described above were implemented using Weka. Specifically, for each target 

category, features were selected using Weka's InfoGainAttributeEval along with Ranker. 

Selected features were fed into a meta-classifier, Vote, which was configured to apply a 

majority vote over 21 models of JRip, the Weka implementation of RIPPER.

Once the ensemble classifier was prepared for each target category and given a new medical 

record, feature extraction was performed in the same way as in the training phase, and the 

trained ensemble classifier predicted a binary class. The binary prediction (i.e., whether a 

certain category is applicable or not) was interpreted to assign a corresponding tag with 

specific attribute-value pairs to the record.

Among the eight target tags, FAMILY_HISTORY and SMOKER are different from the 

other six tags in that they have a single attribute with exclusive attribute-values (See Table 

1). FAMILY_HISTORY has an attribute indicator, and all medical records are annotated 

with either one of the two attribute-values present or not present. The distribution of these 

two attribute-values is highly skewed (22 present and 768 not present in the training data 

set). A trivial classifier that always assigns not present can guarantee good and stable 

performance, which was found to be difficult to improve on with a machine learning 

classifier. Therefore, for FAMILY_HISTORY we just applied the majority-guess classifier. 

As for SMOKER, a dedicated system was developed (see 2.2.2. below).

2.2.2. Smoking status classifier—The SMOKER tag has mutually exclusive attribute-

value pairs, namely status={current, past, ever, never, unknown}. Additionally, 

categorization features were assumed to be highly unique for smoker. Therefore, it was not 

straightforward to use the general text classifier on this sub-task. For instance, a collection of 

independent binary classifiers could yield conflicting prediction results. We developed a 

dedicated module for the smoking status sub-task.

2.2.2.1. Smoking status classifier features: While the smoker status system was developed 

separately from the general classifier, a similar approach based on hot-spot phrases was 

found to be effective. Hot-spot candidates were collected from evidence phrases annotated in 

the Complete corpus, and the list of phrases was manually reviewed. Hot-spot phrases 

selected include “tobacco”, “smoking”, and “quit”. Given each document, features were 

collected at and around each hot-spot occurrence. Specifically, we used (a) the hot-spot 

keyword itself, (b) three tokens left of the hot-spot keyword, and (c) three tokens right of the 

hot-spot keyword. The window size of three was chosen based on our review of the hot-spot 

context patterns in the training data set.

2.2.2.2. Smoking status classification rules: We used a hybrid of machine learning and 

rule-based methods to tackle this sub-task. Provided with the Gold corpus, the target 

category and the features described above were fed into LibSVM [26] to train a linear SVM 

classifier. The trained classifier achieved accuracy of around 80% in 5-fold cross-validation 

tests on the training corpus. Errors seen in the cross validation test were manually reviewed, 
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and rules based on regular expression patterns were created accordingly to overwrite the 

SVM decision at run time.

Given a new medical record, feature extraction was performed in the same way through the 

hot-spot keywords as in training. If any feature was available for an input record, the SVM 

classifier was applied. If no feature was extracted, the value ‘unknown’ was assigned. The 

rules learned in the training phase were applied to overwrite SVM decisions.

2.2.3. Alternative sequence-labeling-based classifier—The evidence text 

annotations in the Complete corpus were not exhaustive (see Section 2.1, Annotated 

corpora). They, however, could be sufficient to train sequence-labeling models to replicate 

the clinicians’ phrase annotations. With such phrase annotation models, a new medical 

record could be automatically marked-up with evidence phrases, and then the record 

containing those phrases could be assigned with the corresponding categories. This is 

essentially the same approach as Hui et al., employed for sentiment classification (see the 

Background section). We used the Stanford NER tool [27] through the ClearTK toolkit [19] 

to train phrase annotation models for selected categories, for which there were sufficient 

training examples, namely tags of CAD, DIABETES, HYPERLIPIDEMIA, 

HYPERTENSION, and OBESE with the attribute-value of indicator=“mention”. Our 

selected target categories usually appeared with all three “time” attribute-values, and 

evidence text segments we wished to identify in records were nearly the same for those three 

“time” attribute-values. For instance, in the training corpus, there were 261 records assigned 

with the label <CAD indicator=“mention” time=“during DCT” />, 260 assigned with nearly 

the same label but time=“before DCT”, and 259 assigned with time=“after DCT” (See Table 

1). In case of the label < HYPERLIPIDEMIA indicator=“mention” time=“...” />, the same 

340 records were assigned with time=“before DCT”, time=“during DCT”, and time=“after 

DCT”. Observing that, we assumed that CRF models trained for different “time” attribute-

values would perform the same or nearly the same. As a heuristic practice, for each tag we 

aggregated labels with different “time” attribute-values into a single class during model 

training. When applying the trained model on test data, a medical record assigned with the 

aggregated tag was re-assigned with the three original labels.

This approach based on sequence labeling was applicable only to the aforementioned subset 

of categories with sufficient training data. We used it to supplement the results of the general 

classifiers through post-combinations, as described in the next section.

3. Results

Three runs were compiled for the final evaluation on the test corpus. The first run was 

derived using the general classifier (for all of the targets except for smoking status) and the 

smoking status classifier (“General + Smoking status classifier” in Table 2). The second and 

third runs were obtained by additionally integrating the results of the alternative sequence-

labeling-based classifier. Two integration strategies were considered. In the first approach 

(“Merged, with precedence” in Table 2), prediction results of Stanford NER were adopted 

for selected categories where they performed better than the general classifier in our tests on 

the training data set (the tag is CAD or OBESE and the attribute-value pair is 
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indicator=“mention”). In the second approach (“Merged, with set-union” in Table 2), the set-

union of predicted categories was computed. Namely, given a medical record, if any of the 

prediction systems predicts that a particular category was applicable to the record, then that 

was adopted.

The performance measures of our systems are summarized in Table 2 and 3, which were 

calculated using an evaluation script provided by the challenge organizer (the script ver. 

2.1.0)a. The highest F1 score among our submitted runs, 0.9185, was achieved by set-union 

merging of different approaches as in Table 2. The effect of different merging approaches 

(refer to the run definitions above) for each target category is detailed in Table 3. After 

merging, the F1 score was improved for HYPERLIPIDEMIA, HYPERTENSION, 

DIABETES, and OBESE but was degraded on CAD. Since the sequence-labeling models 

were applied only for those five tags, the performance for the rest of the tags was not 

affected.

4. Discussion

We found the tasks posed were challenging, but they were realistic in that those challenges 

faced could potentially be encountered in real life:

• The task appeared to be text classification (i.e., annotations in the Gold 

corpus are provided at the record level), but the underlying task that we 

really needed to address was identification of specific evidence text (i.e., 

the Gold corpus annotations were attributed to short text segments as in 

the Complete corpus). It would be ideal to have a corpus annotated with 

adjudicated evidence text segments, but that would be very expensive to 

achieve.

• The Track-2 task consists of many diverse sub-tasks. There are eight target 

tags, and each of which is modified by a set of attribute-value pairs. 

Moreover, the distribution of these annotations was highly skewed and 

there might be very small numbers of instances (see Table 1). Accordingly, 

we had to examine each of these categories thoroughly and develop a 

framework that exploited both the unique and shared properties. There 

were, however, too many categories to consider.

Regarding the lack of comprehensive evidence annotations, we found the pre-adjudication 

corpus was very helpful to build NLP systems in the current task. With that corpus, we could 

identify informative key phrases for classification and exploit them through hot-spot 

techniques [10,11,21]. For some categories, we could also train sequence labeling models 

that automatically annotate evidence phrases [28].

Regarding the large number of target categories, we mitigated this challenge by designing a 

general text classification system to cover diverse target categories in the same manner. Use 

of existing resources to extract features, such as disease concepts and medication 

information, helped tackle many different categories without building extensive customized 

ahttps://github.com/kotfic/i2b2_evaluation_scripts
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programs. When applying an alternative approach based on sequence labeling, we merged 

frequently co-occurring categories so that we did not need to train or apply models for a 

nearly redundant set of instances.

One interesting observation for the general classifier approach was that only a handful of 

feature-values were actually selected for use in each of the RIPPER classifiers. For instance, 

in a RIPPER classifier for the target category of “<CAD indicator=“mention” time=“during 

DCT” />”, a list of four rules was learned from the entire training set (790 notes), and it 

involved a mere four feature-values (Table 4). Note that, for each target category, we derived 

21 constituent RIPPER classifiers for an ensemble classifier. For example, the first rule of 

another rule list derived for the same target was “IF nQuiry detects two or more phrases with 

C0010054, THEN Positive; [Applicable to 125 of 790 notes, of which 125 are correct].” As 

seen in these example rules, an accurate rule supported by many training instances was 

learned first, followed by less accurate rules supported by fewer instances. As also 

exemplified by these rules, RIPPER might be viewed as a rule selector, where rules were 

selected from a large number of knowledge-rich features derived with the elaborated NLP 

systems (nQuiry and MedEx) or hand-coded patterns (hot-spots). This, in turn, suggests the 

performance of our systems largely owed to, and was limited by, the accuracy of the 

underlying NLP systems and hand-coded rules. For instance, the general classifier failed to 

identify the phrase “Chlropropamiden” [sic] as MEDICATION (Sulfonylurea type), which 

could not be readily detected by NLP systems or custom hand-coded patterns due to the 

typographical error as well as its rare occurrence in the training data (a rare mention of 

chlorpropamide as well as the rare typographical error pattern in the training data).

Another consideration pertaining to the hand-coded rules was their coverage. We looked at 

the coverage of hot-spot phrases for different tags, and found that at least one hot-spot 

phrase could be found in almost all positive training records (e.g., in over 99% of the 

positive records for CAD, DIABETES, HYPERLIPIDEMIA, HYPERTENSION, and 

OBESE, where the attribute-values are indicator=“mention” and time=“during DCT”). 

While the coverage of positive records was good, we also noticed some hot-spot phrases 

occurred in many negative records. For example, at least one hot-spot phrase could be found 

in 73% of negative records for the aforementioned CAD label, indicating limited 

discriminative power of this feature type (e.g., the phrase “MI”, selected as one of the hot-

spot phrases for CAD, was found in 71 positive and 60 negative records). The corresponding 

percentages for DIABETES, HYPERLIPIDEMIA, HYPERTENSION, and OBESE, 

however, were much lower: 24%, 22%, 41%, and 44%, respectively. This analysis suggests 

difficulty of handling the CAD tag, for which our classifier indeed underperformed in 

comparison to the other tags (see Table 3). To further improve the system performance, it 

would be helpful to refine the selection of hot-spot phrases based on their occurrence 

patterns in negative records as well as in positive records.

Despite the overall strong performance we achieved among other participants in the Track-2 

task, there are several limitations in our system and in the current study. During our system 

development, we reviewed the entire training data to derive many of the classification rules. 

Therefore, it was not feasible to obtain objective evaluation metrics on the training set, and 

the current evaluation results were solely based on the one test set. For example, our smoker 
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status classifier achieved F1 of 0.9689 (knowingly over-tuned) on the full training set, 

compared to the 0.9045 on the final independent test set. With the large number of ensemble 

and hybrid classifiers involved in our approach, it was prohibitive to conduct extensive 

experiments for all the target categories and analyze every factor that contributed to the final 

system performance. In real life, there can be even more target categories that need to be 

addressed by a clinical NLP system. An effective approach to analyzing system components 

needs to be continuously considered.

5. Conclusions

To participate in Track 2 of the 2014 i2b2/UTHealth Challenge, we leveraged existing 

techniques and resources. We were able to demonstrate that the hot-spot technique used in 

prior i2b2 Challenges could be successfully adapted to this challenge. Combining hot-spot 

features with nQuiry [20,22], MedEx [23], Weka [24] (RIPPER [21]), LibSVM [26], and 

Stanford NER [27] to develop three type of classifiers: the general classifier, the dedicated 

smoking status classifier, and the sequence-labeling-based classifier. The general classifier 

with the smoker status classifier achieved an F-score of 0.9180 with a precision of 0.9010 

and a recall of 0.9356. After supplementing results from the sequence-labeling-based 

classifier, the performance measures were improved for some of the target categories with 

different degrees. Over all, our final system merging different approaches achieved an F-

score of 0.9185 with a precision of 0.8972 and a recall of 0.9409.
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Highlights

• Risk factor detection in electronic medical records (EMR) was 

automated;

• Existing tools and techniques were leveraged to build detection 

systems;

• A general binary classification system was used to extract various risk 

factors;

• Additional classifiers were built for subsets of target risk factors;

• The hybrid approach combining our systems achieved F-score of 0.92.

Torii et al. Page 13

J Biomed Inform. Author manuscript; available in PMC 2016 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Torii et al. Page 14

Table 1
Distribution of target categories in the training corpus

Each tag is modified by at most two attribute-value pairs, except for MEDICATION tag that is modified by 

two mandatory attributes, time and type1, and one optional, rarely used attribute, type2. Each table below 

shows possible combinations of a particular tag and attribute-value pairs, and the numbers indicate how many 

medical records are annotated with a tag with particular attribute-value pairs in the Gold training corpus 

consisting of 790 medical records. For instance, the number at the upper-left corner, 224, in the first table (a) 

indicates there are 224 medical records annotated with an XML tag <CAD indicator=“event” and 

time=“before DCT” />. For MEDICATION, since type2 attribute is rarely used, it is omitted in the 

corresponding table (f).

(a) Tag: CAD

time

before DCT during DCT after DCT

indicator

event 224 20 2

mention 260 261 259

symptom 54 24 3

(b) Tag: DIABETES

time

before DCT during DCT after DCT

indicator

A1C 89 21 0

glucose 16 9 0

mention 518 524 518

(c) Tag: HYPERLIPIDEMIA

time

before DCT during DCT after DCT

indicator

high LDL 23 10 0

high chol. 8 1 0

mention 340 340 340

(d) Tag: HYPERTENSION

time

before DCT during DCT after DCT

indicator
high bp 41 322 0

mention 523 521 519

(e) Tag: OBESE

time

before DCT during DCT after DCT

indicator
BMI 3 15 2

mention 133 147 133
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(f) Tag: MEDICATION

time

before DCT during DCT after DCT

type (type1)

ACE inhibitor 326 318 323

ARB 98 93 97

DPP4 inhibitors 1 0 0

anti diabetes 1 1 1

aspirin 424 435 424

beta blocker 469 472 470

calcium channel blocker 186 178 181

diuretic 113 99 106

ezetimibe 12 12 12

fibrate 22 20 22

insulin 204 218 212

metformin 187 176 181

niacin 7 6 7

nitrate 117 126 93

statin 436 427 438

sulfonylureas 159 155 157

thiazolidinedione 43 41 40

thienopyridine 97 98 97

(g) Tag: SMOKER

status

current 58

ever 9

never 184

past 149

unknown 371

(h) Tag: FAMILY_HIST

indicator
present 22

not present 768
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Table 2

The performance measures of the systems on the test corpus (precision/recall/F1).

Run System/Configuration Precision Recall F1

1 General + Smoking status classifier 0.9010 0.9356 0.9180

- Sequence-labeling-based (not submitted) 0.9171 0.3799 0.5373

2 Merged, with precedence 0.9027 0.9290 0.9156

3 Merged, set-union 0.8972 0.9409 0.9185
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Table 3

Per-tag results on the test corpus.

Tag Records Run Precision Recall F1

CAD 784 1 0.8480 0.8253 0.8365

2 0.8480 0.7398 0.7902

3 0.8226 0.8342 0.8284

DIABETES 1,180 1, 2 0.9403 0.9339 0.9371

3 0.9349 0.9492 0.9420

HYPERLIPIDEMIA 751 1, 2 0.9607 0.9108 0.9351

3 0.9570 0.9188 0.9375

HYPERTENSION 1,293 1, 2 0.9472 0.9706 0.9587

3 0.9399 0.9791 0.9591

OBESE 262 1 0.8536 0.9122 0.8819

2 0.9066 0.8893 0.8979

3 0.8388 0.9733 0.9011

MEDICATION 5,674 1, 2, 3 0.8799 0.9478 0.9126

SMOKER 512 1, 2, 3 0.9027 0.9062 0.9045

FAMILY_HIST 514 1, 2, 3 0.9630 0.9630 0.9630
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Table 4

An example of a list of if-then rules derived by RIPPER. The target category here is “<CAD 

indicator=“mention” and time=“during DCT” />”, i.e., the rule list predicts if this category label should be 

assigned to a given note (Positive) or not (Negative).

Rule order Rule

1 IF nQuiry detects a phrase assigned with the CUI “C0010054: Coronary Arteriosclerosis” whose assertion type is “certain” (i.e., 
not negated, not hypothetical, etc.),
THEN Positive.
[Applicable to 267 of 790 notes, of which 244 are correct]

2 IF a hot-spot rule detects a phrase matching the regular expression “^coronary\W* ((artery|heart|vascull?ar)\W*)?(diseases?|
arteriosclerosis)$” (case insensitive; e.g., “Coronary artery disease”, “Coronary Arteriosclerosis”, ...)
AND nQuiry does not detect the CUI “C0375113: Diabetes mellitus without mention of complication, type II or unspecified 
type, not stated as uncontrolled”,
THEN Positive.
[Applicable to 14 of 523 remaining notes, of which 12 are correct]

3 IF a hot-spot rule detects a phrase matching with the regular expression “^lad$” (case insensitive; e.g., “LAD”) along with the 1-
gram (unigram) “CAD” nearby,
THEN Positive.
[Applicable to 2 of 509 remaining notes, of which 2 are correct]

4 OTHERWISE Negative.
[Applicable to 507 remaining notes, of which 504 are correct]
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