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Abstract
Purpose This study investigates the correlation of retention
index (RI) using the dual phase FDG PET/CT scan with the
breast cancer biomarkers.
Methods A total of 55 patients with breast cancer underwent
dual phase FDG PET/CT scans (60 and 120 min after FDG
injection) before treatment. SUVmax and SUVmean of the
primary breast tumors were measured, then the percent change
of SUVmax and SUVmean between the two scans were cal-
culated, and denoted as RImax and RImean, respectively.
After the surgical resection of the breast tumor, the status of
biomarkers (ER, PR, and HER-2) was evaluated in the post-
surgical specimen.

Results RImean was significantly higher in ER (−) (median,
16.2; IQR, 10.8–21.0) or HER-2 (+) (median, 16.1; IQR,
10.7–21.6) tumors than in ER (+) tumors (median, 9.9; IQR,
5.5–15.3) or HER-2 (−) tumors (median, 10.5; IQR, 5.5–
16.1). However, there were no significant differences of
SUVmax or RImax according to the ER or HER-2 status.
There were no significant differences of any PET parameters
between PR (+) and PR (−) tumors. Based off ROC curve
analyses, RImean predicted the ER (+) tumors (AUC, 0.699;
p=0.006), and HER-2 (+) tumors (AUC, 0.674; p=0.022),
but not the PR (+) tumors. However, neither SUVmax nor
RImax predicted ER (+), PR (+), or HER-2 (+) tumors.
Conclusions Retention index of SUVmean can reflect the ER
and HER-2 status of breast cancers. Higher retention index of
SUVmean might associate with lower ER expression and
higher HER-2 expression.
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Introduction

Breast cancer is the second most common cancer of women in
Korea [1], and its incidence of rates are rising rapidly [2].
There are a variety of factors associated with breast cancer
including environmental, hormonal, and genetic factors [3,
4]. Among these factors, molecular biomarkers, such as the
estrogen receptor (ER), progesterone receptor (PR), and hu-
man epidermal growth factor receptor 2 (HER-2) have been
reported to be associated with the patients’ prognosis and in-
fluence the treatment planning [5].
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18F-fluorodeoxyglucose positron emission tomography-
computed tomography (FDG PET/CT) has been important
in the management of breast cancer patients [6]. It is used
for screening for the extra-axillary lymph node metastasis
[7] and distant metastasis [8, 9], assessing for the treatment
responses [10, 11], and predicting prognosis [12], but the ben-
efit of FDG PET/CT scanning for staging remains a matter of
debate [13]. Several studies have suggested that the character-
istics of FDG uptake in breast cancer are relevant to biological
or histological attributes of primary tumor, including its bio-
marker status [14–19]. Among these previous studies using
diverse PET parameters, such as the maximum standardized
uptake value (SUVmax), metabolic tumor volume (MTV), or
total lesion glycolysis (TLG), the correlations between the
biomarker status and PET parameters were weak or modest
in many studies [17, 20, 21].

The dual phase PET/CT scan is an evolving diagnostic tool
in breast cancer [22, 23], but is not regarded as the standard
tool. The retention index (RI) is as an alternative PET param-
eter which is useful not only for distinguishing malignancy
from benignancy of FDG-avid lesions [24], but also for
predicting survival of the patients with several malignancies
such as lung [25, 26], pancreatic [27, 28], and head and neck
cancer [29, 30]. Recently, the association between the RI
using SUVmax and biomarker status of breast cancer was
reported [21]. However, there is no data on the role of the RI
using the mean standardized uptake value (SUVmean) with
the biomarker status of breast cancer. Therefore, the aim of
this study is to evaluate whether the calculation of the RI using
both the SUVmax and the SUVmean of FDG PET/CTwould
be useful to predict the biomarker status of breast cancer.

Materials and Methods

Patient Population

A total of 59 consecutive patients with histologically
proven breast cancer who underwent dual phase FDG
PET/CT scans before treatment between September
2009 and May 2011 were retrospectively analyzed. All
patients had newly diagnosed AJCC stage II or III
breast cancer. To avoid the partial volume effects, pa-
tients whose tumors were less than 1.5 cm based on the
MRI were excluded from the study. Other eligibility
requirements included no evidence of distant metastasis
confirmed by other methods previous to the PET/CT
scan, no history of other malignancies except the breast
cancer, and primary breast tumor showing higher FDG
uptake (SUVmax of the tumor > 2.0). The Institutional
Review Board of the institute approved the current
study, and informed consent was waived due to its ret-
rospective design.

FDG PET/CT Imaging

PET/CT data were acquired using a Biograph6 PET/CT
scanner (Siemens Medical Solutions; Knoxville, TN,
USA). All patients fasted for at least 6 h before the
intravenous administration of FDG (7.4 MBq per kg
of body weight), and all patients’ blood glucose levels
were less than 7.2 mmol/L before the FDG injection.
PET/CT imaging from the skull base to the upper thigh
(5 to 6 bed positions) was performed beginning 60 min
after FDG injection (first PET image). During the PET/
CT scans, CT images without intravenous iodinated con-
trast were obtained using a 6-slice helical CT scanner,
and the imaging parameters used for CT scanning were
as follows: 130 kVp, 30 mA, 0.6-s/CT rotation, and a
pitch of 6. Then, PET emission data were acquired over
the corresponding area with a 16.2-cm axial field of
view at 3.5 min per bed position. The CT data were
used for attenuation correction, and the images were
reconstructed using a conventional iterative algorithm
(ordered-subsets expectation-maximization, two itera-
tions, and eight subsets). The second PET imaging from
the T1 to T12 level was performed beginning 120 min
after FDG injection, and CT images without intravenous
iodinated contrast were also obtained. The same proto-
cols were used for the first and second PET imaging
procedures.

Imaging Analysis

All PET/CT images were reviewed on e-soft workstations
(Siemens Medical Systems, Iselin, NJ). An ellipsoid volume
of interest (VOI) was drawn to include the entire primary
tumor of the breast, the SUVmax corrected for body weight
and the dose of FDG injected was measured for each PET/CT
dataset.

We chose 2.0 as cut-off SUV for determining the tumor
VOI. From the VOI at the cut-off SUV of 2.0, SUVmean
was measured. Then the percent change of SUVmax and
SUVmean between the first and second PET images, denoted
as RImax and RImean, were calculated as follows:

Retention index of SUVmax RImaxð Þ %ð Þ
¼ SUVmax of second PETð Þ− SUVmax of first PETð Þ

SUVmax of first PETð Þ � 100

Retention index of SUVmean RImeanð Þ %ð Þ
¼ SUVmean of second PETð Þ− SUVmean of first PETð Þ

SUVmean of first PETð Þ � 100

MTV was measured by using a semi-automated contouring
program with VOI at the cut-off SUVof 2.0.
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Biomarker-Based Subgroup

According to the criteria suggested by Cheang et al. [31], the
cases were classified into four biologically distinct subgroups
based on the expression of ER, PR, HER-2, and the Ki-67
index. This classification system has been reported to be use-
ful for both treatment planning and prediction of prognosis.
Because the Ki-67 index was not evaluated, all subtypes were
determined only by biomarker status as follows: a) hormone
receptor-positive and HER-2-negative, b) hormone receptor-
positive and HER-2-positive; c) hormone receptor-negative
and HER-2-positive; and d) hormone receptor- and HER-2-
negative.

Statistical Analysis

All parameters were expressed as mean ± standard deviation
(SD) or median and interquartilie range (IQR). Differences of
PET parameters (SUVmax, RImax, RImean, and MTV) ac-
cording to the biomarker status were assessed by using a
Mann–Whitney U test. The receiver-operating-characteristic
(ROC) curve was analyzed to determine the ability of each
PET parameter to predict the biomarker status. Area under the
ROC curve (AUC), 95 % confidence interval (95 % CI), sen-
sitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and accuracy for predicting biomark-
er status were reported. A Pearson correlation coefficient test
was used to check for association between MTV and other
PET parameters. All tests were 2-sided, and p values of 0.05
or less were considered significant. All statistical tests were
performed using MedCalc (MedCalc Software 12.5.0.0,
MedCalc Software bvba).

Result

Patient Characteristics

Three of 59 patients were excluded because the SUVmax of
their respective tumors was less than 2.0. One patient was
excluded because of the small size of tumor. Therefore, a total
of 55 patients were retrospectively analyzed in the current
study. The median age of the 55 patients was 46 y (IQR,
42–51), and all patients were women. On the postsurgical
specimen, ER (+), PR (+), and HER-2 (+) tumors were iden-
tified in 30 (55 %), 43 (78 %), and 21 patients (38 %), respec-
tively. About half of patients (53 %) had T3 or T4 tumors, and
most patients (95 %) had regional lymph node metastasis
(N1–N3). Pathologic subtypes of the primary tumor were
intraductal carcinoma in 51 patients (93 %), and other in four
patients (7 %) (Table 1).

PET Parameters According to the Biomarker Status

Comparisons of PET parameters according to the biomarker
status are detailed in Fig. 1 and Table 2. RImean was signifi-
cantly higher in ER (−) tumors (median, 16.2; IQR, 10.8–
21.0; Range, 0.4–42.6) than in ER (+) tumors (median, 9.9;
IQR, 5.5–15.3; range, −3.2–27.9). SUVmax (median, 9.0;
IQR, 6.5–12.3; range, 3.2–17.6) and RImax (median 16.2;
IQR, 8.7–21.7; range, −15.1–35.6) of ER (−) tumors were also
higher than those of ER (+) tumors (median 7.2; IQR, 3.5–
11.1; range, 2.3–17.0 for SUVmax, and median, 15.5; IQR,

Table 1 Patient characteristics (n= 55)

Characteristics Number of patients (%)

Age

< 35 y 6 (10.9 %)

≥ 35 y 49 (89.1 %)

Gender

Male 0 (0 %)

Female 55 (100 %)

Estrogen receptor status

Positive 30 (54.5 %)

Negative 25 (46.5 %)

Progesterone receptor status

Positive 43 (78.2 %)

Negative 12 (21.8 %)

HER-2/neu status

Positive 21 (38.2 %)

Negative 34 (61.8 %)

Menopausal

Premenopausal 21 (38.2 %)

Menopausal 34 (61.8 %)

T stage

T1 4 (7.2 %)

T2 22 (40.0 %)

T3 18 (32.7 %)

T4 11 (20.0 %)

N stage

N0 3 (5.5 %)

N1 14 (25.5 %)

N2 33 (60.0 %)

N3 5 (9.1 %)

M stage

M0 55 (100 %)

M1 0 (0 %)

Pathologic subtypes

Invasive ductal carcinoma 51 (92.7 %)

Invasive lobular carcinoma 2 (3.6 %)

Mucinous carcinoma 1 (1.8 %)

Signet ring cell carcinoma 1 (1.8 %)
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8.0–25.4; range, −10.3–47.3 for RImax). However, there were
no significant differences of SUVmax (p=0.089) or RImax
(p=0.839) between ER (+) tumors and ER (−) tumors.

With respect to the HER-2 status of the tumors, RImean
was higher in HER-2 (+) tumors (median, 16.1; IQR, 10.7–
21.6; range, 0–42.6) than in HER-2 (−) tumors (median, 10.5;
IQR, 5.5–16.1; range, −32.–27.9). SUVmax (median, 9.5;
IQR, 6.4–11.9; range, 2.3–16.3) and RImax (median, 16.3;
IQR, 11.1–20.8; range, 1.9–30.9) of HER-2 (+) tumors were
also higher than those of HER-2 (−) tumors (median, 7.2;
IQR, 5.1–11.1; range, 2.5–17.6 for SUVmax, and median,
15.5; IQR 4.3–25.0; range, −15.1–47.3 for RImax), but there
were no significant differences of SUVmax (p=0.279) or
RImax (p=0.456) between HER-2 (+) and HER-2 (−) tumors.

The SUVmax of PR (+) tumors (median, 7.9; IQR, 5.3–
12.8; range, 2.3–17.6) was similar to the SUVmax of PR (−)
tumors (median, 8.2; IQR, 6.4–9.4; range, 3.5–11.6). RImax
(median, 16.4; IQR, 14.5–20.8; range, 8.8–30.9) and RImean

(median, 14.5; IQR, 10.6–17.5; range, 2.8–24.3) of PR (−)
tumors were slightly higher than those of PR (+) tumors (me-
dian, 15.5; IQR, 4.8–25.3; range, −15.1–47.3 for RImax, and
median, 11.3; IQR, 5.9–18.0; range, −3.2–42.6 for RImean).
However, there were no significant differences of any PET
parameters between PR (+) and PR (−) tumors.

MTV showed statistically significant correlation with
SUVmax (p<0.001), RImean (p=0.015), and the ER status
(p=0.031), but did not with the PR status (p=0.501), HER-2
status (p=0.795), or RImax (p=0.139). SUVmean did not
show correlation with any biomarker status.

PET Parameters to Predict the Biomarker Status

Based on ROC curve analyses, RImean predicted the ER (+)
tumors (AUC, 0.699; 95 % CI, 0.560–0.815; p=0.006), and
HER-2 (+) tumors (AUC, 0.674; 95 % CI, 0.535–0.795;
p=0.022), but not the PR (+) tumors (AUC, 0.590; 95 %
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Fig. 1 RImean according to the biomarker status. Data are presented as box plots indicating median and interquartile range; whiskers extend to most
extreme data points up to 1.5 times the interquartile range. Asterisk indicates p < 0.05

Table 2 Comparisons of PET parameters according to the biomarker status

Number of patients SUVmax SUVmean PET parameters*

RImax (%) RImean (%) MTV (mL)

All patients 55 7.9 (5.7–11.5) 3.4 (2.8–4.7) 16.0 (8.3–24.1) 11.7 (7.0–18.0) 20.1 (9.2–44.0)

ER

Positive 30 7.2 (3.5–11.1) 3.1 (2.5–4.5) 15.5 (8.0–25.4) 9.9 (5.5–15.3) 17.4 (6.3–36.3)

Negative 25 9.0 (6.5–12.3) 3.6 (3.1–4.8) 16.2 (8.7–21.7) 16.2 (10.8–21.0) 33.8 (16.3–51.8)

p value 0.090 0.099 0.839 0.012 0.031

PR

Positive 43 7.9 (5.3–12.8) 3.4 (2.6–5.2) 15.5 (4.8–25.3) 11.3 (5.9–18.0) 20.2 (10.9–47.7)

Negative 12 8.2 (6.4–9.4) 3.7 (3.2–4.4) 16.4 (14.5–20.8) 14.5 (10.6–17.5) 19.0 (8.8–35.9)

p value 0.744 0.863 0.313 0.343 0.501

HER-2

Positive 21 9.5 (6.4–11.9) 4.1 (3.1–4.7) 16.3 (11.1–20.8) 16.1 (10.7–21.6) 24.9 (8.8–47.9)

Negative 34 7.2 (5.1–11.1) 3.3 (2.6–4.7) 15.5 (4.3–25.0) 10.5 (5.5–16.1) 19.0 (10.6–40.9)

p value 0.279 0.396 0.456 0.031 0.795

*PET parameters are presented as median values (interquartile range)
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CI, 0.449–0.721; p=0.276). However, neither SUVmax nor
RImax predicted ER (+) tumors (AUC, 0.634; 95 % CI,
0.493–0.760; p=0.076 for SUVmax, and AUC, 0.516; 95 %
CI, 0.377–0.653; p=0.841 for RImax, respectively), PR (+)
tumors (AUC, 0.531; 95 % CI, 0.392–0.667; p=0.691 for
SUVmax, and AUC, 0.596; 95 % CI, 0.455–0.726;
p=0.215 for RImax, respectively), and HER-2 (+) tumors
(AUC, 0.588; 95 % CI, 0.447–0.719; p = 0.268 for
SUVmax, and AUC, 0.560; 95 % CI, 0.420–0.694;
p= 0.437 for RImax, respectively) (Fig. 2). The AUC of
RImean was significantly higher than that of RImax for
predicting the ER status (p=0.002). However, there were no
significant differences between the AUC of SUVmax and
RImean for predicting the ER status (p=0.299) and HER-2
status (p=0.160). There was also no significant difference
between the AUC of RImax and RImean for predicting the
HER-2 status (p=0.076) (Fig. 3).

The optimal criteria, sensitivity, specificity, PPV, NPV, and
accuracy of RImean were < 16.0 %, 76.7 %, 56.0 %, 67.7 %,
66.7 %, and 67.2 % for predicting ER(+) tumors, and >
12.1 %, 66.7 %, 67.7 %, 56.0 %, 76.7 %, and 67.2 %, for
HER-2(+) tumors, respectively (Table 3).

PET Parameters Among Biomarker-Based Subgroups

ThemedianvaluesofRImeanof subgroupa (n=33), b (n=15), c
(n=6), and d (n=1) were 10.2 % (IQR, 5.2–16.0; range, −3.2–
27.9), 15.3 % (IQR, 10.1–21.7; range, 0–42.6), 16.3 % (IQR,
13.7–19.6; range, 2.8–24.3), and 18.5 %, respectively.
However, there were no significant differences between PET pa-
rameters among these subgroups (p = 0.107 for RImean;
p=0.444 for SUVmax; p=0.559 for RImax) (Fig. 4).

Discussion

There are two major findings in the current study: First,
among SUVmax, RImax and RImean, only RImean correlat-
ed with the biomarker status of breast cancer. Second,

pretreatment RImean was useful for predicting biomarker sta-
tus of breast cancer.

In the current study, SUVmax tended to be higher in ER (−)
and HER-2 (+) tumors than ER (+) and HER-2 (−) tumors;
however, the trend did not reach statistical significance. Other
previous studies are consistent with our result [14, 16, 21, 32].
It has been reported that SUVmax of breast cancer shows a
linear relationship in T1–T3 tumors and correlates with tumor
size. Due to the small population in the present study, we
could not evaluate the correlation between SUVmax and bio-
marker status in the controlled T-stage groups. Further large-
scale study may be warranted.

Like SUVmax, SUVmean also failed to show the correla-
tion with any biomarker status. It was a predictable conse-
quence, because SUVmax would be more expected to reflect
the metabolic status of the tumor than SUVmean [33].

Unlike SUVmax, RImean was significantly higher in ER
(−) and HER-2 (+) tumors. It is reported that patients with ER
(−) and HER-2 (+) breast cancer have poorer prognoses than
patients with ER (+) and HER-2 (−) breast cancer [5, 34, 35].
Higashi et al. [36] reported that RI can predict the hexokinase-
II expression and suggested possible prognostic values of RI.
Because hexokinase-II is attributed with maintaining the ma-
lignant state of a tumor due to the closing of voltage-
dependent anion channels [37] and prevention of
mitochondria-mediated apoptosis [38], a higher RI might be
relevant to the poor prognosis and negative prognostic factors
such as ER (−) and HER-2 (+).

In this study, SUVmax, RImax, or RImean did not correlate
with the PR status of breast cancer. Conflicting results have
been reported as the correlation between FDG uptake and PR
status. Some studies have claimed higher SUVmax in the PR
(−) breast cancer [39, 40], but other reports showed no asso-
ciation between PR status and FDG uptake [41, 42].
Ekmekcioglu et al. [42] suggested that the cut-off level of
the PR limit of positivity might be relevant to the result.

Although SUVmax has been widely used as a practical
method, there is a limit to the complete analysis of tumor
characteristics. Because SUVmax is determined by a single
pixel with the highest SUV [43], it could also be effected by its
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Fig. 2 ROC curves of RImean
for predicting the status of ER (a),
PR (b), and HER-2 (c). RImean
predicted the status of ER and
HER-2, but not that of PR
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vulnerability to statistical noise. Lodge et al. [33] reported that
SUVmax was much more biased by noise properties than
multi-pixel summarized SUV. In the current study, the PET
images were acquired for 3.5 min for each bed, and therefore,
the average positive biases of SUVmax and SUVmean are
expected to be about 10 and 5 %, respectively. Based on this
previous study, RImean would be less influenced by the SUV
bias. Nonetheless, there is a limitation in the use of RImean,
especially for determining the VOI of PET. Because
SUVmean is strongly dependent on the region of interest
[44], further studies are warranted to determine the VOI of
PET from enhancedMRI of recently introduced PET-MRI [45].

We performed the dual phase PET/CT scan at 60 and
120 min after FDG injection. The dual phase PET/CT scan
appears to improve the diagnostic value of PET/CT in breast

cancer [22, 46]. Previous studies using dual phase PET/CT
scans were also performed at 60 and 120 min after FDG in-
jection [47–49], the delayed time of 120 min after FDG injec-
tion was decided as the scan time of the second PET in the
present study. Boerner et al. [50] reported that tumor contrast
in breast cancer is stronger in images 3 h after FDG injection
than 1.5 h. Another study of Hamberg et al. [51] indicated that
the tumor concentration of FDG in lung cancer did not reach
the peak point of uptake even 120 min after FDG injection, a
finding probably related to the low glucose-6-phosphatase ac-
tivity and increased cellular glucose uptake [52]. These studies
suggested the delayed PET/CT scan at the time of more than
120 min after FDG injection could improve the diagnostic
value more than the conventional protocol of the scan at the
time of 60 min after FDG injection or 120 min. In this study,
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Fig. 3 Comparisons of ROC
curves between RImean and other
PET parameters for predicting the
status of ER and HER-2.
Although there are no significant
differences between SUVmax
and RImean for predicting the
status of ER (a) or HER-2 (b),
there are significant differences
between RImax and RImean for
predicting the status of ER (c) or
HER-2 (d)

Table 3 RImean to predict the
biomarker status of the breast
cancer

Optimal
criteria

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Accuracy
(%)

For prediction
of ER (+)

<16.0 % 77.7 56.0 67.7 66.7 67.2

For prediction of HER-
2 (+)

> 12.1 % 66.7 67.7 56.0 76.7 67.2

PPV positive predictive value, NPV negative predictive value
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we did not acquire the delayed PET/CT scan at the time of
more than 120 min after FDG injection. Further studies are
needed to evaluate the optimal scan time for dual phase PET/
CT in breast cancer.

In this study, 2.0was chosen as the cut-off SUV for analyzing
the malignant tissue. By using this cut-off SUV, three of 59
patients were excluded because these patients had tumors show-
ing a SUVmax < 2.0. Although a SUVof 2.5 has usually been
considered as the threshold for distinguishing malignant from
benign lesion [24, 53], it may not be applicable as the optimal
threshold for diagnosing breast cancer [49] because phosphory-
lation of FDG in the breast cancer cells might be less complete,
consequently it is expected that SUVof the breast cancer would
be lower. In this study, five of the 59 patients had tumors show-
ing SUVmax < 2.5. These five patients had relatively small-
sized tumors or low-grade tumors. RImean using by cut-off
SUV of 2.5 failed to show the correlation with the ER
(p=0.052), PR (p=0.214), or HER-2 status (p=0.065) in our
study. On the contrary, breast tumors were not easily distin-
guished from surrounding breast tissue by using a cut-off
SUVof 1.5. Therefore, adopted 2.0 was determined as the op-
timal cut-off SUV in the current study.

Biological subtypes of breast cancer determined by ER, PR,
HER-2, and Ki-67 are the most common prognostic and thera-
peutic markers [54], and are widely used for disease stratifica-
tion. These subtypes are relevant to the expression of genes to
specify the tumor characteristics [55–58], and strongly support-
ed by The 12th St Gallen International Breast Cancer
Conference (2011) as the definition of therapy indication, as
the subtypes incorporate many of the risk and predictive factors
of breast cancer [59]. In our study, SUVmax, RImax, or RImean
did not show correlation with the biological subtypes of breast
cancer. The small population of the present study seemed to be
not enough to show a significant difference among the subtypes.
Further large-scale study may be warranted.

The present study has several limitations. First, a small num-
ber of patients were included. Second, Ki-67, which is consid-
ered to be the marker of proliferation, was not available. Finally,

because of the short follow-up duration, the relationship be-
tween the PET parameters and prognosis was not evaluated.

Conclusions

RetentionindexofSUVmeancanreflect theERandHER-2status
of breast cancers. Higher retention index of SUVmean might
associate with lower ER expression and higher HER-2
expression.
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