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An unbiased nuclear proteomics approach reveals novel nuclear protein components
that participates in MAMP-triggered immunity
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ABSTRACT
(MAMP)-triggered immunity (MTI) is the first layer of molecular defense encountered by pathogens. Genetic
screens have contributed to our knowledge of MTI, but are limited to phenotype-causing mutations. Here we
attempt to identify novel factors involved in the early event leading to plant MTI by comparing the nuclear
proteomes of two Arabidopsis genotypes treated with chitosan. Our approach revealed that following chitosan
treatment, cerk1 plants had many nuclear accumulating proteins in common, but also some unique ones,
when compared with Col-0 plants. Analysis of the identified proteins revealed a nuclear accumulation of DNA-
modifying enzymes, RNA-binding proteins and ribosomal proteins. Our results demonstrate that nuclear
proteomic is a valid, phenotype-independent approach to uncover factor involved in cellular processes.
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Plants have evolved a multilayered system to detect and defend
against potentially harmful pathogenic microbes. Beyond
structural defenses, the first molecular layer is composed of
transmembrane pattern recognition receptors (PRR) that detect
slowly-evolving microbial components.1 These microbe-
associated molecular patterns (MAMPs), also known as patho-
gen-associated molecular patterns (PAMPs) include, among
many others, the bacterial flagellin (flg22) and elongation factor
Tu.2 MAMP recognition by PRRs triggers ion fluxes, oxidative
bursts3 and mitogen-activated protein kinase (MAPK) path-
ways activation4 leading to the transcriptional reprogramming
of over 1,200 genes5 and to the induction of required basal
defense responses.1 The importance of MTI is best illustrated
by the pressure exerted by the pathogen to suppress it. One
striking example is the HopF2 effector which directly supresses
MTI at two different levels of the MAMP-activated MAPK
cascades. It can directly target BAK1, which is required for the
full elicitation of pathogen-induced defense responses,6 at the
plasma membrane, thereby acting upstream of the MEKK1-
MKK1/2- MPK4 pathway. It can also directly block MKK5 of
the MEKK-MKK4/5-MPK3/6 cascade.6

The chitin receptor is one of the MAMP receptors that has
been investigated with some success. Chitin, a major compo-
nent of the fungal cell wall, is a b-1,4-linked N-acetyL-
glucosamine polymer that has long been recognized as a potent
MAMP in plant-fungus interactions.7 In Arabidopsis, it is
mostly detected by the CHITIN-ELICITED RECEPTOR
KINASE 1 (CERK1). cerk1 knock-out plants lose their response
to chitin elicitor, including MAPK activation, reactive oxygen
species (ROS) generation and induction of gene expression.8

Indeed, CERK1 phosphorylates after exposure to chitin or

chitosan (acetylated chitin) and can homodimerize when bind-
ing to chitin monomers to activate its kinase domain.9 How-
ever, chitin signaling seems to require co-receptors: two
additional LysM receptor kinases, AtLYK4 and AtLYK5, are
also involved in chitin recognition.10,11 Supporting the
co-receptor theory is the fact that AtLYK5 binds chitin with
high affinity and can dimerize with CERK1 in a chitin-depen-
dent manner.10 Other receptors may also be implicated but are
masked by the dominant effect of CERK1.

Despite the importance of MTI, the intracellular modulation
that takes place after MAMP recognition, which involves tran-
scriptional reprogramming, is still somewhat unclear. More
precisely, the chitin-elicited nuclear proteins involved in the
establishment of basal defense responses are not fully known.
Two MAPK pathways have been shown to be activated down-
stream of MAMP signaling. One elicits the activation of the
MAPKs MPK3 and MPK64 and the second leads to MPK4 acti-
vation.12 Recently, MPK1, MPK11 and MPK13 were also found
to be phosphorylated upon flg22 treatment.13 The absence of
MTI defect in these three MAPKs knockout lines suggests
functional redundancy, so many more components acting
downstream of receptor activation may be missed in pheno-
type-based screening.

In the present study, we sought to discover proteins that par-
ticipate in MTI but have escaped phenotype-based screening.
Toward this end, we took an unbiased approach based on pro-
tein mass spectrometry (MS) of the nuclear proteome of young
Arabidopsis plants subjected or not to chitosan treatment. Chi-
tosan is known to also bind CERK19 and triggers a transcrip-
tional response that overlaps with the response to chitin.14

Using high performance liquid chromatography-electrospray
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ionization tandem mass spectrometry (HPLC-ESI-MS-MS), we
identified several plant proteins that accumulate in the nucleus
exclusively after chitosan treatment of Arabidopsis Columbia-0
(Col-0) or cerk1 plants.

Before proceeding with the nuclear proteome MS analysis,
we assessed if chitosan treatment was efficient in triggering a
MAMP-like response. Three genes that are among the most
up-regulated after chitin treatment15 were analyzed by
RT-qPCR: At2g37430 (C2H2-ZF), At1g22810 (AP2/ERE) and
At2g44840 (AP2/ERE). All three genes were upregulated after
chitosan treatment of Col-0 plants, showing respectively 13-
fold, 51-fold and 3-fold induction 15 min post-treatment
(Fig. 1A). We also observed that At1g22810 was slightly
upregulated following chitosan treatment of cerk1 plants albeit
at much lower level than in Col-0 (5-fold).

We assessed the purity of our nuclear fractions by using the
cytosolic marker HSP70c and nuclear marker histone H3.
HSP70c could not be detected by Western blotting in the
nuclear fraction corresponding to pellet five, while the nuclear
marker anti-histone H3 was still clearly visible, hence this
nuclear fraction was sent for mass spectrometry analysis.
Tandem MS identified 1,372 different Arabidopsis proteins
among a total of 31,416 spectra from our eight samples (dupli-
cates of cerk1 or Col-0 plants treated or not with chitosan)
(PRIDE repository with the dataset identifier PXD003821 and
10.6019/PXD003821). We set very conservative criteria for our
analyses: all proteins identified needed a minimum of two spec-
tra to be considered, and all proteins that were present in only
one of the duplicates were also rejected.

Our first analysis of the proteomic results was to compare
the functional categorization of the 232 proteins found in the

nucleus after chitosan treatment (in Col-0 and cerk1) with the
182 proteins from the nuclear proteome of cold-treated plants,
one of the few studies of Arabidopsis nuclear proteomes that
can relate to our investigation.16 In parallel, we performed
similar analysis with the SUBA database using only proteins
predicted to be nuclear by SUBA bioinformatics tools or
confirmed to be nuclear by GFP-tagging (total of 4,421 pro-
teins). Finally, we compared our data to findings on the cyto-
solic proteome published by Ito et al. (2011) (Fig. 2A). The first
observation from this categorization based on predicted cellular
components is that only 26% of the nuclear proteins from the
SUBA data set were annotated as nuclear proteins by TAIR’s
gene ontology (GO) annotator (Fig. 2A). In other words, the
remaining 74% may be nuclear at some point, but the nucleus
was not deemed to be their primary localization in GO. This
reflects the fact that proteins may have several putative loca-
tions and underlines the weakness of bioinformatic to predict
protein localization. The nuclear proteomes of chitosan and
cold-treated plants contained only 11% and 16% of predicted
nuclear proteins while the cytosolic experimental proteome still
showed 9% of nuclear predicted proteins (Fig. 2A). Based on
the discrepancies observed with the SUBA dataset, we can
assume that a significant proportion of proteins annotated as
non-nuclear by GO in these three experimental data sets were
indeed at some point nuclear.

In the search for proteins that participate in MTI, catego-
rization by molecular function (Fig. 2B) enables us to iden-
tify proteins that have the capacity to modulate transcription
or translation during defense responses. Our chitosan-
induced nuclear proteome contains 19% of DNA- or RNA-
binding proteins, which could alter gene expression through

Figure 1. Chitosan treatment elicits MTI responsive gene in planta. (A) Expression of the MAMP-triggered immunity responsive marker genes At2g37430, At1g22810,
At2g44840 in Col-0 and cerk1 following chitosan or mock treatment. Q-RT-PCR was performed on soil grown three-weeks-old plants. ACT1 was used to normalize the tran-
script levels. (B) Quality control of the fractionation procedure by western blotting using HSP70c and histone H3 as cytosolic and nuclear markers respectively. Crude indi-
cates crude extract, S D supernatant, P D pellet and number indicate the wash number.
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DNA-binding, mRNA-processing, and mRNA-export, or
could impact translation through mRNA nuclear segregation.
Fewer of these proteins (12%) were found in the cytosolic
dataset.17 Proteins with transcription factor activity were
most abundant in the SUBA nuclear data set (12%) but still
represented 1%, 4% and 0.2% of proteins in chitosan, cold
and cytosolic proteomes respectively, confirming that nuclear
enrichment does indeed enrich transcription factors. It
should also be noted that empirically-obtained proteomes
are biased toward abundant proteins which could mask less
abundant proteins. Therefore, signaling components such as
transcription factors may be under-represented in LC-MS-
MS proteomes, as demonstrated by their abundance in the
SUBA dataset relative to the three other data sets.

We constructed a Venn diagram comparing the proteins
found in each treatment group (Control is the combination of
both Col-0 and cerk1 plants treated with water) (Fig. 3). We
identified eight proteins specifically localized to the nucleus of
Col-0 plants after chitosan treatment (listed in Table 1).
Although most of these are not obvious MTI components, a
clear trend toward ribosomal proteins and translation is obvi-
ous. Proteins 1 (S19E family ribosomal protein), 4 (ribosomal

protein l6), 5 (S19E family ribosomal protein) and 7 (RNAse Z
activity involved in tRNA processing) are all involved in trans-
lation. Protein 8 (DNA-binding transcriptional regulator) is
engaged in transcription regulation while protein 6 (small
nuclear ribonucleoprotein G) binds RNA and could be involved
in either transcription or translation. Most of these proteins
have been reported to be modulated at the transcription level
after biotic or abiotic stress, but have not previously been linked
with the MAMP response.18-21

157 proteins were only detected in the nucleus of cerk1
plants after chitosan treatment (reported in Table S2). It is
striking that so many protein are unique to cerk1 as it has an
impaired sensing of chitin8 and as we observed only a weak
transcriptional reprogramming in our RT-qPCR results
(Fig. 1). On the other hand, it is known that while chitin and
chitosan responses largely overlap, 33% of chitosan elicited
genes are not elicited by chitin.14 Table 2 groups the proteins
possessing the molecular functions most likely to affect early
MTI responses (transcription factor and DNA/RNA-binding
protein) and excludes those from metabolisms. Many of those
may regulate gene expression or mRNA metabolism, as several
additional proteins are RNA helicases that may influence tran-
scription or translation. Interestingly, one resistance protein of
the Toll/Interleukin receptor (TIR) family (At4g16990) was
found: it is known as RLM3 and is required for resistance to
Leptosphaeria maculans and other necrophytic pathogens.22

We also analyzed the proteins common between Col-0
and cerk1 nuclei after chitosan treatment (presented at the
intersection in Fig. 3). A total of 73 proteins were identified
and most of these were either DNA/RNA-binding proteins
or ribosomal proteins. Table 3 shortlists the proteins sorted
by molecular function, uncovering several DNA/RNA-bind-
ing proteins linked with chromatin remodeling and RNA
maturation (see full list in Table S3). Receptor for activated
C kinase 1 A (RACK1A) was one of the few proteins in
Table 3 that was neither ribosomal nor DNA/RNA-binding.
This protein was recently shown to act as a scaffold protein

Figure 2. Gene ontologies in chitosan treated plants compared to other datasets. (A) GO predicted subcellular localization. (B) GO predicted molecular function.

Figure 3. Venn diagram displaying the number of proteins identified in the
nucleus for each condition.
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in a new immune signaling pathway.23 The subset common
between the two genotypes (Col-0 and cerk1) and the two
treatments (water and chitosan) – those at the intersection
of the three circles (listed in Table S4) – mostly contained
proteins from the chloroplasts and mitochondria as well as
many enzymes from primary metabolism that likely contam-
inated the nuclear preparations, which explains that they
were found in all genotypes and treatments. This set of pro-
teins also contained some constitutive nuclear components,
such as nucleoporins, spliceosome assembly proteins and
polymerases, but few RNA- or DNA-binding proteins and
ribosomal components, strengthening the results obtained in
chitosan-treated plants in which we observed some specific-
ity among RNA- or DNA-binding proteins and ribosomal
components.

The MTI response depends on the recognition of conserved
molecular pathogen patterns at the cell surface by pathogen
recognition receptors.1 Genetic screening has largely contrib-
uted to our understanding of plant defense24 and to the molec-
ular dissection of the defense signaling pathways.25 We used
HPLC-ESI-tandem MS, a phenotype-independent approach to

discover components participating in the establishment of
defense responses resulting from MAMP recognition.

Interestingly, proteins that were either part of the ribosome
or actively participated in translation were over-represented
following chitosan treatment in both genotypes (Table 1, 2, 3).
Since ribosomes are assembled in the nucleus, it is not surpris-
ing to observe many ribosomal proteins in our nuclear pro-
teomes, but it is interesting that their identity differed in
different genotypes and whether the plants had been exposed
to chitosan or not. It is well-known that ribosome composition
is highly heterogeneous and varies during plant development to
ensure translational regulation.26 Hence, we could speculate
that ribosome subunits, which are highly heterogeneous,27 may
disassemble and reassemble after elicitor detection and trigger-
ing of MTI. As is observed in development, such reassembly
could promote MTI oriented translational regulation. Recently,
JIP60, a barley protein that mediates a translational switch
toward stress and defense protein synthesis in the presence of
jasmonate and at senescence, was discovered.28 More recently
the ribosomal coding genes RPL12 and RPL19 were shown to
be involved in nonhost disease resistance in Nicotiana and

Table 1. Nuclear localized proteins identified by LC-MS-MS in Col-0 plants following chitosan treatment.

Protein description Uniprot ID AGI

Ribosomal protein S19e family protein D7KGE2 AT5G61170
HAD superfamily, subfamily IIIB acid phosphatase Q9ZWC4 AT1G04040
Galactose mutarotase-like superfamily protein Q8LFH1 AT3G47800
Ribosomal protein L6 family protein Q8L9N4 AT1G18540
Ribosomal protein S19e family protein D7MUI1 AT5G61170
Probable small nuclear ribonucleoprotein G O82221 AT2G23930
Encodes a protein with RNase Z activity suggesting a role in tRNA processing Q8L633 AT2G04530
DNA-binding storekeeper protein-related transcriptional regulator O23063 AT4G00390

Table 2. Subset of nuclear localized proteins identified by LC-MS-MS in cerk1 plants following chitosan treatment.

Protein description Uniprot ID AGI

Transcription factor or transcriptional regulator
MED16, Mediator of RNA polymerase II transcription subunit 16, positive regulation of SAR F4JGZ1 AT4G04920
Small RNA degrading nuclease 3, regulation of transcription F4K3N3 AT5G67240
ACT domain-containing small subunit of acetolactate synthase protein Q93YZ7 AT2G31810
Trihelix transcription factor ASIL2, sequence-specific DNA binding transcription factors Q9LJG8 AT3G14180
VERNALIZATION INDEPENDENCE 5, regulation of transcription, DNA binding D7KW58 AT1G61040
Sequence-specific DNA binding transcription factors Q8LF33 AT3G11100
Short life 1, PHD finger and BAH motif containing putative transcription factor F4JV93 AT4G39100
Mediator of RNA polymerase II transcription subunit 32 Q84VW5 AT1G11760
CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 2, CAMTA2 Q6NPP4 AT5G64220
EARLY BOLTING IN SHORT DAYS, chromatin assembly or disassembly O65462 AT4G22140
RNA-binding protein
NUCLEOSTEMIN-LIKE 1, nucleolar GTP- binding protein involved in RNA methylation Q93Y17 AT3G07050
RPT2a encodes the 26S proteasome subunit, regulate gene silencing via DNA methylation Q9SZD4 AT4G29040
EMBRYO DEFECTIVE 2770, RNA-directed DNA methylation, mRNA splicing Q9ZT71 AT4G03430
Serine/arginine-rich SC35-like splicing factor Q8L3X8 AT3G55460
RZ1B, Putative RNA-binding involved in cold tolerance O22703 AT1G60650
WD-40 protein involved in histone deacetylation in response to abiotic stress Q9FN19 AT5G67320
TOUGH, Interacts with TATA-box binding protein 2. RNA binding Q8GXN9 AT5G23080
THO complex subunit 7B, component THO/TREX complex Q9M8T6 AT3G02950
Small RNA degrading nuclease 3, regulation of transcription F4K3N3 AT5G67240
RNA binding (RRM/RBD/RNP motifs), RNA processing F4J9U9 AT3G12640
mRNA splicing factor, Cwf18 Q9MAB2 AT3G05070
SWI/SNF complex subunit SWI3C, ATP-dependent chromatin-remodeling complex Q9XI07 AT1G21700
Splicing factor U2af large subunit B, Necessary for the splicing of pre-mRNA Q8L716 AT1G60900
Small nuclear ribonucleoprotein Q9SUM2 AT4G30220
Small nuclear ribonucleoprotein family protein, mRNA splicing Q9C6K5 AT1G76860
nuclear cap-binding protein, mRNA metabolism Q9XFD1 AT5G44200
RNA-binding protein-related F4JM55 AT4G28990
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Arabidopsis and also play a minor role in basal resistance
against virulent pathogens.29

Another type of proteins abundantly observed in our study
were DNA-modifying enzymes that have the capacity to affect
chromatin remodeling and in doing so to further impact tran-
scription. The role of chromatin remodelling proteins in regu-
lating Arabidopsis defense responses has been reviewed by Berr
et al.30 Mutation of chromatin-remodeling enzymes results in
pleiotropic phenotypes not specifically associated with MTI or
ETI but in which prominent players in transcriptional repres-
sion and activation at the onset of these processes are affected.

Various families of RNA-binding proteins, including pro-
teins linked to mRNA splicing, export and maturation, were
also identified after elicitation by chitosan. RNA export defects
have previously been shown to suppress NB-LRR-mediated
immunity,31,32 basal responses32 and response to abiotic
stress,33 suggesting that even more proteins involved in RNA
metabolism may participate in defense responses.

As reviewed by Boller and Felix (2009), many molecular events
unfold during the first 15 min of MAMP recognition and they set a
point of no return upon which cells commit to the massive

transcriptional reprogramming required for the establishment of
the basal response. Consequently, we chose to concentrate our anal-
ysis on early nuclear recruitment of molecular components follow-
ingMAMP detection. While theMTI response is clearly dependant
on MAPK pathways, our data indicate that ribosome reorganiza-
tion, DNA modification and RNA maturation could play major
roles during the early MAMP response. Specific proteins affecting
translation or switching it to defense mode need to be investigated
further. Similarly, the participation of chromatin-remodeling and
RNA-modifying enzymes should be studied. Our results demon-
strate that nuclear proteomic is a valid, phenotype-independent
approach to uncover factors involved in various cellular processes.
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