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Abstract

Enzyme function involves substrate and cofactor binding, precise positioning of reactants in the 

active site, chemical turnover, and release of products. In addition to formation of crucial structural 

interactions between enzyme and substrate(s), coordinated motions within the enzyme-substrate 

complex allows reaction to proceed at a much faster rate, compared to the reaction in solution and 

in the absence of enzyme. An increasing number of enzyme systems show the presence of 

conserved protein motions that are important for function. A wide variety of motions are naturally 

sampled (over femtosecond to millisecond time-scales) as the enzyme complex moves along the 

energetic landscape, driven by temperature and dynamical events from the surrounding 

environment. Areas of low energy along the landscape form conformational substates, which show 

higher conformational populations than surrounding areas. A small number of these protein 

conformational sub-states contain functionally important structural and dynamical features, which 

assist the enzyme mechanism along the catalytic cycle. Identification and characterization of these 

higher-energy (also called excited) sub-states and the associated populations is challenging, as 

these sub-states are very short-lived and therefore rarely populated. Specialized techniques based 

on computer simulations, theoretical modeling and nuclear magnetic resonance (NMR) have been 

developed for quantitative characterization of these substates and populations. This chapter 

discusses these techniques and provides examples of their applications to enzyme systems.

1. Introduction

A number of factors contribute to an enzyme’s ability to accelerate a biochemical reaction 

by several orders of magnitude as compared to the reaction in water (Benkovic & Hammes-
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Schiffer, 2003; Agarwal, 2006). It is well known that enzymes achieve this acceleration by 

providing special structural and electrostatic environments suitable for the chemical reaction 

to occur (Warshel, et al., 2006). The designated function of an enzyme molecule is, 

therefore, to provide an environment that is considerably different from the bulk-solution, 

and which favors the reaction to proceed at a much faster rate than otherwise possible. A 

wealth of information is available about the role of structure in enzyme function (Knowles, 

1991), and it is also widely acknowledged that enzymes provide electrostatic and structural 

stabilization of the transition state and other intermediates during the reaction (Benkovic, 

1992). Recent investigations show that even if these two are taken into account, the catalytic 

efficiency cannot be fully explained for a large number of enzymes (Agarwal, 2005). 

Emerging evidence indicates that enzyme rates may be closely tied to ability of enzymes to 

sample through a number of alternate structures (or conformational sub-states) such that it 

allows the reactive environment to achieve structural and electrostatic complementarity to 

the transition state (and other intermediate states) along the reaction (Ramanathan, Savol, 

Burger, Chennubhotla, & Agarwal, 2014).

In the more familiar paradigm, the catalytic cycle involves the binding of substrate(s), and if 

required cofactor(s), and the positioning of these into the correct orientation into the active 

site. This is followed by the actual chemical step or substrate turnover. Then, the product(s) 

and spent cofactor are released (Boehr, McElheny, Dyson, & Wright, 2006). Inherently, the 

movement of various molecules in and out of the active site would require enzyme motion; 

such passive motions could be considered as a consequence of these binding/release events. 

However, evidence continues to build strongly in favor of some of the protein motions 

playing a much more active or promoting role in the catalytic cycles of enzymes. Protein 

motions occur over 12 orders of magnitude in time, allowing enzymes to sample vastly 

different conformations. Large-scale motions or conformational fluctuations at long time-

scales enable the sampling of high energy intermediates or a group of conformations 

(conformationalsub-state ). Experimental evidence continues to indicate that the rate of 

sampling of correct motions is somehow connected to the time-scale (or rate) of the various 

events in the enzyme cycle (Boehr, Dyson, & Wright, 2006; K. A. Henzler-Wildman, et al., 

2007). In particular, if the rate-limiting event of enzyme cycle requires a conformational 

motion of the enzyme, then the catalytic efficiency is directly tied to the sampling of the 

conformational sub-state and conformations transitions into this substate (Ramanathan, et 

al., 2014).

Investigations indicate that sampling of these conformational sub-states is an intrinsic 

property of an enzyme, and is observed even in the apo form of the enzyme (Eisenmesser, 

Bosco, Akke, & Kern, 2002). In a number of nuclear magnetic resonance (NMR) 

experiments it has been observed that an enzyme does not necessarily experience a unique 

structural signature (corresponding to a homogeneous population) at each sub-step along the 

catalytic cycle (Boehr, McElheny, et al., 2006). Rather, it is much more likely that the 

enzyme samples not only the majority of conformations in a single sub-states but that it also 

samples the minor conformations associated with the neighboring sub-states. Overall, this is 

an indication of the fact that the enzyme landscape is full of conformational states, which are 

sampled over different time-scales (Ramanathan, Savol, Langmead, Agarwal, & 

Chennubhotla, 2011).
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To understand the catalytic efficiency of the full enzyme cycle as well as to understand the 

relevance of motions and conformational sub-states along the catalytic cycle, it is important 

to quantitatively characterize the sub-states and the conformational transitions along the 

landscape (Ramanathan, et al., 2014). Experimental information has been difficult to obtain 

because the time-scales involved can vary several orders of magnitude (see Figure 1) 

(Kleckner & Foster, 2011), while each experimental technique has an inherent limitation of 

time-scale(s)/resolution. It has been recently suggested that a joint effort between 

computational and experimental techniques can provide much more useful ways of 

obtaining data and deciphering the information. In this chapter, we discuss computational 

and theoretical techniques that allow the characterization of the dynamics and the associated 

conformational sub-states. Discussion is also presented regarding the current methodologies 

to extract information on conformational sub-states using NMR relaxation dispersion 

experiments. Finally, we provide two illustrative examples on how these techniques are 

applied to enzyme catalysis.

2. Theoretical Concepts

Proteins, including enzymes, sample distinct conformations enabled by internal motions on a 

wide range of time scales (Frauenfelder & Leeson, 1998; Kleckner & Foster, 2011). The 

motions within proteins range from bond vibrations that occur on femtosecond time-scales 

to slow conformational fluctuations of domains that occur on microsecond (or longer) time-

scales. In the intermediate time-scales are movements of loops and coordinated movements 

of beta-sheets. As depicted in Figure 1, the various low energy regions of the protein energy 

landscape (valleys or energy wells) are separated by barriers associated with conformational 

changes on the microsecond-millisecond (μs-ms) or longer (>ms) time-scale, while within-

well sampling operates at faster picosecond-nanosecond time-scales (ps-ns) (K. Henzler-

Wildman & Kern, 2007). Thermodynamic sampling governs sub-state populations and their 

transitions according to temperature and energy barrier height. Some energy wells have 

more population (densely populated) while others may be less populated (scarcely 
populated). Emerging evidence suggests that protein function (such as enzyme catalysis) is 

facilitated by conformational sub-states that promote specific interactions between reactants 

at various stages in the catalytic cycle (Boehr, McElheny, et al., 2006; Eisenmesser, et al., 

2002; Goodey & Benkovic, 2008; K. A. Henzler-Wildman, et al., 2007).

Experimental investigations and computer simulations show that protein internal motions 

generate a distribution, or ensemble, of structures. Depending upon the experimental 

technique used or time-scale of computer simulations, data on different types of ensemble 

can be collected. For example, in Figure 1, N1, N2 and N3 correspond to ps-ns ensembles, 

while M1 and M2 correspond to μs-ms ensembles. Thermo-dynamical sampling allows 

enzymes to visit many of these alternative conformations; therefore, during analysis it would 

not be possible to assign catalytic relevance a priori to a single conformation and ignore 

functional characteristics of all others. On the contrary, these alternative conformations, or 

conformational sub-states (and their transitions) are increasingly understood as promoting 

function (Fraser, et al., 2009; Fraser, et al., 2011). In this new paradigm, the internal protein 

motions are critical to, not a byproduct of, enzyme function.
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The challenge associated with characterizing the conformational sub-states partially arises 

from the fact that the protein conformational landscape is multi-dimensional and the 

conformational sub-states involve multiple dimensions (or variables). Therefore, techniques 

are required to reduce the multi-dimensional representation into lower dimensional space 

(with limited variables). In the past, several definitions of conformational sub-states or 

intermediates have been used where classification of conformations is based on geometrical 

quantities from active sites (such as important inter-atomic distances or angles) or based on 

other quantities such as orientation of a few residues or loop regions. However, this requires 

an assumption and/or prior knowledge of the importance of residues. In reality, the 

conformational sub-states are defined by thermo-dynamical sampling; therefore, any 

technique that proposes to identify correct conformational sub-states should also be able to 

provide clear energetic separation in the landscape. In this chapter, we use a fundamentally 

different definition of conformational substates, which is based on identification of 

functionally relevant conformational fluctuations, and does not require prior knowledge of 

the mechanism or important residues. This is an automated process and one of the 

advantages is that it can achieve consistency with internal energy-based separation. This is 

discussed in more detail in section 5 below.

3. Ascertaining conformational sub-states and populations from relaxation-

dispersion NMR

Enzyme active sites achieve transition state stabilization by forming critical interactions with 

substrate(s). At transition state, the enzyme structures themselves are under strain and a part 

of higher energy conformations. Figure 2 shows a schematic of how an enzyme in ground 

state A samples another state B with higher energy conformations, enabled by 

conformational transitions that occur on slow time-scales (milliseconds). Sub-state B could 

contain functionally relevant conformations that stabilize the transition state and therefore 

promote the enzyme reaction. Due to the higher energy of state B, the population in this state 

is lower and sampled infrequently. When enzymes are investigated using techniques such as 

NMR (either in apo or substrate-bound forms), the resulting dynamic equilibrium ensemble 

data is populated by a mix of conformational populations, with the major population 

represented by the ground state A and the minor excited population by state B. The minor 

population of state B has been referred to as hidden or invisible, as it is masked by the major 

population of state A.

Experimental NMR relaxation investigation allows one to decompose this NMR data into 

information about the two states A and B and the populations associated with them. Spin-

relaxation rates, especially those of transverse (R2) magnetization, have been particularly 

useful to characterize the rate of conformational exchange between such states on the 

millisecond time-scale, further providing quantifiable information on the equilibrium site 

populations (pA and pB). In recent years, the relaxation-compensated Carr-Purcell-

Meiboom-Gill (rcCPMG) and R1ρ experiments have been extensively used to characterize 

functionally relevant conformational exchange at specific local and/or global atomic sites 

within enzymes, specifically because they sample the millisecond time-scale of catalysis 

(kcat) in most enzyme systems (Kleckner & Foster, 2011; Lisi & Loria, 2016; Palmer, 2015). 
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The rcCPMG experiment has been the method of choice to probe a two-site chemical 

exchange experienced by 1H-15N backbone amide vectors (15N-CPMG), providing a precise 

atomic-scale measure of the millisecond dynamics experienced by nearly every residue on a 

given enzyme. Despite considerable experimental improvements in recent years – especially 

with respect to higher molecular weight systems (Kay, 2015) – routine 15N-CPMG analysis 

remains dependent on the lack of resonance overlap and overall quality of the two-

dimensional 1H-15N heteronuclear single quantum coherence (HSQC) spectra of enzymes 

under study. Analyzing the line shape, width and chemical shift of the 1H-15N HSQC 

resonances allows one to extract information on residues experiencing conformational 

exchange, providing quantifiable data on the invisible excited states rarely populated in 

solution (pB). The theory and experimental implementation of the rcCPMG experiment is 

beyond the reach of the present review and has been treated in detail elsewhere (Ishima, 

2014; Palmer, Kroenke, & Loria, 2001). Here, we provide a quick overview of the type of 

information obtained from multiple-field fits of the R2 relaxation data measured as a 

function of the spacing τCP between successive π pulses in a CPMG echo sequence. Useful 

parameters extracted from such experiments include the weight of equilibrium populations 

(pA and pB), the chemical shift differences between each state ωA and ωB (Δω), and the rate 

of conformational exchange (kex) between each state.

NMR is particularly well suited to study subtle structural changes occurring in proteins, 

since distinct populations A and B arising from slow structural transitions between two or 

more states give rise to magnetically distinct line shapes and chemical shift resonances in 

NMR spectra (e.g. ωA and ωB in a two-site exchange system) (Figure 3). This is particularly 

obvious for systems where the exchange rate (kex) between the two states A and B occurs on 

a slow time-scale (kex≪ Δω), and for approximately equal population ratios (e.g. 50% pA 

and pB), or slightly skewed population ratios (e.g. 70% pA and 30% pB). Note that kex 

corresponds to the arrow that goes between the two states in Figure 2. While this ideal 
situation provides structural information on populated states exchanging on a time-scale 

slow enough to allow the appearance of individual line shapes for each populated state, it 

does not provide any functional information on the rarely populated (pB < 5–10%), higher 

energy conformers exchanging on a much faster time-scale (e.g. kex > 1000 s−1). This 

situation is typical of enzyme systems experiencing conformational exchange between 

highly skewed populations on the fast NMR regime (kex ≫ Δω), where the functionally 

relevant, higher-energy conformer B is so rarely populated that it is often invisible (i.e. 
displaying a highly broadened line shape) in the NMR spectrum, despite it being potentially 

involved in stabilizing a transition state, positioning a specific reactant, and/or releasing a 

reaction product. Figure 3 presents theoretical examples where the rcCPMG method 

provides the theoretical means to extract, analyze and quantify these hidden, low-populated 

states experiencing conformational exchange on the millisecond time-scale, which often 

overlaps with the rate of catalysis (kcat) in many enzyme systems.

4. Obtaining conformational sub-states from simulations

The general scheme used for identification and characterization of the conformational sub-

states is described in Figure 4. The protein conformational landscape is highly multi-

dimensional (hundreds to thousands of dimensions correspond to the number of atoms and 
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internal degrees of motion). It is not practical to inspect each dimension (or even two or 

three at a time) for characterization of the full landscape. For visualization and 

interpretation, methods are required to find alternate representation that reduce this complex 

multi-dimensional conformational landscape to a simple representation. Typically, this is 

done by finding a set of a limited number of alternate variables (typically ranging between 3 

and 10) where the entire conformational data set can be visualized at a time. A number of 

techniques have been used to identify such variables or independent coordinates based on 

the use of principal component analysis (PCA) or related second-order methods. These 

methods provide eigenvectors corresponding to large-scale protein and enzyme motions, and 

the conformations can then be projected on these independent coordinates to identify the 

locations of various sub-states along the conformational landscape. A number of second-

order methods are available to obtain the protein motions from individual protein structures 

(conformation) or a collection of conformations. These are briefly described below.

4.1 Normal mode analysis (NMA)

This method computes vibrational modes of a molecular system by diagonalization of the 

Hessian matrix (Leach, 2001; Normal Mode Analysis: Theory and Applications to 

Biological and Chemical Systems, 2005). Assuming the molecular system has N atoms, the 

Hessian matrix is a 3N × 3N matrix. The elements of the matrix are the second-order energy 

derivatives with respect to the displacement of atomic positions in the x, y, z directions. The 

elements can be computed analytically (for small systems) or computationally (for larger 

systems like enzymes). Once the Hessian matrix is computed, it is diagonalized to solve for 

the eigenvectors and eigenvalues.

(1)

The time-scale of molecular vibration is determined by taking the inverse square root of the 

eigenvalues (ε) obtained after diagonalization. The eigenvector (ω) corresponding to the 

eigenvalue represents the vibrational modes, which are a set of displacement vectors for the 

atoms in the molecular or the protein conformation.

4.2 Time-averaged normal coordinate analysis (TANCA)

This method is similar to NMA in the sense that the vibrational modes of a protein (or 

protein vibrational modes) are obtained by diagonalization of the Hessian matrix (Hathorn, 

Sumpter, Noid, Tuzun, & Yang, 2002; Tuzun, Noid, Sumpter, & Yang, 2002). However, 

NMA suffers from some limitation when considering a highly flexible molecular system 

such as a protein. NMA uses a reference structure and the eigenvalues and eigenvectors thus 

obtained are only relevant to the reference starting structure. The method therefore weights 

highly toward the high frequency motions and less toward the low frequency motions. 

Moreover, the low frequency obtained using NMA are not reliable for molecular 

conformations that differ considerably from the reference structure for NMA. In enzyme 

function the low frequency motions are more important as they are required for overcoming 

the high-energy barriers. Techniques such as TANCA can partially overcome this problem 
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by diagonalization of the Hessian matrix which has been constructed numerically by 

averaging the elements over time (from multiple structures). This allows the fast frequency 

motions to be removed by averaging providing more accurate low frequency modes that are 

relevant for enzyme function (Ramanathan & Agarwal, 2009).

4.3 Quasi-harmonic analysis (QHA)

This method computes protein vibrational modes from a set of protein conformations that 

are sampled using either the molecular dynamics (or Monte-Carlo) type simulations 

(Perahia, Levy, & Karplus, 1990). QHA is a powerful method in obtaining protein 

vibrational modes that are representative of longer time-scales or the low frequency 

vibrations, by utilizing the information from a set of structures, which may be separated by a 

long time scale – or from different parts of the protein conformational space. The vibrational 

modes are obtained by diagonalization of the atomic fluctuation matrix. For a protein with N 
atoms, the atomic fluctuation matrix, F is a symmetric 3N × 3N matrix with term 

Fαβdefined as:

(2)

where α,β run through the 3N degrees of freedom in Cartesian space and mα is the mass of 

atom corresponding to the αth degree of freedom and xα are the Cartesian coordinates of the 

atom corresponding to the αth degree of freedom. Quantities in ‹› denote an average 

determined from molecular dynamics (MD) simulation. To obtain the eigenmodes 

(vibrational modes), diagonalization of the atomic fluctuation matrix is performed (see Eq. 

1). The time-scale of protein vibration is determined by taking the inverse square root of the 

eigenvalues (ε) obtained after diagonalization. The eigenvector (ω) corresponding to the 

eigenvalue represents the protein vibrational modes, which are a set of displacement vectors 

for the atoms in the protein confirmation. Note one of the benefits of QHA is that multiple 

MD trajectories can be combined to construct the atomic fluctuation matrix – thus allowing 

vibrational modes to be computed that represent conformational changes between different 

areas of the protein conformational space.

4.4 Elastic anisotropic network models (ANM)

This type of calculation uses coarse-grained normal mode analysis to obtain protein 

conformational modes (Doruker, Jernigan, & Bahar, 2002; Haliloglu, Bahar, & Erman, 

1997). These calculations use a simple parameter harmonic potential for the particles in the 

system. The eigenmodes are obtained by the diagonalization of Kirchhoff’s matrix, which is 

similar to the Hessian matrix, but uses a reduced model of the protein and treats the protein 

motions as Gaussian-type motions.

For an enzyme-based system, only the coordinates of enzyme, substrate and cofactor are 

used for calculating the vibrational modes. Typically non-reactive ions and solvent 

molecules are excluded from this analysis. Each of the methods discussed above provides a 

set of vector (or independent vectors), each 3N in length, corresponding to x, y, z 
displacement vectors for N atoms. In addition to identification of vectors the other 
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requirement to obtain conformational sub-states is a set of enzyme conformations. The 

conformations are usually collected from MD simulations. A single trajectory or multiple 

trajectories can be used. In addition, it is also possible for conformations from NMR 

ensembles and a collection of X-ray structures to be used for projection and subsequent 

analysis.

Typically a small number of vectors (3–10) are used for further analysis, as they can capture 

a large fraction of the protein motion (in terms of variance). The first few vectors correspond 

to the slowest motions that occur at slow time-scales. Using these vectors, the conformations 

from the ensemble are projected on each of these vectors. Once the conformations (MD 

and/or X-ray/NMR based) are projected, a clustering method is used for identification of the 

sub-states. Well-defined clusters represent sub-states while diffused conformations over 

landscape (where it is difficult to define clusters) correspond to a flat landscape with little 

possibility of sub-states. It should also be noted that the inability to get proper clusters 

(substates) could also be an indication of the limitation of the underlying computational 

methodology used for the vector extraction. Note that the same set of conformations can be 

used as input to obtain the independent coordinates (vectors) and then to obtain the 

projections on the vectors.

5. Anharmonic conformational analysis (ACA)

The techniques discussed in the previous section are second-order methods based on the 

assumption that the protein sub-states and overall landscape can be described by harmonic 

or quasi-harmonic wells (H, Q in Figure 5). However, a number of experiments, including 

the one combining neutron scattering experiments with computational modeling on protein 

thermophilic rubredoxin, indicate that the protein motions are anharmonic and that the onset 

of anharmonic structural changes activates functionally relevant motions (Borreguero, et al., 

2011).

This assumption of second-order motions has an important consequence. It can lead to 

inaccurate characterization of protein conformational sub-states in that heterogeneous 

conformers are incorrectly grouped into a single conformational sub-state (Figure 6). 

Neighboring conformations in a conformational sub-state are expected to have similar 

energy and functionally relevant geometrical/kinetic properties. When the protein motions 

are anharmonic with multiple wells in the conformational landscape, the use of higher order 

methods is necessary for identifying them.

5.1 Quasi-anharmonic analysis (QAA)

To quantify the anharmonic time-dependent conformational changes (A in Figure 5), we 

have introduced an approach called quasi-anharmonic analysis (V. M. Burger, et al., 2012; 

Ramanathan, Agarwal, Kurnikova, & Langmead, 2010; Ramanathan, Savol, Agarwal, & 

Chennubhotla, 2012; Ramanathan, et al., 2011; Savol, Burger, Agarwal, Ramanathan, & 

Chennubhotla, 2011). QAA uses fourth-order statistics (for analytical convenience) to 

describe the atomic fluctuations and summarizes the internal motions using a small number 

of dominant anharmonic modes. We have successfully demonstrated this approach in the 

context of protein functions such as molecular recognition (ubiquitin and lysozyme) and 
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enzyme catalysis (human cyclophilin A) (Ramanathan, et al., 2011). An emergent property 

of QAA is that by characterizing anharmonicity in positional fluctuations, our method 

discovers energetically homogeneous conformational sub-states. Note that emergent implies 

that the discovered homogeneity is achieved without any prior knowledge of the internal 

energy of the systems.

After aligning the MD ensemble, the QAA approach is to use a small set of anharmonic 

basis vectors to represent the positional deviation vectors of each conformer:

(3)

Here, δx denotes the positional deviation vector of size (3N × 1), where N is the number of 

atoms, A is a matrix of size (3N × m) (where m ≪ 3N) derived from an approximate 

diagonalization of a tensor built to hold the fourth-order statistics of positional deviations δx. 
The anharmonic modes of motion, which are the columns of A, are sorted in the decreasing 

order of their norms for convenience. Each anharmonic basis vector ai in the matrix A has an 

excitation coefficient γi. Just like PCA, A fully decorrelates the input ensemble, i.e., there 

are no second-order dependencies between the elements of γ. In addition, matrix A is 

guaranteed to reduce fourth-order dependencies. By construction, A can be non-orthogonal 

(unlike the PCA modes), meaning that exciting anharmonic mode ai can also effect aj 

because of non-orthogonal coupling between the basis vectors. By design, QAA ignores any 

non-linear coupling that may exist in the fluctuations between different parts of a protein.

The various steps involved in performing QAA are (see Figure 4):

1. Apply Gaussian-weighted root mean square deviations (RMSD) 

superposition algorithm on the MD ensemble to identify rigid and flexible 

residues (Ramanathan, et al., 2012).

2. Use rigid residues to iteratively align the MD ensemble. Find the 

positional deviations from the iteratively derived mean conformer.

3. Build a low-dimensional representation for the fluctuations of the 

backbone or Cα atoms using PCA.

4. Choose a low-dimensional subspace m (say 50 or so) that captures 90–

95% of overall variance. This initial projection onto the top m PCA bases 

reduces the dimensionality of the problem from 3N to m and helps speed 

up convergence of the learning algorithm for QAA.

5. Learn the QAA matrix A, sort the anharmonic modes in decreasing order 

of their magnitude. For visualization, build a (dimension-reduced) 

anharmonic space of coefficients: γ1, γ2, and γ3.

6. To gain additional insights into the conformational landscape, label (or 

color) each triplet in the anharmonic space by either experimental or 

computational features such as scaled internal energy, inter-domain 

distance, etc.
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5.2 Identifying conformational sub-states

Observe that neighboring conformers in QAA space have biophysically relevant coordinates 

(Figure 6), and this coherence is an emergent property of the QAA representation. Based on 

this observation, we hypothesize that nearest neighbors in the QAA space can be 

hierarchically clustered to form dynamically and kinetically related metastable states.

To this end, we consider each frame in the trajectory as a node in an undirected graph 

constructed in the m-dimensional QAA space. We connect each node to a small number of 

its nearest Euclidean neighbors. The edges weights are binary (either 0 or 1), denoting either 

the presence or absence of an edge. We then cluster this network using a hierarchical 

Markov diffusion framework that we have proposed previously (V. Burger & Chennubhotla, 

2012; V. M. Burger, et al., 2012; Chennubhotla & Bahar, 2007a, 2007b; Savol, et al., 2011). 

First, we initiate a Markov chain to propagate on the network and identify a set of putative 

cluster centers. The total number of clusters is automatically determined by the algorithm, 

with the rule that every node in the network has some Markov probability of transitioning 

into at least one of the putative cluster. Second, a Markov transition matrix is built using this 

reduced representation based on the principle that Markov chains initiated on both the fine 

scale and coarse scale representations of the network should reach stationary distributions 

simultaneously. This principle in turn helps build a hierarchical representation of the 

network and promotes formation of meta-stable clusters in the data. We expect that fine-

grained hierarchy levels will produce many small clusters containing close neighbors in the 

QAA space; that is, within each such cluster most members will be drawn from the same, 

narrow time-window. As Markov diffusion progresses (fine-grained to coarse-grained), 

conformers that are more distant neighbors will be connected by edges in the diffused 

network and will therefore be assigned to the same cluster. Thus, the hierarchical clustering 

can highlight dynamical connections between conformers at different timescales.

QAA is one component of a larger suite of tools that we developed, termed as anharmonic 

conformational analysis (ACA), to probe molecular recognition pathways (Savol, et al., 

2011) and to reveal intermediate states in intrinsically disordered proteins (V. M. Burger, et 

al., 2012).

6. Examples of conformational sub-states in enzyme catalysis

6.1 Hydride transfer catalyzed by dihydrofolate reductase

The enzyme dihydrofolate reductase (DHFR) catalyzes the conversion of substrate 

dihydrofolate (DHF) to tetrahydrofolate (THF) and uses nicotinamide adenosine 

dinucleotide phosphate (NADPH) as a cofactor. The catalytic cycle of Escherichia coli 
DHFR (EcDHFR) consists of at least five sub-states corresponding to intermediates 

associated with the substrate (DHF) and cofactor (NADPH) binding, the chemical step of 

hydride transfer and the product (THF) and spent cofactor (NADP+) release. Using 15N spin-

relaxation NMR techniques (mostly the rcCPMG described above), Wright and co-workers 

discovered that at each intermediate along the catalytic cycle represents sampling of 

populations from multiple conformational sub-states (Figure 7) (Bhabha, Biel, & Fraser, 

2015; Boehr, Dyson, et al., 2006; Boehr, McElheny, et al., 2006).
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Each intermediate samples the majority of conformational populations relevant to the current 

state; however, a small fraction of the population also samples the neighboring sub-states 

(Boehr, McElheny, et al., 2006). The conformational sub-states are stabilized by interactions 

with the substrate and cofactor. Therefore, the minority of conformations sampled in the 

present state over time become the major conformations for the subsequent intermediate in 

the cycle. The rate of the conversion between different intermediate states was observed to 

coincide with the rate of sampling of inter-conversion between the majority and minority of 

conformational states (see dashed arrows in Figure 7). For example, the maximum rate of 

hydride transfer step (the rate-limiting step of the EcDHFR mechanism at pH > 8.5) the 

maximum rate is measured to be 950 s−1. The time-scale of this event coincides with the rate 

of conformational exchange between its reactant and product conformational intermediates, 

which has been measured to be about 1200 s−1. The explanation for this observation is that 

the conformational sampling allows the enzyme in the reactant ground state (protonated 

DHF+NADPH) to sample conformations that favor the product state (THF+NAPD+). Once 

the enzyme reaches the product-favoring conformational state, the hydride transfer occurs. 

(There is a proton transfer that accompanies hydride transfer, which is considered to precede 

hydride transfer and occurs almost instantly; therefore, protonated DHF is considered as the 

reactive species in the ground state for the chemical step.) The overall rate of the reaction is 

controlled by the slowest step in the reaction. Under normal conditions the slowest event is 

product (THF) release, which occurs roughly at 13 s−1, while the rate of conversion of the 

conformation sub-states is 12–18 s−1.

The details about the fraction of major and minor population in the DHFR catalytic cycle are 

not fully available from this study. It is proposed that R2 relaxation dispersion experiments 

can generally only characterize higher energy conformations that make up at least 1 to 2% of 

the ensemble. Therefore minor state populations in EcDHFR would be of similar order. 

Further, there may be additional excited states that are not accessible to the R2 relaxation 

dispersion experiments. Alternate techniques are required to obtain more detailed 

information about the conformational populations.

6.2 Cis/trans isomerization catalyzed by cyclophilin A

The computational technique QAA has been successfully used to identify conformational 

sub-states associated with the cis/trans isomerization reaction catalyzed by the enzyme 

human cyclophilin A (CypA) (Ramanathan, et al., 2011). This enzyme belongs to the class 

of enzymes known as peptidyl-prolyl isomerases (PPIases), and catalyzes the rotation of 

amide bond preceding to proline residues in a wide variety of substrates, including peptides 

and proteins (Agarwal, 2004; Agarwal, Geist, & Gorin, 2004). MD simulations in 

conjunction with reaction pathway sampling were used to sample conformations along the 

reaction pathway. The dihedral angle associated with the amide bond was used as a reaction 

coordinate and umbrella sampling was used to collect 18,500 conformations along the 

enzyme reaction catalyzed by CypA in a representative substrate. QAA was then used to 

identify multi-scale hierarchy characterization of protein landscape both in time- and length-

scales. Results are depicted in Figure 8. The conformational landscape is characterized and 

separated into a number of conformational sub-states (marked by ellipses). The 

conformations are colored according to the reaction coordinate (amide bond dihedral angle).
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The characterization of the conformational snapshots along the CypA reaction with QAA 

reveals the following results:

1. QAA correctly identifies the sub-state that corresponds to the transition 

state (TS) area. In Figure 8, this corresponds to the highest point in the 

free energy profile (and green colored conformations). The first iteration 

of QAA (called Level I) identifies conformational sub-states associated 

with the reactant, product, and in the vicinity of TS (labeled as TS′) as 

well as a mixed energy state (labeled as cluster I). Note that QAA is a way 

to represent the data in lower dimensional space; therefore, it allows 

identification of different sub-states in multiple iterations. The mixed 

cluster is then further characterized (Level II), which allows identification 

of the more accurate conformational sub-state associated with the TS (TS

″). It is very important to note that the information about the reaction 

coordinate is not an input to the QAA method. Therefore, the 

identification of the functionally relevant reactant, product and TS sub-

states is an emergent property.

2. The conformations within the sub-states are sampled at fast time-scales 

and the transitions at long time-scales enable access to functionally 

important sub-states with higher energy. Without requiring any prior 

knowledge, the transition from lower to TS sub-state [black arrows in sub-

panel (a)] indicates the reaction promoting intrinsic protein dynamics with 

implications for the mechanism [panel (c) and (d)]. Therefore, the 

theoretical foundation of QAA provides us with a unique methodology to 

bridge the gaps in time-scales as well as length-scales. Note that this is 

related to the short-lived hidden conformational sub-states that have been 

discovered using X-ray and NMR techniques, and influence enzyme 

catalysis in CypA (Fraser, et al., 2009).

3. The conformational transitions that enable access to the TS sub-state (and 

other substates) can be identified by drawing an arrow between various 

centers of mixed clusters and the sub-state (see black arrow) and the 

conformations along this arrow provides detailed atomic level information 

about the fluctuations in various parts of the enzyme (lower panel Figure 

8). Interestingly, this information from CypA coincides with the NMR 

spin-relaxation experiments. Further, the identification of highly flexible 

regions and the conserved hydrogen bonds between these regions provides 

information about a network of residues that promote catalysis.

Overall, for results for CypA indicate that the enzyme spends most of its time sampling 

lower energy states (ground states), including the reactant and product sub-states. Over long 

time-scales, the conformational fluctuations based on the topology of the enzyme allow 

sampling of the rare-intermediate states or the functionally relevant sub-states. These sub-

states contain the correct geometric and dynamical properties for the formation of transition 

state and thus for promoting the reaction mechanism.
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QAA offers a number of advantages over alternate approaches: (1) QAA allows automatic 

separation of the conformation into sub-states that capture global to local motions (length-

scales) and varying over fast to slow time-scales; (2) A unique advantage of QAA is that 
without any prior knowledge of functionally related coordinates, it identifies intermediate 
substates with functionally important structural and dynamical features; and (3) Comparison 

of the functionally relevant sub-states provides insights into the reaction promoting intrinsic 

enzyme dynamics as well as a network of coupled motions (or enzyme residue networks) 

that enable solvent-enzyme thermo-dynamical coupling.

7. Summary and Conclusions

Enzymes sample a wide variety of conformations in solution. Only a small fraction of these 

conformations contain the correct structural and dynamical features that allow the 

stabilization of the various intermediates during the enzyme mechanism. The sampling of 

alternate conformations is an intrinsic property of enzymes, enabled by the topology and 

driven by temperature and the surrounding environment. Identification and characterization 

of these conformational sub-states can be achieved though the use of experimental 

techniques such as NMR and computer simulations.

New techniques are required to process the experimental data and simulations data. NMR 

relaxation-dispersion experiments such as the rcCPMG methodology allow the extraction of 

useful conformational exchange information related to the functional behavior of apo and 

ligand-bound enzymes in solution, including the weight of equilibrium populations sampled 

by the enzyme (pA and pB), the chemical shift differences between each state ωA and ωB 

(Δω), and the rate of conformational exchange (kex) between the ground (pA) and excited 

(pB) population states. Atomic-scale analysis of these parameters in conjunction with 

computer simulations provides a wide range of information on the importance of these 

excited sub-states in enzyme function and catalysis. For computer simulations, the 

conformational fluctuations are identified using second-order or more accurate higher-order 

methods. The projections of the conformations on the fluctuations (or vectors) allow the 

identification of conformational sub-states. Characterization of these states with various 

biophysical properties (energy, reaction coordinate and other parameters) provides detailed 

information on the reaction mechanism.

The current challenge with these techniques remains the validation of the conformational 

sub-states identified, as they are rarely populated and only last for very short durations. Joint 

efforts between experimental and computational techniques would enable more accurate 

characterization of these functionally relevant conformers. For example, m in QAA can be 

selected such that it reproduces pA and pB obtained from NMR. This would allow validation 

of the computational methodology, and as a benefit detailed and quantitative information 

will then be available about conformational sub-states and populations associated with 

enzyme catalysis.
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Figure 1. Conformational sub-states in enzyme landscape
Protein motions allow an enzyme to sample a variety of conformational sub-states. Motions 

within sub-states occur on fast time-scales (ps-ns) and conformational fluctuations at longer 

time-scales (μs-ms and >ms) allow overcoming large barriers, enabling access to other sub-

states in the conformation hierarchy. Gray dots indicate unique conformations. The 

conformations within each well (sub-state) form ns ensembles (N1, N2 and N3), while μs-

ms ensembles would correspond to wider areas (M1 and M2). This figure is partially is 

based on information from ref. (Kleckner & Foster, 2011).
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Figure 2. Conformational transitions enable enzymes to sample higher energy sub-states
In a hypothetical case where enzyme samples two states A and B. State A is in lower energy 

and has higher population and state B is higher in energy and has lower population. State B 

contains conformations that are functionally relevant; therefore, in this case the sampling of 

conformation transitions at long time-scale (and its rate) that enable access to state B will be 

important for function as well.
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Figure 3. Two-site conformational exchange experienced by a 1H-15N amide vector sampling 
distinct weighted populations of states A and B on various NMR time-scales
All three columns report on simulated two-state chemical exchange where the populations of 

each state (pA and pB) are skewed, with Δω = 120 Hz and kex = 40, 200, 500, 2000 or 

10,000 s−1. For clarity, values of Δω and kex are only labeled in the right column. Slow 

exchanging populations sampling states A and B give rise to two distinct line shapes 

corresponding to magnetically distinct conformers of equal weight (column 1, ωA and ωB), 

separated by chemical shift difference Δω. Resonance signal broadening results from 

increased rates of chemical exchange between each state (local dynamics) on the 

intermediate and fast time-scale regimes, where a single weighted-average chemical shift 

population is observed (kex > 500 s−1 in this particular example). A single, sharper signal 

with distinct intensity and line width is observed on faster time-scales. A similar behavior is 

observed when the pA and pB population ratio is significantly skewed in favor of ground 

state A (columns 2 and 3). While excited state B is invisible on intermediate and fast time-

scales, the shape and chemical shift of the resulting NMR signal is proportional to each 

population state. Relaxation-dispersion NMR experiments such as the rcCPMG and R1ρ 
methods provide the theoretical means to extract, analyze and quantify these hidden, low-

populated states experiencing conformational exchange on the millisecond time-scale, which 

often overlaps with the rate of catalysis (kcat) in many enzyme systems. Adapted from ref. 

(Kempf & Loria, 2004).
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Figure 4. Protocol for extraction of conformational sub-states and populations
The input to the method is a set of structures or conformations (from X-ray, NMR or MD 

simulations), which after preprocessing are used to obtain second-order conformational 

vectors. For more accurate characterization higher-order methods are used. The obtained 

vectors are used for projecting the conformations from initial set of conformations. The 

results are analyzed by clustering method to classify the conformations into sub-states.
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Figure 5. Protein energy landscape
(along individual conformational coordinates) can be classified as harmonic (H), quasi-

harmonic (Q) or anharmonic (A). Harmonic landscapes with a single sub-state (well) can be 

well described by second-order methods. Quasi-harmonic landscapes can be approximated 

by second-order methods depending on how well a harmonic function is able to fit into the 

multiple sub-states. Anharmonic landscapes with multiple substates are poorly approximated 

by second-order methods and require higher-order methods for accurate characterization.
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Figure 6. The benefit of using a higher-order statistical method allows identification of 
conformational sub-states with homogeneous properties
Conformational sub-states identification for protein ubiquitin was performed using two 

different methods. (A) The conformational sub-states identified by second-order methods 

such as quasi-harmonic analysis and principal component analysis do not achieve clear of 

separation and the population of the conformation show mixed properties. (B) Using a 

higher-order method such as quasi-anharmonic analysis (QAA) allows identification of sub-

states that are clearly separated and conformations have homogeneous properties. In both 

panels, each dot corresponds to a single conformation and the coloring is by scaled internal 

conformational energy.
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Figure 7. Conformational sub-states associated with the catalytic activity of enzyme E. coli 
DHFR
The enzyme DHFR (En) catalytic cycle consists of 5 intermediate states associated with 

binding and release of cofactor NAPDH, substrate DHF, spent substrate NADP+ and product 

THF. Each of these intermediate sample multiple enzyme conformations sub-states (A, B, C, 

D, or E). The available rates of conversion between the intermediates and the conformational 

exchange between sub-states are labeled. Note that for each of these intermediate states the 

lower energy well will have higher population and the higher energy wells will have much 

lower conformational populations. Adapted from (Boehr, McElheny, et al., 2006).
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Figure 8. Computational method QAA allows identification of multi-scale hierarchy associated 
with catalysis by enzyme CypA
(a) Multi-level (2 levels shown) hierarchy of conformational sub-states, each dot is a 

conformations. Each colored dot represents a single sampled conformation; ellipses indicate 

sub-states; TS′, TS″, and T indicate transition state area. (b) the free energy profile and 

conformations in (a) are colored according to reaction coordinate, (c) conformational change 

between sub-states corresponding to black arrow in (a), and (d) impact of identified motions 

on CypA’s mechanism. Adapted from (Ramanathan et al., 2011).
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