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Abstract

Importance—Novel therapies for choroideremia, an X-linked recessive chorioretinal 

degeneration, demand a better understanding of the primary site(s) of cellular degeneration. 

Optical coherence tomography angiography allows for choriocapillaris (CC) imaging. We 

compared the extent of structural alterations of the CC, retinal pigment epithelium, and 

photoreceptors with multimodal imaging.
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Observations—In a clinical case series conducted from September 15,2014, through February 

5,2015,14 eyes of 7 male patients with choroideremia (median age, 34 years [interquartile range, 

15-46 years]; age range, 13-48 years), 4 eyes of 2 women with choroideremia carrier state (both in 

mid-50s), and 6 eyes of 6 controls (median age, 42.5 years [interquartile range, 33-55 years]; age 

range, 24-55 years) underwent multimodal imaging with optical coherence tomography 

angiography and electroretinography. The mean (SD) macular CC density was 82.9% (13.4%) in 

patients with choroideremia, 93.0% (3.8%) in female carriers, and 98.2% (1.3%) in controls. The 

mean (SD) CC density in affected eyes was higher in regions with preserved (92.6% [5.8%]) vs 

absent (75.9% [12.6%]) ellipsoid zone (mean difference. 16.7%; 95% CI, 12.1% to 21.3%; P < .

001). Seventeen of 18 eyes of the patients and carriers had outer retinal tubulations forming 

pseudopod-like extensions from islands of preserved ellipsoid zone. Outer retinal tubulations were 

associated with absence of underlying retinal pigment epithelium and were longer (r = −0.62; 95% 

CI, −0.84 to −0.19; P < .001) and more numerous (r = −0.71; 95% CI, −0.91 to −0.27; P < .001) in 

more severely affected eyes.

Conclusions and Relevance—These findings suggest that regional changes in CC density 

correlate with photoreceptor structural alterations in choroideremia. Although closely coupled, the 

results suggest that retinal pigment epithelium loss is more extensive than photoreceptor loss.

Prior studies have variably implicated the retinal pigment epithelium (RPE), photoreceptors, 

and choriocapillaris (CC) as the primary site(s) of degeneration in choroideremia, an X-

linked recessive chorioretinal degeneration.1-5 A recent gene therapy study targeted the RPE 

and photoreceptors.6 However, little is known of the role of the CC in disease progression, 

partly because of the difficulty with visualizing this tissue layer in vivo.

Optical coherence tomography (OCT) angiography (OCTA) permits CC imaging that is not 

possible with conventional angiography. We hypothesize that if coupled with en face 

imaging of the photoreceptors and RPE, OCTA will provide insights into the underlying 

pathobiology of choroideremia.

Methods

This study was conducted from September 15, 2014, through February 5, 2015, at the 

Oregon Health & Science University. The protocol and informed consent were approved by 

the Oregon Health & Science University Institutional Review Board. Written informed 

consent was obtained for all participants. The study adhered to the tenets of the Declaration 

of Helsinki7 and complied with the Health Insurance Portability and Accountability Act.

Patients with choroideremia, choroideremia carriers, and age-matched controls underwent 

OCTA imaging (Avanti RTVue XR; Optovue, Inc),8-10 fundus autofluorescence imaging 

(200Tx; Optos, PLC), and full-field electroretinography (ERG) (custom ERG unit).11

En face outer retinal OCT images were constructed from the mean reflectance from a slab 

spanning 45 μm to 25 μm above the Bruch membrane. En face OCTA images were 

constructed at varying depths, with the CC angiogram representing flow data from a 10-μm-

thick slab below the Bruch membrane. To account for projection artifact from overlying 
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vessels, a mask of large vessels in the retinal angiogram was applied to eliminate those 

pixels from the CC angiogram (Figure 1).

Vessel density was computed as previously described.12 A CC density map was constructed 

(Figure 1) to better quantify local CC density as follows: a grid containing 8 × 8-pixel 

elements was created on the angiogram, and the proportion of flow pixels within each grid 

element defined the CC density within that element. Linear interpolation created the final 

CC density map.

Following manual image registration, regions of interest were manually delineated, 

including the region(s) of relatively preserved RPE on fundus autofluorescence images and 

relatively preserved ellipsoid zone (EZ) (including pseudopodial extensions) on outer retinal 

OCT images (Adobe Photoshop CS6; Adobe Systems Inc). The lengths of pseudopodial 

extensions of EZ were measured (Figure 1B), and the longest pseudopod for each eye was 

selected for analysis.

Comparisons between CC density were evaluated with the Wilcoxon signed rank test; 

comparisons between area of preserved RPE and EZ were performed with a paired t test. 

Correlations were computed with the Pearson correlation coefficient. The generalized 

estimating equation approach accounted for correlation between eyes of patients (SAS 

version 9.4 statistical software; SAS Institute, Inc).13

Results

In this clinical case series, 14 eyes of 7 male patients with choroideremia (median age, 34 

years [interquartile range, 15-46 years]; age range, 13-48 years), 4 eyes of 2 female carriers 

(both in mid-50s), and 6 eyes of 6 controls (median age, 42.5 years [interquartile range, 

33-55 years]; age range, 24-55 years) were imaged. Best-corrected visual acuity ranged from 

20/20 to 20/30 in affected males and 20/20 to 20/60 in female carriers (1 carrier had atrophic 

macular changes) (Table). The mean (SD) ERG scotopic 0.01 b-wave amplitude measured 

23.0% (34.4%) (n = 12 eyes) and 121.0% (70.7%) (n = 2 eyes) of the lower limit of normal 

for affected and carrier eyes, respectively (eTable in the Supplement).

The mean (SD) CC density across all regions was 82.9% (13.4%) in the 14 eyes of patients 

with choroideremia, 93.0% (3.8%) in the 4 eyes of the carrier females, and 98.2% (1.3%) in 

the 6 control eyes (P < .05 for all between-group comparisons) (Table). The CC density was 

higher in regions with relatively preserved EZ as compared with regions with absence of EZ 

in both affected males (mean [SD], 92.6% [5.8%] vs 75.9% [12.6%], respectively; mean 

difference, 16.7%; 95% CI, 12.1% to 21.3%; P < .001; n = 14 eyes) and female carriers 

(mean [SD], 95.3% [0.75%] vs 81.3% [13.4%], respectively; mean difference, 14.1%; 95% 

CI, −7.1 to 35.2%; P = .08; n = 4 eyes) (Figure 2). There was a positive correlation between 

normalized ERG scotopic 0.01 b-wave amplitude and CC density (r = 0.50; 95% CI, 0.23 to 

0.68; P < .001; n = 14 eyes).

Qualitative assessment of registered images demonstrated tight coupling of transition zones 

at the level of the EZ, RPE, and CC. Across all affected and carrier eyes, the mean (SD) 

areas of relatively preserved EZ (by OCT) and RPE (by autofluorescence) were 22.7 (9.2) 
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mm2 and 20.8 (10.3) mm2, respectively (P < .001; n = 15 eyes). In 14 eyes of 7 participants, 

the area of relatively preserved EZ was larger than the corresponding area of preserved RPE. 

In 2 eyes of 1 patient with choroideremia, EZ loss exceeded RPE loss by autofluorescence 

imaging but not by infrared reflectance imaging.

Seventeen of 18 eyes of the patients and carriers had outer retinal tubulations (ORTs). In the 

en face perspective, these appeared as pseudopodial extensions emanating from a central 

island of relatively preserved outer retina (eFigure in the Supplement). There were a mean 

(SD) of 13.1 (7.8) and 4.3 (5.3) ORTs within the imaged field in affected eyes and carrier 

eyes, respectively. There was a negative correlation between normalized ERG scotopic 0.01 

b-wave amplitude and both ORT number (r = −0.71; 95% CI, −0.91 to −0.27; P < .001) and 

ORT length (r = −0.62; 95% CI, −0.84 to −0.19; P < .001). There was no relative 

preservation of CC underlying the ORTs.

Discussion

Multimodal en face imaging with OCTA demonstrated remarkably right coupling of CC loss 

to overlying retinal and RPE degeneration. The most severely affected eyes had distinct 

transition zones between relatively preserved and diseased CC, whereas carrier eyes had 

patchy, poorly defined regions of CC loss.

En face outer retinal imaging in these eyes revealed a unique pattern of degeneration with a 

central island of relatively intact photoreceptors containing pseudopodial extensions of 

surviving tissue. The OCT sections demonstrate that these pseudopods represent scrolled 

outer retina and ORTs at the margins of degeneration. In the en face perspective, the ORT is 

characterized by an outer hyporeflective band that originates with photoreceptor cell nuclei, 

adjacent to a hyperreflective line that likely originates with the external limiting membrane 

and inwardly migrating inner segment mitochondria.14

Photoreceptor layer scrolling and ORT formation suggest that the underlying RPE and/or 

CC is not adequately supporting the retina and that photoreceptor death is a secondary 

process.14 The RPE loss exceeded the EZ loss in nearly all eyes, and ORTs consistently 

extended beyond the margins of preserved RPE. In more advanced cases, as measured by 

ERG response, ORTs were more numerous and longer. This finding suggests that with 

advancing degeneration, cells persist within relatively stabilized ORT structures, while the 

main island of retinal tissue becomes gradually smaller.

Of note, image grading was not subject to reproducibility studies, and it is unclear how these 

findings might vary if the same images were regraded by the same individual or others.

The split-spectrum amplitude-decorrelation angiography algorithm identifies vessels with 

flow greater than a minimum velocity. With a 70-kHz OCT system and 304 A-scans per B-

scan, it should be sensitive to normal capillary flow speeds (0.4-3 mm/s).15,16 Absence of 

flow signal can occur at regions of low OCT reflectance such as beneath large retinal 

vessels. We accounted for this by masking retinal vessels and discounting those pixels 

during quantification.
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Conclusions

En face multimodal imaging with OCTA reveals a range of CC alterations in choroideremia 

and suggests that RPE loss precedes photoreceptor loss. Optical coherence tomography 

angiography of the CC represents a new tool for the study of chorioretinal diseases and may 

provide additional insights into this important vascular plexus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

Question

What are the primary sites of tissue degeneration in choroideremia?

Findings

In this clinical case series of patients with choroideremia as well as choroideremia 

carriers, multimodal imaging including optical coherence tomography angiography 

demonstrated that retinal pigment epithelium loss exceeded photoreceptor loss in nearly 

all eyes. The mean choriocapillaris density was significantly lower in patients than in 

carriers and controls. In both patients and carriers, choriocapillaris density was 

significantly greater underlying regions with photoreceptor preservation as opposed to 

regions with photoreceptor loss.

Meaning

In vivo study of this rare disease with multimodal imaging has implications for novel 

treatments such as gene therapy.
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Figure 1. Multimodal Imaging in a Man in His Mid-30s With Choroideremia
A, A 6-mm optical coherence tomography (OCT) B-scan with color overlay of flow signal 

(purple indicates retinal flow; red, choroidal flow). There is an abrupt transition zone 

between intact and atrophic retinal pigment epithelium and outer retina. An outer retinal 

tabulation (arrowhead), captured at an oblique angle, is present lateral to the region of intact 

retinal pigment epithelium. A prominent inner retinal vessel (circle) projects a dynamic 

shadow on deeper layers. Larger choroidal vessels (rectangle) abut the Bruch membrane in 

areas of choriocapillaris (CC) atrophy. B, En face OCT image of the segmented outer retina 

capturing the ellipsoid zone reflectivity, demonstrating a central island of relatively 

preserved ellipsoid zone with pseudopodial extensions. An oblique B-scan section through a 

pseudopod (arrowhead) corresponds to the outer retinal tubulation in panel A. Pseudopod 

length was measured as indicated with the blue line. B-F, Green line indicates they-position 

of the B-scan in panel A. C, Choroidal angiogram demonstrating a central area of relatively 

intact CC with exposure of larger choroidal vessels in areas of CC atrophy (rectangle 

indicates choroidal vessels indicated by corresponding rectangle in panel A). D, 

Choriocapillaris angiogram obtained by segmentation of the decorrelation signal at the level 

of the CC, demonstrating that the greatest vessel density is associated with regions of intact 

outer retina. This image contains projection artifact from flow in large retinal vessels. D-F, 

Circle indicates the large retinal vessel from corresponding cirde in panel A. E, Binary mask 
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of retinal flow. Black pixels within this mask, consisting of 9.1 % of the total number of 

pixels, are excluded in CC density calculations. F, Same image as in panel D with retinal 

vessels shown in purple for clarity. Large choroidal vessels (arrowheads) remain apparent in 

this CC angiogram owing to extensive CC atrophy. G, Mapping of CC density, showing 

regions of low CC density. Pixels containing retinal flow projection artifact are treated as 

empty pixels for density map generation.
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Figure 2. Range of Choriocapillaris (CC and Retinal Pigment Epithelium Alterations in Patients 
and Carriers in Coregistered Images
A, En face optical coherence tomography (OCT) of ellipsoid zone (EZ) reflectivity 

demonstrates progressive EZ loss. B, Fundus autofluorescence imaging demonstrates 

relative preservation of retinal pigment epithelium autofluorescence corresponding to 

regions of intact EZ. Retinal pigment epithelium loss is more extensive than EZ loss in 

nearly all eyes. C, Choroidal angiogram demonstrates increasing degrees of CC atrophy with 

exposure of underlying choroidal vessels. D, Segmented CC angiogram demonstrates that 

CC density is subnormal in affected eyes throughout tine imaged field but is worse 

underlying regions of EZ and retinal pigment epithelium loss. Projection artifact from large 

inner retinal vessels is indicated in purple. E, Mapping of CC density highlights areas of CC 

loss.
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