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BACKGROUND AND PURPOSE
Agmatine, a putative neurotransmitter, plays a vital role in learning and memory. Although it is considered an endogenous ligand
of imidazoline receptors, agmatine exhibits high affinity for α-adrenoceptors, NOS and NMDA receptors. These substrates within
the locus coeruleus (LC) are critically involved in learning and memory processes.

EXPERIMENTAL APPROACH
The hippocampus and LC of male Wistar rat were stereotaxically cannulated for injection. Effects of agmatine, given i.p. or
intra-LC, on acquisition, consolidation and retrieval of inhibitory avoidance (IA) memory were measured. The NO donor
S-nitrosoglutathione, non-specific (L-NAME) and specific NOS inhibitors (L-NIL, 7-NI, L-NIO), the α2-adrenoceptor antagonist
(yohimbine) or the corresponding agonist (clonidine) were injected intra-LC before agmatine. Intra-hippocampal injections of
the NMDA antagonist, MK-801 (dizocilpine), were used to modify the memory enhancing effects of agmatine, SNG and
yohimbine. Expression of tyrosine hydroxylase (TH) and eNOS in the LC was assessed immunohistochemically.

KEY RESULTS
Agmatine (intra-LC or i.p.) facilitated memory retrieval in the IA test. S-nitrosoglutathione potentiated, while L-NAME and L-NIO
decreased, these effects of agmatine. L-NIL and 7-NI did not alter the effects of agmatine. Yohimbine potentiated, whereas clo-
nidine attenuated, effects of agmatine within the LC. The effects of agmatine, S-nitrosoglutathione and yohimbine were blocked
by intra-hippocampal MK-801. Agmatine increased the population of TH- and eNOS-immunoreactive elements in the LC.

CONCLUSIONS AND IMPLICATIONS
The facilitation of memory retrieval in the IA test by agmatine is probably mediated by interactions between eNOS, NO and
noradrenergic pathways in the LC.

Abbreviations
7NI, 7-nitroindazole; IA, inhibitory avoidance; LC, locus coeruleus; L-NIL, L-N6-(1-iminoethyl) lysine hydrochloride;
L-NIO, N5-(1-iminoethyl)-L-ornithine dihydrochloride; SNG, S-nitrosoglutathione; NMDA, N-methyl-D-aspartate; NO,
Nitric oxide; NOS, Nitric oxide synthase
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Introduction

Agmatine is a putative neurotransmitter that plays a crucial
role in learning and memory (Liu et al., 2008, 2009; Liu and
Bergin, 2009). Agmatine improves scopolamine- and
streptozotocin-induced impairment of learning and memory
(Utkan et al., 2012; Moosavi et al., 2014), and spatial training
has been found to increase agmatine levels (Leitch et al.,
2011; Rushaidhi et al., 2013). Agmatine immunoreactivity
has been detected in the locus coeruleus (LC) (Otake et al.,
1998), whichmay serve as a site of action for its facilitatory ef-
fect on inhibitory avoidance (IA) memory (Arteni et al., 2002;
Lu et al., 2010). However, the molecular mechanism underly-
ing the facilitatory effect of agmatine on IAmemory in the LC
remains unknown.

NO has been recognized as a critical neuronal messenger in
the CNS (Koriyama, 2013). NO is present abundantly in the LC
(Santamarta et al., 2014) and increases the firing rate of LC neu-
rons (Torrecilla et al., 2007). Data suggest that NO activates nor-
adrenergic neurons of LC via cGMP-dependent protein kinase
and a nonselective cationic channel (Pineda et al., 1996b;
Koriyama, 2013). Additionally, blockade of somatodendritic
α2-adrenoceptors has been shown to stimulate noradrenergic
neurons in the LC, leading to memory facilitation (Chen et al.,
1992). Moreover, noradrenergic projections from the LC to the
dentate gyrus (DG) (Hansen and Manahan-Vaughan, 2015)
may underlie potentiation after LC activation (Rajkumar et al.,
2013), and hippocampal activity is influenced by increased
release of noradrenaline from the terminals of activated LC cells
(Bari and Aston-Jones, 2013).

Interestingly, agmatine stimulates the firing rate of LC
neurons via NOS-dependent mechanisms (Ruiz-Durántez
et al., 2002). Further, several physiological effects of
agmatine, for example, anticonvulsant (Payandemehr et al.,
2013), anti-anxiety (Taksande et al., 2014), apoptosis and
memory loss (Zarifkar et al., 2010; Moosavi et al., 2014), mor-
phine withdrawal syndrome (Li et al., 2012) and
antinociception (Aglawe et al., 2014), are found to involve in-
teraction with the NO system. Agmatinemay produce unique
isoform-specific effects on NOS as this compound inhibited
the inducible NOS (iNOS, Ahn et al., 2011) and neuronal
NOS (nNOS, Demady et al., 2001) but activated endothelial

NOS (eNOS) (Mun et al., 2010). Whether these selective
effects on NOS isoformsmediate memory facilitation remains
unknown.

Using the IA model, together with pharmacological tools
(NOS inhibitors, NO donor, α2-adrenoceptor agonist clonidine
and antagonist yohimbine) and local, intra-LC injections, we
investigated whether the facilitatory effect of agmatine on
memory was mediated by interactions between the NOS and
α2-adrenoceptors, within the LC. Further, we also investigated
whether these effects were dependent on adrenergic afferents
from the LC to the hippocampus. Our results demonstrate that
agmatine enhanced retrieval of IA memory via a eNOS-α2-
adrenoceptor pathway in the LC. We also establish a require-
ment for a LC-hippocampus pathway in this phenomenon.
Together, these results establish a novel molecular mechanism
underlying memory enhancement by agmatine.

Methods

Animals
All animal care and experimental procedures were approved
by the Institutional Animal Ethical Committee and executed
strictly according to the guidelines of Committee for the
Purpose of Control and Supervision of Experiments on
Animals, Government of India. All studies involving animals
are reported in accordance with the ARRIVE guidelines for
reporting experiments involving animals (Kilkenny et al.,
2010; McGrath and Lilley, 2015). Adult male Wistar rats
(230–250 g; National Institute of Nutrition, Hyderabad,
India) were housed under controlled room temperature
(25 ± 2°C) and maintained at 12:12 h light/dark cycle, (light
on at 07:00 h). Food and water were available ad libitum.

Surgery
The rats were anaesthetized with ketamine (90 mg·kg�1;
Ketmin® 50, Themis Medicare Ltd., Mumbai, India)
and xylazine (10 mg·kg�1; Xylaxin®, Indian Immunologicals
Ltd., Hyderabad, Telangana, India) combination injected i.p.
and placed in a stereotaxic apparatus (David Kopf Instru-
ments, Tujunga, CA, USA). A 24 gauge stainless steel guide
cannula prepared in-house (Kokare et al., 2011) was
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implanted bilaterally 1 mm above the LC or hippocampus,
using stereotaxic co-ordinates (LC: �9.8 mm posterior,
±1.2 mm lateral and �7.1 mm ventral; and hippocampus:
�4.3 mm posterior, ±3.0 mm lateral and �2.2 mm ventral;
Paxinos and Watson, 1998). Following surgery, the rats were
allowed 7 days to recover and then used in the behavioural
tests, as described later. All test protocols were conducted be-
tween 09:00 and 13:00 h.

Inhibitory avoidance test
The step-through inhibitory avoidance apparatus consisted
of a box divided by a guillotine door into two equal
(20 × 20 × 30 cm) compartments, one being the light and
the other dark compartment. Stainless steel grids (2.5 mm
in diameter) were placed at 1 cm intervals on the floor of
the dark compartment to produce foot shock. Electric shock
(50 Hz, 1 mA and 3 s) was delivered to the grid floor of the
dark compartment by an insulated stimulator. All animals
were allowed to habituate to the experimental room for at
least 30 min before the experiments. The rat was gently
placed in the light compartment, the guillotine door was
opened after 20 s, and the animal was allowed to enter the
dark compartment. The latency to cross into the dark com-
partment by animal was recorded. Once the animal crossed
with all four paws to the next compartment, the guillotine
door was closed, and the rat was taken into its home cage.
Animals that took more than 100 s to cross to the dark com-
partment were eliminated from the experiments. The acquisi-
tion trial was initiated after 30 min. The animal was again
placed in the light compartment. The guillotine door was
opened after 20 s, and as soon as the animal crossed to the
dark compartment, the door was closed, and a foot shock
(50 Hz, 1 mA, and 3 s) was immediately delivered to the grid
floor of the dark compartment. After 20 s, the rat was taken
back into its home cage. The acquisition trial was repeated af-
ter 5 min. If the rat did not enter the dark compartment
within 120 s, a successful acquisition of passive avoidance re-
sponse was recorded. However, if the rat entered the dark
compartment before 120 s, the door was closed, and the
animal received a similar shock again. The animal was then
removed from the apparatus.

A retention test was performed after 24 h of the last acqui-
sition trial. The animal was placed in the light compartment,
and the door was opened after 20 s to measure the step-
through latency for entering into the dark compartment.
The maximum cut-off time for step-through latency was
300 s. No electric shock was applied during this session
(Harooni et al., 2008).

Immunohistofluorescence method
Rats (n = 5) treated with aCSF (composition in mM, 20 NaCl,
4.8 KCl, 1.2 KH2PO4, 1.2 MgSO4, 25 NaHCO3, 2.5 CaCl2 and
10 D-glucose; 0.5μL) or agmatine (20 ng per rat, intra-LC)
were anaesthetized after the IA test, transcardially perfused,
and their brains were removed, sectioned in a coronal plane
(30 μm) on a cryostat (Leica, Wetzlar, Germany) and exam-
ined by immunostaining (see later). The LC sections were
processed for immunolabelling with antibody against rabbit
TH, a key enzyme in the biosynthesis of noradrenaline
(Millipore, Billerica, MA, USA; dilution 1:1000) and mouse
eNOS (BD transduction lab, Lexington, KY, USA; dilution

1:500), according to the protocol already described (Shelkar
et al., 2015). Sections were incubated in AlexaFluor-568-
conjugated anti-rabbit IgG or AlexaFluor-568-conjugated
anti-mouse IgG (Invitrogen, Carlsbad, CA, USA; 1:500 each)
for 2 h. They were rinsed in PBS and observed under a Leica
DM-2500 fluorescence microscope using suitable filter
sets, and the images were captured, adjusted for brightness
and contrast, and merged using ADOBE PHOTOSHOP CS4
software (Adobe Systems, Inc., San Jose, CA, USA).

Morphometric analysis
The TH- or eNOS- immunoreactive (ir) elements (% area) and
TH-ir or eNOS-ir expressing cells from the digitized images of
TH- and eNOS-immunolabelled sections were analyzed using
IMAGE J (National Institute of Health (NIH), Bethesda, MO)
software. Ten readings were taken from both the sides of each
brain, and the data from five brains in each group were
collected and mean ± SEM was calculated. The details of the
method have been described by Shelkar et al., (2015).

Treatment groups
Dose-dependent effect of agmatine (intra-LC or i.p.) on
acquisition, consolidation and retrieval of IA memory. The
dose-dependent effects of agmatine on acquisition (before
training), consolidation (immediately after training) and
retrieval (24 h after training) of memory were investigated
in the IA test. Separate groups of rats were injected
intracranially (intra-LC) with aCSF or agmatine (5, 10 and
20 ng per rat; n = 8 per group) or systemically (i.p.) with
saline or agmatine (10, 20 and 40 mg·kg�1; n = 5 per group).
Injections were performed 15 min (for intra-LC) or 30 min
(for i.p.) before the acquisition trials, after the acquisition
trials or before retrieval testing and thereafter step-through
latency was measured.

Dose related intra-LC effects of the NO donor (SNG), non-specific
(L-NAME) and specific NOS inhibitors (L-NIL, 7-NI, L-NIO), α2-
adrenoceptor antagonist (yohimbine) or agonist (clonidine) on
retrieval of IA memory. Separate groups of rats (n = 8 per
group) were injected either with aCSF, SNG (1.4, 2.8 and 5.6
pg per rat, intra-LC), L-NAME (26.9, 53.8 and 107.6 pg per
rat, intra-LC), iNOS inhibitor, L-NIL (208, 416 and 832 pg
per rat, intra-LC), nNOS inhibitor, 7-NI (10, 20 and 40 ng
per rat, intra-LC), eNOS inhibitor, L-NIO (60, 123 and 246
pg per rat, intra-LC), yohimbine (0.5, 1 μg per rat, intra-LC)
or clonidine (0.3, 1 μg per rat, intra-LC) 15 min before
memory retrieval and step-through latency were measured.

Influence of the NO donor (SNG) and NOS inhibitors within the LC
on IA memory facilitation induced by agmatine. Rats (n = 8 per
group) were injected with aCSF or an ineffective dose of SNG
(2.8 pg per rat, intra-LC) 10 min before aCSF or agmatine
(5 ng per rat, intra-LC). Separately, rats were injected with
aCSF or L-NAME (107.6 pg per rat, intra-LC), L-NIL (832 pg
per rat, intra-LC), 7-NI (20 ng per rat, intra-LC) or L-NIO
(246 pg per rat, intra-LC) before 10 min of aCSF or agmatine
(10 ng per rat, intra-LC). Retrieval was tested after 15 min of
agmatine injection.

Influence of α2-adrenoceptor antagonist and agonist on agmatine
related memory facilitation within the LC. Separate groups of
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rats (n = 8 per group) were treated either with aCSF or a sub-
effective dose of yohimbine (0.5 μg per rat, intra-LC) 10 min
before aCSF or agmatine (5 ng per rat, intra-LC). In a
separate group, aCSF or clonidine (1 μg per rat, intra-LC)
was injected 10 min before aCSF, or effective dose of
agmatine (10 ng per rat, intra-LC) and retrieval was tested
15 min after agmatine injection.

Influence of eNOS inhibitor (L-NIO) on yohimbine induced
memory facilitation within the LC. Rats (n = 8 per group)
were treated with either aCSF or L-NIO (246 pg per rat,
intra-LC) 10 min before aCSF or yohimbine (1 μg per rat,
intra-LC) treatment and after 15 min retrieval was tested.

Influence of clonidine on the memory facilitating effect of NO
donor (SNG) within the LC. In a separate group (n = 8 per
group), aCSF or SNG (5.6 pg per rat, intra-LC) was
administered after 10 min of aCSF or clonidine (1 μg per rat,
intra-LC) and 15 min thereafter retrieval was tested.

Influence of intra-hippocampus NMDA antagonist MK-801 on
memory facilitation induced by intra-LC agmatine or the NO
donor. Different groups of rats (n = 8 per group) were
treated either with aCSF or NMDA antagonist, MK-801 (1 ng
per rat, intra-hippocampus), 10 min before the injection of
aCSF or agmatine (10 ng per rat, intra-LC) or SNG (5.6 pg
per rat, intra-LC) and 15 min later retrieval was tested.

Data analysis
The data and statistical analysis comply with the recom-
mendations on experimental design and analysis in phar-
macology (Curtis et al., 2015). Data were expressed as
mean ± SEM. The step-through latencies were analysed by
one-way ANOVA followed by Dunnett’s test or
Newman–Keuls’s multiple comparisons test. The morpho-
metric data drawn from the immunolabelled sections were
analysed by unpaired t-test. Post hoc test was used only
when a significant effect was found, i.e. P < 0.05.
P < 0.05 was considered to be statistically significant in
all the analyses.

Materials
Agmatine sulphate, S-nitrosoglutathione (SNG), 7-nitroindazole
(7-NI), L-N6-(1-iminoethyl) lysine hydrochloride (L-NIL), Nω-ni-
tro-L-arginine methyl ester hydrochloride (L-NAME),
yohimbine and clonidine were purchased from Sigma-Aldrich
Co., St. Louis, MO, USA. N5-(1-iminoethyl)-L-ornithine
dihydrochloride (L-NIO) and MK-801 were purchased from
Tocris Biosciences, Bristol, UK. For i.p. injections, agmatine
sulphate was dissolved in 0.9% saline. For intracranial
injections, agmatine sulphate, SNG, L-NIL, L-NIO, L-NAME,
yohimbine and clonidine were dissolved in aCSF, while 7-NI
and MK-801 were dissolved in DMSO. All dilutions were made
immediately before the experiments and directly infused in a
volume of 0.5 μL into each side of the LC (intra-LC) or the
hippocampus (intra-hippocampus), to avoid peripheral effects.

Results

Agmatine facilitates retrieval of IA memory
Injections of agmatine given i.p. or intra-LC, immediately be-
fore retrieval produced enhanced step-through latencies of
aversive IA memory in a dose-dependent manner, compared
to the saline treated group [F(3, 19) = 6.278, P < 0.05]. Post
hoc analysis revealed that pre-retrieval agmatine, at the
highest dose used i.p. (40 mg·kg�1), significantly increased
step-through latency, compared with the saline treated group
(Figure 1C). However, agmatine showed no effect on
acquisition and consolidation of aversive IA memory
compared with the saline/aCSF treated control animals
(Figure 1). One-way ANOVA revealed that, agmatine (10, 20
and 40 mg·kg�1, i.p.) had no significant effect on acquisition
and consolidation of IA memory (Figure 1A and B).

Similarly, intra-LC agmatine (5, 10 and 20 ng per rat,
intra-LC) administration 15 min before acquisition and
consolidation did not show any significant increase in step-
through latency (Figure 1D and E). However, pre-retrieval ad-
ministration of agmatine (5, 10 and 20 ng per rat, intra-LC) sig-
nificantly increased the step-through latency [F(3, 31) = 6.103,
P < 0.05]. Post hoc test revealed that agmatine, in a dose-
dependent manner, increased step-through latency, compared
with the aCSF treated group [10 and 20 ng, P < 0.05; Figure 1F].

The NO donor, SNG potentiates effect of
agmatine on IA memory within the LC
Pre-retrieval administrationof SNG (1.4, 2.8 and5.6 pgper rat,
intra-LC) significantly increased the step-through latencies in
adose-dependentmanner [F(3, 31) = 11.25,P<0.05; Table S1].
Notably, a dose of SNG (2.8 pg per LC) which was ineffective
when given alone, did potentiate [F(3, 31) = 10.68, P < 0.05]
the response to a low dose of agmatine (5ng per rat), which
given alone was also ineffective (Figure 2A).

Effect of nitrergic agents on agmatine-induced
memory facilitation within the LC in the IA test
We found that pre-retrieval administration of NO inhibitors
L-NAME (107.6 pg per rat, intra-LC), L-NIO (246 pg per rat,
intra-LC), L-NIL (832 pg per rat, intra-LC) and 7-NI (20 ng
per rat, intra-LC) significantly decreased the step-through la-
tencies in the IA test (Table S1). However, only L-NAME
(107.6 pg per rat, intra-LC) and L-NIO (246 pg per rat, intra-
LC) significantly attenuated (P < 0.05 each) the step-through
latencies produced by agmatine (10 ng per rat, intra-LC) in
the IA test [F(5, 47) = 40.19, P < 0.05; Figure 2C]. In contrast,
although L-NIL (832 pg per rat, intra-LC; P < 0.05) and 7-NI
(20 ng per rat, intra-LC; P< 0.05) given alone significantly de-
creased the step-through latency; Table S1), both of these in-
hibitors failed to attenuate the effect of agmatine in the IA
test (Figure 2B).

Blockade of α2-adrenoceptors by yohimbine potentiates, whereas
their activation by clonidine attenuates, the memory facilitating
effect of agmatine in the IA test. Pre-retrieval concomitant
administration of sub-effective doses of yohimbine (0.5 μg
per rat, intra-LC) and agmatine (5 ng per rat, intra-LC)
significantly increased the step-through latencies,
compared with agmatine alone (5 ng per rat, intra-LC)
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treated group [F(3, 31) = 16.80, P < 0.05; Figure 3A]. Post hoc
analysis revealed that yohimbine (0.5 μg per rat, intra-LC)
significantly potentiated the step-through latencies
produced by agmatine (5 ng per rat, intra-LC; P < 0.05) that
were per se ineffective. By contrast, pre-retrieval
administration of clonidine (0.5 μg per rat, intra-LC)
significantly attenuated effect of agmatine (10 ng per rat,
intra-LC) [F(3, 31) = 11.10, P < 0.05; Figure 3B]. Post hoc
analysis revealed that clonidine (0.5 μg per rat, intra-LC)
significantly attenuated step-through latency when given
alone, as well as decreasing the memory facilitation effects
of agmatine (P < 0.05).

eNOS inhibition significantly attenuated memory facilitating
effect of the α2- adrenoceptor antagonist yohimbine within the
LC. Prior administration of the eNOS inhibitor, L-NIO
(246 pg per rat, intra-LC) significantly decreased the effect

of yohimbine (1 μg per rat, intra-LC) on step-through
latencies in the IA test [F(3, 31) = 55.90, P < 0.05; Figure 4
A]. Post hoc test reveals that L-NIO (246 pg per rat, intra-LC)
per se significantly (P < 0.05) attenuated, while yohimbine
(1 μg per rat, intra-LC) per se increased (P < 0.05) the step-
through latencies in the IA test.

The α2-adrenoceptor agonist clonidine failed to attenuate memory
facilitating effect of the NO donor SNG within the LC. Given
alone, clonidine (0.5 μg per rat, intra-LC) significantly
decreased (P < 0.05), while SNG (5.6 pg per rat, intra-LC)
increased (P < 0.05) step-through latencies in the IA test [F
(3, 31) = 73.20, P < 0.05; Figure 4B]. However, pretreatment
with clonidine (0.5 μg per rat, intra-LC) prior to SNG (5.6 pg
per rat, intra-LC), did not affect the increased step-through
latencies produced by SNG.

Figure 1
Dose-dependent effect of agmatine [i.p. or intra-locus coeruleus (intra-LC)] on acquisition (A and D), consolidation (B and E) or retrieval (C and F)
of IA memory. Saline or agmatine (10, 20, 40 mg·kg�1, i.p.; n = 5 per group) was administered either 30 min before training (acquisition, A), im-
mediately after training (consolidation, B) or 24 h after training (retrieval, C), and step-through latencies observed in the inhibitory avoidance (IA)
test. Separately, aCSF (0.5 μL per LC) or agmatine (5, 10 20 ng per rat, intra-LC; n = 8 per group) was administered 15 min before training (D),
immediately after training (E) or before test (F), and step-through latency observed in the IA test. Each bar represents mean ± SEM of step-through
latency. *P < 0.05; significantly different from respective control; one-way ANOVA followed by Newman–Keuls’s test.
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NMDA receptor blockade in the hippocampus attenuated
memory facilitating effect of agmatine and SNG in the IA
test. Pre-retrieval administration of the NMDA receptor
blocker MK-801 alone (1 ng per rat, intra hippocampus)
significantly decreased step-through latencies in the IA test
(Figure 5). Furthermore, this intra hippocampus
administration of MK-801 also decreased the memory
facilitating effect of agmatine (10 ng per rat, intra-LC) or
SNG (5.6 pg per LC) in the IA test [F(5, 47) = 33.25, P < 0.05].

Agmatine increased the expression of TH and eNOS containing
elements in the LC. The changes in the immunoreactive
profile for TH (arrows; Figure 6A–C) and eNOS (arrowheads;
Figure 6D–F) in the LC following aCSF (A and D,
respectively for TH and eNOS) or agmatine (B and E,
respectively for TH and eNOS) treatment have been
summarized in the Figure 6. The data from the
morphometric analysis are summarized in Figure 6C, C′, F
and F′. Unpaired t-test revealed that agmatine treatment
increased the population of TH- (P < 0.05) as well as eNOS-
ir (P < 0.05) elements and cells in the LC, compared with
that in the respective aCSF-treated rats.

Figure 2
Effect of nitrergic agents on agmatine-induced memory facilitation
within the locus coeruleus (LC) in the inhibitory avoidance (IA) test.
All the drugs were administered before a retrieval test. (A) Concom-
itant effect of sub-effective doses of S-nitrosoglutathione (SNG)
and agmatine on step-through latency in the IA test. Rats were either
treated with agmatine (5 ng per rat, intra-LC, n = 8) or SNG (2.8 pg
per rat, intra-LC, n = 8) alone or in combination before the IA test. (B)
Effect of L-NIL or 7-NI, and (C) L-NAME or L-NIO on agmatine in-
duced memory facilitation in the IA test. Animals were either treated
with aCSF (0.5 μL per rat, intra-LC), L-NAME (107.6 pg per rat, intra-
LC, n = 8), L-NIO (246 pg per rat, intra-LC, n = 8), L-NIL (832 pg per
rat, intra-LC, n = 8) or 7-NI (20 ng per rat, intra-LC, n = 8) 15 min be-
fore aCSF or agmatine (10 ng per rat, intra-LC) and observed in the
IA test. Each bar represents mean ± SEM of step-through latency
(n = 8). *P < 0.05; significantly different from respective aCSF treat-
ment; #P < 0.05; significantly different from respective agmatine
treatment; one-way ANOVA followed by Newman–Keuls’s test.

Figure 3
Effect of the α2-adrenoceptor antagonist, yohimbine (A) or agonist,
clonidine (B) on the memory facilitating effect of agmatine in the in-
hibitory avoidance (IA) test. (A) Yohimbine (0.5 μg per rat, intra-LC)
significantly potentiated the effect of agmatine (5 ng per rat, intra-
LC) on step-through latencies (P < 0.05). (B) On the contrary, pre-
test administration of clonidine (0.5 μg per rat, intra-LC) significantly
attenuated the effect of agmatine (10 ng per rat, intra-LC) [F(3,
31) = 11.10, P < 0.05]. Each bar represents the means ± SEM of
step-through latency. *P < 0.05; significantly different from aCSF;
#P < 0.05; significantly different from agmatine; one-way ANOVA
followed by Newman–Keuls’s test.
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Discussion
The present study revealed that agmatine injected i.p. or
intra-LC facilitated retrieval of IA memory and that this effect
of agmatine was mediated by interactions between α2-
adrenoceptors and NO in the LC. Agmatine is known to facil-
itate memory in animal models (Arteni et al., 2002; Liu and
Bergin, 2009; Utkan et al., 2012; but see Rastegar et al.,
2011). In particular, agmatine facilitates various aspects of
IA memory. Specifically, Arteni et al., 2002 reported that i.p.
injection of agmatine facilitated consolidation of memory
perhaps through the activation of the LC but had no effect
on acquisition and retrieval of memory in IA learning. Addi-
tionally, Lu et al. (2010) found that pre-training and pre-test
administration of agmatine facilitated memory formation
and retrieval while post-training administration of agmatine
had no effect on memory consolidation. In contrast to these

previous studies, we found that neither pre-training nor post-
training but only pre-retrieval administration of agmatine,
either i.p. or intra-LC, increased step-through latencies in the
IA task. As the behavioural effects of agmatine have been shown
to be task and delay-dependent (Liu andCollie, 2009), wewould
attribute this discrepancy between our present results and those
of other groups to differences in route and time of administra-
tion. For instance, Lu et al., (2010) administered agmatine
60 min before the IA test, compared to 15 min in our study
and used different behavioural models. However, despite these
discrepancies, our data are, overall, also showing a facilitation
of IA memory by agmatine.

Role of NO in agmatine-mediated enhancement
of memory
The involvement of NO in the IA task is supported by the
improvement in learning of this task by the NO precursor,
L-arginine (Telegdy and Kokavszky, 1997). Our studies further
support this involvement because theNOdonor SNG injected
into the LC significantly increased the step-through latency in
the IA task and the non-specific (L-NAME) as well as specific
eNOS (L-NIO), iNOS (L-NIL) and nNOS (7-NI) inhibitors ad-
ministered alone significantly impaired the retrieval of IA
memory. These effects of NO in the LC, on IAmemory are cor-
roborated by electrophysiological studies, as NO as well as the
NO donor, sodium nitroprusside, increased the firing rate of
LC neurons (Pineda et al., 1996a; Torrecilla et al., 2007).
Furthermore, the increased firing rate of LC neurons was
reduced by central administration of non-specific NOS inhib-
itors, such as L-NAME and L-NA (Torrecilla et al., 2007).

Figure 5
Effect of MK801 (1 ng per rat, intra-hippocampus) on the memory-
facilitating effect of agmatine (10 ng per rat, intra-LC) and SNG
(5.6 pg per rat, intra-LC). Rats were treated with either aCSF
(0.5 μL per LC) or MK801 (1 ng per rat, intra-hippocampus)
15 min before agmatine (10 ng per rat, intra-LC) or SNG (5.6 pg
per rat intra-LC), and thereafter 15 min step-through latencies were
observed in the IA test. Each bar represents mean step-through la-
tencies ±SEM. *P < 0.05; significantly different from aCSF,
#P < 0.05 vs agmatine, $P < 0.05; significantly different from SNG;
one-way ANOVA followed by Newman–Keuls’s test.

Figure 4
(A) Influence of L-NIO on thememory facilitating effect of yohimbine
in IA test. All the drugs were administered before retrieval test. Ani-
mals were injected with aCSF or L-NIO (246 pg per rat, intra-LC)
15 min prior to aCSF or yohimbine (1 μg per rat, intra-LC) and,
15 min thereafter, the step-through latencies were tested in the IA
task. (B) Influence of clonidine on SNG (5.6 pg per rat, intra-LC) in-
duced memory facilitation. Rats were treated with aCSF or clonidine
(0.5 μg per rat, intra-LC), 15 min prior to aCSF or SNG (5.6 pg per
rat, intra-LC) and a retention test was performed. Each bar repre-
sents mean ± SEM of step-through latency. *P < 0.05; significantly
different from aCSF; #P < 0.05 vs yohimbine; one-way ANOVA
followed by Newman–Keuls’s test.
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In terms of the actions of agmatine, Morrissey and Klahr
(1997) have demonstrated endothelial NO synthesis in re-
sponse to agmatine exposure. Additionally, neuronal firing
initiated by agmatine was blocked by NOS inhibitors in the
LC but showed no interaction with α2-adrenoceptors or
imidazoline receptors (Ruiz-Durántez et al., 2002). We
found that the NO donor SNG injected into the LC signifi-
cantly potentiated the effects of agmatine on step-through
latency in the IA test. Interestingly, the memory facilitating
effect of agmatine was attenuated by a non-specific NOS in-
hibitor, L-NAME and a selective eNOS inhibitor, L-NIO but
not by a specific iNOS inhibitor, L-NIL or nNOS inhibitor,
7-NI. In parallel, agmatine also increased the eNOS
expression in LC. Thus, our present results support the ear-
lier electrophysiological data (Ruiz-Durántez et al., 2002),
suggesting that agmatine elicits its memory facilitation
effect in the LC through a mechanism dependent on
eNOS-derived NO.

It is known that agmatine inhibits iNOS and nNOS
(Demady et al., 2001) but not eNOS. It was initially suggested
that agmatine might function as an alternative substrate for
eNOS (Ishikawa et al., 1995) and thus increase NO output in
cultures of endothelial cells (Morrissey and Klahr, 1997).
Many protective effects of agmatine are found to be mediated
by eNOS in brain (Yang et al., 2007; Jung et al., 2010; Mun
et al., 2010). Although the exact mechanism is still not
known it is most likely that agmatine activates protein kinase
β/Akt to phosphorylate eNOS and elevate cGMP level, as

shown by Santhanam et al. (2007). Soluble guanylate cyclase
is present in LC neurons (Xu et al., 1998) and cGMP has been
detected in the LC (Vulliemoz et al., 1999; Pablos et al., 2015).
However, further studies are required to fully evaluate the
effect of agmatine on cGMP levels in this tissue.

Noradrenergic signalling underlies agmatine
enhancement of IA memory
There is good evidence for the involvement of the
noradrenergic system in the retrieval of memory (Sara and
Devauges, 1989). Presynaptic α2-adrenoceptors function as
autoreceptors in the LC (Elsworth et al., 2007) and the α2-
adrenoceptor agonist clonidine, per se, impaired the memory
retention (Jafari-Sabet et al., 2013). We also found that cloni-
dine administered within the LC inhibited memory retrieval.
Further, the α2-adrenoceptor antagonist yohimbine, per se,
enhanced IA retrieval as well as potentiating the memory fa-
cilitating effect of agmatine. These results are in agreement
with previous studies, which reported that yohimbine
increased extrasynaptic noradrenaline and enhanced mem-
ory (Sara and Devauges, 1989). Moreover, local application
of yohimbine to the LC dose-dependently enhancedmemory
(Chen et al., 1992). From all these reports, the memory facili-
tating effect of yohimbine can be attributed to inhibition of
presynaptic α2-autoreceptors, which regulate noradrenaline
release. Indeed, we found significant increase in TH
immunoreactivity in the LC after treatment with agmatine.
However, it will be interesting to see the effect of agmatine

Figure 6
Coronal sections showing TH immunoreactive (TH-ir; A–C, arrow) and endothelial NO immunoreactive (eNOS-ir; D–F, arrow head) elements in
the locus coeruleus (LC) of aCSF (A and D, respectively for TH and eNOS) or agmatine-treated (B and E, respectively for TH and eNOS) animals.
Scale bar = 50 μm. Agmatine was found to significantly increase the TH-ir (B) as well as eNOS-ir (E) elements and cells in the LC, compared with the
respective aCSF treated rats (A and D). Bar graph represents the semiquantitative morphometric analysis of TH-ir elements and TH-ir expressing
cells (C and C′, respectively) and eNOS-ir elements eNOS-ir expressing cells (F and F′, respectively) in the LC of aCSF or agmatine treated rats.
*P < 0.05; significantly different from aCSF treated rats; unpaired t-test.
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directly on NE release in LC. Although our study demon-
strated the involvement of α2-adrenoceptors, in memory
facilitation by agmatine, an earlier study suggested that
agmatine did not have direct agonist or antagonist properties
at α2-adrenoceptors of LC neurons (Pineda et al., 1996a). This
is why we have postulated that agmatine produced its effects
indirectly, via a mechanism involving NO.

There is a tonic regulation of noradrenergic neurons by
NO (Torrecilla et al., 2007) and the anticonvulsant effect of
agmatine is said to possibly involve both α2-adrenoceptor
and NO-related mechanisms (Demehri et al., 2003; Halaris
and Plietz, 2007). Several α2-adrenoceptor agonists including
dexmedetomidine are known to stimulate endothelial NO
production (Joshi et al., 2007; Xia et al., 2015). Exogenous
arginine or agmatine activated eNOS to produce NO via
α2-adrenoceptors, suggesting interactions between
α2-adrenoceptors and NO (Joshi et al., 2007). In this context,
we found that the α2-adrenoceptor antagonist yohimbine
attenuated the memory-impairing effect of the selective
eNOS inhibitor, L-NIO, within the LC. On the contrary, the
NO donor SNG attenuated the memory impairment effect
of the α2-adrenoceptor agonist clonidine. This suggests that
the NO-induced increase in noradrenaline levels is probably
not regulated by α2-adrenoceptors. Indeed, data suggest that
NO activates noradrenergic neurons of the LC via a
cGMP-dependent protein kinase and a non-selective cation
channel. It is also proposed that these effects occur at the
postsynaptic level and that there may be a tonic regulation
of LC neuronal firing by the cGMP pathway (Pineda et al.,
1996b). Further, injection of a cGMP derivative or a NO donor
into the LC causes excitation of LC neurons (Aghajanian
et al., 1994). These studies suggest that regulation of cGMP
by NOwithin the LCmight be an important action for several
physiological outcomes. Thus, our study demonstrated that
agmatine facilitated IA memory retrieval via a eNOS-NO-
noradrenaline pathway within the LC, rather than directly
acting on α2-adrenoceptors.

The hippocampus is extensively innervated by
noradrenergic fibres projecting exclusively from the LC,
involved in the hippocampal learning and memory processes
(Mello-Carpes and Izquierdo, 2013). It is also proposed that
enhancement of the survival and plasticity of newborn
neurons by pharmacological activation of the
LC-noradrenergic system may provide a way to facilitate
certain types of hippocampal learning and memory (Rizk
et al., 2006). In this context, we found that the NMDA
receptor antagonist MK-801 injected within the
hippocampus blocked the memory facilitation produced
by agmatine, NO donor SNG or yohimbine administered
within the LC, suggesting a role for the noradrenergic
afferents from the LC to the hippocampus in the memory
retrieval effect.

However, the IA task represents short-term memory and
therefore it should not be extrapolated to other
behavioural models of learning and memory. Although
many more studies are needed to elucidate this
issue, our present data demonstrates an important role
for NO and the α2-adrenoceptors in the LC in the
memory-related effects of agmatine and proposes that
NO and α2-adrenoceptors within the LC are involved in
the memory-related effects of agmatine.

We can conclude that the facilitation of memory retrieval
in the IA task by agmatine is mediated by a pathway
involving eNOS, NO and noradrenaline, within the LC. The
result of the present study proposes NO and α2-adrenoceptors
as important substrates for therapeutic intervention in
memory related disorders.
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Table S1Dose-dependent effect of nitrergic and α2-adrenoceptor
drugs on inhibitory avoidance (IA)memory retrieval.
Figure S1 The diagram shows the representative site of injec-
tion in the locus coeruleus (LC; �9.8 mm to bregma). In the
image, filled circles indicate the injection placement sites
within the LC. The squares represent injection sites outside
the targeted area. 4 V, fourth ventricle.
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