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Abstract

Working memory (WM) enables the storage and manipulation of limited amounts of information 

over short periods. Prominent models posit that increasing the number of remembered items 

decreases the spiking activity dedicated to each item via mutual inhibition, which irreparably 

degrades the fidelity of each item’s representation. We tested these models by determining if 

degraded memory representations could be recovered following a post-cue indicating which of 

several items in spatial WM would be recalled. Using an fMRI-based image reconstruction 

technique, we identified impaired behavioral performance and degraded mnemonic representations 

with elevated memory load. However, in several cortical regions, degraded mnemonic 

representations recovered substantially following a post-cue, and this recovery tracked behavioral 

performance. These results challenge pure spike-based models of WM and suggest that 

remembered items are additionally encoded within latent or hidden neural codes that can help 

reinvigorate active WM representations.

Introduction

In many visual tasks, an observer’s ability to accurately represent information declines 

rapidly as the complexity of the scene increases (Franconeri et al., 2013; Tsubomi et al., 

2013). These processing limits are highlighted in working memory (WM) tasks, which 

require the maintenance and manipulation of sensory information no longer physically 

present in the environment (Baddeley and Hitch, 1974; Bays, 2015; Curtis and D’Esposito, 

2003; D’Esposito and Postle, 2014; Gazzaley and Nobre, 2012; Luck and Vogel, 2013; Ma 

et al., 2014; Sreenivasan et al., 2014; Stokes, 2015). In these tasks, increasing the amount of 

information stored in WM leads to impaired performance when recalling visual features 
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(Bays and Husain, 2008; Bays, 2015, 2014; Keshvari et al., 2013; Ma et al., 2014; Zhang 

and Luck, 2008).

Influential models propose that WM representations are actively maintained by sustained 

spiking activity in neural populations (Funahashi et al., 1989; Fuster and Alexander, 1971). 

Recently, WM representations have also been found in fMRI activation patterns (Harrison 

and Tong, 2009; Serences et al., 2009) and the pattern of EEG alpha-band potentials (Foster 

et al., 2015). Impaired performance with increasing WM load is accompanied by lower spike 

rates related to relevant memoranda in macaques, or by a diminished ability to differentiate 

fMRI activation patterns tied to different remembered items in humans (Buschman et al., 

2011; Emrich et al., 2013; Landman et al., 2003a; Matsushima and Tanaka, 2014; Sprague et 

al., 2014). Importantly, the fidelity of fMRI activation patterns is tied to behavioral 

performance on WM tasks (Albers et al., 2013; Emrich et al., 2013; Ester et al., 2013; 

Reinhart et al., 2012; Sprague et al., 2014),.

According to one model, impairments in WM performance with load are due to mutually 

suppressive interactions between neural representations of individual items that result in 

degraded spiking representations for each item (Bays, 2015, 2014; Carandini and Heeger, 

2012; Franconeri et al., 2013, see also Edin et al., 2009). This, in turn, results in an 

irreversible loss of information encoded by active spiking representations because 

representations are more susceptible to noise as spike rates decrease (Bays, 2014). This loss 

of information is permanent, as information cannot recover with any type of additional 

processing (Cover and Thomas, 1991; Saproo and Serences, 2014, 2010; Shannon, 1948; 

Sprague et al., 2015). For example, applying multiplicative gain to a noisy representation 

(after encoding) would amplify noise to the same extent it amplifies signal, resulting in a 

higher overall firing rate, but no increase in the information content of the population 

response.

However, the notion that increasing the number of items in WM leads to an irreversible 

degradation of neural representations is complicated by findings that cueing participants 

during the delay period with a retrospective cue (retro-cue) improves performance (Griffin 

and Nobre, 2003; Landman et al., 2003b; LaRocque et al., 2015; Makovski and Jiang, 2007; 

Matsukura et al., 2007). While these results hint that active neural WM representations may 

improve following retro-cues, another possibility is that a retrocue prevents representations 

from decaying or improves access to static representations (e.g., via attention-related 

mechanisms) while leaving WM representations unchanged. Without a quantitative assay of 

the fidelity of neural representations of remembered items, it is difficult to discriminate 

between these possibilities.

In the current study, we hypothesized that behavioral retro-cue benefits are observed because 

active WM representations – those that are reflected in elevated firing rates and/or sustained 

BOLD fMRI response patterns – can be augmented using information encoded via latent or 

activity-silent codes (Stokes, 2015; Stokes et al., 2013; Wolff et al., 2015). Such latent codes 

could include subthreshold membrane potential depolarization, changes in synaptic strength 

and/or efficacy (Briggs et al., 2013; Erickson et al., 2010), item-related fluctuations of pre-

synaptic calcium concentration (Mongillo et al., 2008), changes in correlated variability 
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between pairs of neurons (Jeanne et al., 2013), hippocampal-dependent long term memory 

(Squire and Wixted, 2011), or some combination thereof.

In this framework, retro-cues improve memory performance by facilitating recovery of 

representations from sources of information that are each invisible to common neural 

measures such as spike rate or BOLD activation level. For example, a set of neurons 

carrying a latent WM representation in the form of elevated subthreshold membrane 

potential without a change in spike rate could be activated by input from other neurons, 

allowing the latent representation to improve the fidelity of an active (spiking) 

representation. While previous work has identified initial evidence for such latent 

representations of category-level information (LaRocque et al., 2013; Lepsien and Nobre, 

2007; Lewis-Peacock et al., 2012), it remains unknown how the relative fidelity of each 

item’s representation is updated after presentation of a retro-cue, and how those 

representations are related to behavioral performance on a task requiring high-precision 

maintenance of feature values.

This hypothesis makes several predictions. First, improvements in memory performance 

following a retro-cue should be accompanied by recovery of an active neural WM 

representation. Second, the degree to which latent information facilitates the restoration of 

active neural representations may co-vary with behavioral performance. However, an 

alternative hypothesis is that retro-cues enhance access to otherwise stable representations, 

which predicts no change in the fidelity of neural representations. Critically, discriminating 

between these requires directly evaluating the fidelity of active WM representations in a 

stimulus-referred feature space (Sprague et al., 2015).

We tested these predictions using a task where participants precisely maintained the spatial 

positions of 1 or 2 items in visual WM. On some trials, we presented a retro-cue midway 

through the delay validly cueing which item was relevant for behavior; on the remainder of 

trials we presented a non-informative neutral retro-cue. Consistent with previous results, 

behavioral performance and neural WM representations each degraded when more items 

were remembered (Emrich et al., 2013; Sprague et al., 2014). However, the retro-cue 

substantially improved behavioral performance and neural WM representations. Together, 

these results demonstrate that degraded WM representations can recover, requiring the 

existence of information within latent neural codes that can support improved WM 

performance.

Results

We tested the fidelity of WM representations using behavioral and neural measures while 

participants performed a retro-cued spatial recall task. Participants held 1 (Remember 1, R1) 

or 2 (Remember 2, R2) items from a 2-item display in spatial WM as indicated by the initial 

color of a central fixation point over a 16 s delay period. On some R2 trials, we changed the 

color of the fixation point to provide either an informative “valid” (R2-valid) or an 

uninformative “neutral” (R2-neutral) retro-cue at the end of the first half of the delay interval 

that indicated which item(s) might be cued for recall at the end of the entire delay interval 

(Fig. 1A). We used 100% valid retro-cues to ensure that participants utilized the cue to 
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optimize behavior. At the end of the delay period, participants recalled the exact horizontal 

or vertical position of one of the items by adjusting vertical or horizontal response bar, 

respectively (Fig. 1A). On R1 and R2-valid trials, only the probed item required active 

maintenance in WM during the second delay period, and on R2-neutral trials, we randomly 

selected which of the two remembered items would be queried for recall. Note that R2-

neutral and R2-valid trials were identical during the first delay period, and differed only 

during the second delay period following the cue (Fig. 1A). The R2-valid condition allowed 

us to assess how a retro-cue influences behavioral performance and neural representational 

fidelity compared to when both items were remembered in the R2-neutral condition. We 

pseudo-randomly chose target positions from an array of 6 invisible discs that were spaced 

equally along ring 3.5° from fixation and which were rotated around fixation on every trial 

(Fig. 1B). We randomly positioned targets within each disc to discourage discrete or verbal 

encoding strategies (e.g. “8 o’clock”; Sprague et al., 2014). Each participant (n = 6) 

completed three 2-hr fMRI scan sessions (324 to 378 total trials per participant). One 

participant previously completed several spatial WM scan sessions as part of a previous 

study (Sprague et al., 2014), though all results generalized when excluding this participant 

from analyses (data not shown). Our behavioral measure was the distance between the 

response bar and the relevant target at the conclusion of a 3 s response period.

Behavioral performance improved with a retro-cue

Participants performed more poorly, as indicated by higher average recall error, on R2-

neutral trials as compared to R1 trials (Fig. 1C; R1 vs. R2-neutral: p < 0.001, resampling 

test, see Experimental Procedures). This drop in recall accuracy is consistent with degraded 

neural representations that accompany increasing WM loads, and replicates previous 

findings (Sprague et al., 2014; see also: Bays and Husain, 2008; Bays, 2014; Emrich et al., 

2013; Zhang and Luck, 2008). When one item was cued midway through the delay interval 

(R2-valid trials), behavioral performance improved as compared to R2-neutral trials (R2-

neutral vs. R2-valid: p = 0.008). Performance was slightly worse on R2-valid trials 

compared to R1 trials (R1 vs. R2-valid: p = 0.01), suggesting substantial but imperfect 

recovery of WM representations with valid cues, again consistent with previous findings 

(Griffin and Nobre, 2003; Landman et al., 2003b; Makovski and Jiang, 2007; Matsukura et 

al., 2007).

Reconstructing WM representations

To isolate and assess the information content of WM representations from alternative 

mechanisms, such as changes in response conflict or cue-related improvements in selection 

of stable representations, we implemented an inverted encoding model (IEM) of visual space 

to reconstruct images of the contents of spatial WM based on BOLD fMRI activation 

patterns (Brouwer and Heeger, 2009; Ester et al., 2015, 2013; Sprague and Serences, 2013; 

Sprague et al., 2015, 2014). We computed reconstructions in each of 10 independently-

identified regions of interest (ROIs) we have studied previously: retinotopic occipital visual 

areas (V1-hV4; V3A), retinotopic areas areas along the intraparietal sulcus (IPS0-IPS3), and 

the superior precentral sulcus (sPCS; thought to be a human homolog to macaque frontal eye 

fields; the sPCS ROI was identified using an independent spatial WM localizer task; see 

Experimental Procedures and Srimal and Curtis, 2008). We also assayed representations 
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encoded by the joint activation pattern across all these regions after concatenating voxels 

from all areas before computing reconstructions (“All ROIs combined”).

In brief, this analysis involves first estimating the spatial sensitivity profile for each voxel as 

a weighted sum of a discrete set of modeled information channels using activation measured 

during a set of ‘mapping’ scans reserved for this purpose (Fig. 2A; Fig. S3A). Then, once 

this encoding model is estimated across all voxels within a region, the model can be inverted 

and used to transform activation patterns measured during the WM task into images of the 

contents of WM, given the previously-estimated encoding model and activation pattern (Fig. 

2B; Ester et al., 2015, 2013; Sprague and Serences, 2013; Sprague et al., 2015, 2014). 

Finally, despite each trial containing unique positions in WM, they can all be averaged by 

rotating and aligning all reconstructed images. We call the resulting light spots in these 

reconstructions “target representations” (Fig. S3D). Importantly, because the computed IEM 

is constant across trials and time points within a ROI, any observed differences in WM 

reconstructions must reflect changes in activation patterns as represented in the modeled 

information space.

Reconstructions track the dynamic contents of spatial WM

First, we evaluated whether WM reconstructions tracked remembered position(s). We 

plotted WM reconstructions computed using activation patterns from each time point during 

the trial (0–20.25 s) averaged over all trials with similar WM target arrangements within 

each WM condition (colored discs in Fig. 1B). We combined trials with similar relative 

target arrangements, and rotated reconstructions to align all similar trials (see Supplemental 

Experimental Procedures, Fig. S3).

On R1 trials, reconstructions computed using an early time point (4.50 s) contained 

representations of both targets (Fig. 3A). However, shortly thereafter, only the relevant target 

(yellow dashed circle) remained visible (6.75–18.00 s). While the target representation 

became less pronounced over the duration of the trial, it remained visible throughout the late 

delay interval. The same pattern held for R2- neutral trials (Fig. 3B): representations of 

items maintained in WM persisted in reconstructions through the late delay period, though 

target representations were weaker than those in R1 trials. On R2-valid trials (Fig. 3C), we 

observed a transition from two simultaneous target representations (early delay) to one target 

representation (late delay) following the cue, confirming that these WM reconstructions 

tracked the dynamically changing contents of WM over extended delay intervals. 

Furthermore, the representation of the cued item during the late delay period appeared 

enhanced compared to each of the 2 target representations earlier in the delay period (after 

the encoding transient subsides at ~9.00 s), consistent with enhanced WM representations 

following a retro-cue.

For several subsequent analyses of WM reconstructions, we focused on average 

reconstructions during the first delay period (Delay 1; 6.75–9.00 s) and the second delay 

period (Delay 2; 15.75–18.00 s). When we binned trials by the relative position of WM 

targets (Fig. 1B), target representations always appeared nearby and only in the position(s) 

corresponding to the remembered item(s) during that condition and delay period (Fig. 4). 

Additionally, the quality of target representations always exhibited the same pattern across 
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delay periods regardless of target arrangement – during the first delay period, representations 

degraded when 2 items were maintained (Fig. 4A compared to Fig. 4C,E), and during the 

second delay period, a valid cue restored the cued representation to a high-fidelity state (Fig. 

4E–F).

Fidelity of WM target representations

To quantify the robustness of target representations in each ROI, we computed 

reconstructions over an annulus around fixation, resulting in a 1-d reconstruction as a 

function of polar angle (Fig. 2C; Supplemental Experimental Procedures).

First, we plotted these rotated and aligned 1-d reconstructions as a function of time (Fig. 

5A). On R1 and R2-neutral trials, an initially high-fidelity representation during WM 

encoding subsided, but remained present in many ROIs throughout Delay 2 (e.g., V3A; 

IPS0). On R2-valid trials, the cued item was robust even at late time points during Delay 2, 

often increasing in fidelity following the cue (R2-valid, compare early and late time points, 

e.g. V1).

To determine the strength of a WM representation in these 1-d polar angle reconstructions, 

we defined a representational fidelity metric as the vector mean of a set of unit vectors 

pointing in each polar angle direction, weighted by the reconstruction activation for the 

corresponding polar angle and projected on a unit vector pointing in the WM target direction 

(here, always 0° polar angle, because we rotate all 1-d reconstructions to a common center; 

Fig. 2C; Supplemental Experimental Procedures: Eq 5). If this metric is reliably greater than 

0 (statistically evaluated using a resampling procedure, see Experimental Procedures), then 

there is a consistently identifiable WM target representation in the corresponding 

reconstruction. If the reconstruction has a uniform activation profile, then this metric will be 

indistinguishable from 0. WM target representational fidelity gradually decreased over time 

on R1 and R2-netural trials, but substantially recovered following the valid cue on R2-valid 

cue trials (e.g., V1; Fig. 5B).

Next, we compared 1-d polar angle reconstructions and representational fidelity during each 

delay period (Fig. 6). Importantly, we found significant representational fidelity in all ROIs 

across both delay intervals on R1 and R2-valid cue conditions (p ≤ 0.001; one-tailed 

resampling test against 0, FDR corrected, see Experimental Procedures; all p-values for all 

reported comparisons available in Supplemental Tables; maximum p-value IPS3, R2-valid, 

Delay 2). On R2-neutral trials we found representations in all ROIs during Delay 1 (p < 

0.001), and all ROIs except V3A, IPS1, IPS2, and sPCS during Delay 2 (Fig. 6A–B; 

significant ROIs all p ≤ 0.034, maximum p-value IPS0; non-significant ROIs all p ≥ 0.109, 

minimum p-value V3A).

To ascertain the regions where WM representation fidelity changed between delay periods, 

we compared representational fidelity between each delay period (Fig. 6C). Representational 

fidelity significantly declined from Delay 1 to Delay 2 in V1-hV4, IPS0, IPS1 and All ROIs 

combined on R1 trials (p ≤ 0.028; FDR-corrected, maximum p-value IPS1) and in V1–V3A, 

IPS0-IPS2, sPCS, and All ROIs combined on R2-neutral trials (p < 0.001; two-tailed 

resampling test of differences in representational fidelity between Delay 1 & 2 against 0). In 
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contrast, representational fidelity did not decline between delay periods on R2-valid trials, 

and in fact fidelity significantly increased after the valid cue in several occipital and parietal 

ROIs (V1, IPS0, IPS1, and All ROIs combined; p ≤ 0.018, maximum p-value in IPS1).

In sum, these analyses identify reliable WM representations on R2-neutral trials, even when 

they are not easy to visualize in the reconstructed WM images (Fig. 4), and quantify a 

significant enhancement of representations on R2-valid trials following the cue (Fig. 6C). 

This result is not contingent on this particular quantification strategy (Fig. S4), nor the 

precise time points used (chosen to replicate Sprague et al., 2014); when we instead 

compared each pair of time points, we found evidence for representation restoration on R2-

valid trials in every ROI studied, except for sPCS (Fig. S5). Furthermore, there was no 

strong evidence for a difference in recovery across ROIs, though visual/posterior parietal and 

anterior parietal/frontal cortex differed in the extent to which R1 representations decayed 

(Fig. S6). We also pursued an exploratory analysis of prefrontal cortex WM representations, 

presented in Fig. S7.

Quantifying spatial properties of target representations

Next, we sought to quantify how target representations change across WM conditions. When 

multiple items are remembered, representations could be weaker because they are “dimmer” 

above noisy background signals, as indexed by a lower amplitude over baseline, or because 

they are less spatially precise, as indexed by a larger size (Sprague et al., 2015, 2014). First, 

we precisely aligned all reconstructions across trials such that the target position was at a 

known position (red dots, Fig. 7A,C; Fig. S3D). Then, we fit a surface, defined by its size 

(i.e., spatial precision of the representation), amplitude (i.e., magnitude of the representation 

over spatially-global baseline in the reconstructions), and baseline (i.e., spatially-global 

offset in the reconstruction unrelated to WM target position), to each reconstruction using a 

resampling procedure (see Experimental Procedures; Fig 2D; Figure S3E). Because fits to a 

reconstruction with representational fidelity indistinguishable from 0 (Figs 5–6) are 

impossible to interpret, we only consider and report comparisons of fit parameters between 

pairs of conditions in which each condition has non-zero representational fidelity.

Delay 1: Representation amplitude decreased with WM load

During the first delay, averaged reconstructions qualitatively appeared higher in amplitude 

during R1 trials than R2 trials (Fig. 7A). Replicating previous results (Sprague et al., 2014), 

target representation amplitude during the first delay was higher on R1 trials as compared to 

both R2-neutral and R2-valid trials in visual (V1–V3A and hV4, all p < 0.001; Fig. 7B) and 

posterior parietal (IPS0 and IPS1, p ≤ 0.016; and IPS2 for R1 vs. R2-neutral, p = 0.012; 

maximum p-value IPS1, R1 vs. R2-neutral) ROIs, as well as in reconstructions computed 

using all ROIs combined (p < 0.001; comparisons of fit parameters based on resampling test 

between condition pairs and FDR-corrected for multiple comparisons within fit parameter, 

see Statistical Procedures). No ROIs exhibited unequal representation amplitude between 

R2-neutral and R2-valid conditions during Delay 1 (all p ≥ 0.106, minimum p-value in hV4), 

as expected given trials were identical at this point. Fit baseline was significantly greater on 

both R2-neutral and - valid trials as compared to R1 trials in V3, V3A, hV4, and in 

reconstructions computed from all ROIs combined (Fig. 7B, p ≤ 0.018; maximum p-value 
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V3A, R1 vs R2-neutral). In V1, V2, and IPS0, a significantly greater baseline was seen 

when comparing R2-valid to R1 trials (p ≤ 0.01, maximum p-value IPS0). Finally, WM 

representation size was significantly smaller on R2-neutral and -valid trials as compared to 

R1 trials in hV4 (p < 0.001). While quantitatively significant, these size changes were 

inconsistent across ROIs and were rarely observed compared to effects on amplitude and 

baseline. As such, we emphasize the consistency of observed changes in WM representation 

signal over noise (amplitude over a spatially-global baseline), and suggest that future 

datasets will help identify the extent to which changes in WM representation size are robust.

These Delay 1 results closely replicate our previous report in which we characterized how 

WM representations change as WM load is manipulated from 1 to 2 items (Sprague et al., 

2014). In that report, we found extensive evidence for decreases in WM representation 

amplitude with increasing set size across visual and posterior parietal cortex, which we fully 

reproduced here (Fig. 7B).

Delay 2: Representation amplitude increased after cue

During Delay 2, target representations appeared weaker, though they were still identifiably 

present in many ROIs (Fig. 7C). Because our fitting procedure did not restrict the best-fit 

position of surfaces to be near the actual target position, the identification of WM 

representations nearby the true target position suggests a WM target representation was 

present (see also Fig. 6A).

WM representation amplitude was significantly higher during R2-valid trials than R1 trials 

in V1, V2, V3, V3A, hV4, IPS0, sPCS, and All ROIs combined (Fig. 7D, p ≤ 0.016, 

maximum p-value sPCS), and was higher than representation amplitude in R2-neutral trials 

in all individual ROIs with WM representations during these conditions (p ≤ 0.016, 

maximum p-value IPS3). Additionally, several ROIs showed a similar WM load effect for 

amplitude during Delay 2 as during Delay 1, such that R1 amplitude was significantly 

greater than R2-neutral amplitude (V2, V3, hV4, IPS0, and All ROIs combined, p ≤ 0.002; 

maximum p- value hV4). Importantly, WM representation size during Delay 2 was always 

similar between R1 and R2- valid conditions, during which participants are maintaining the 

same number of items in WM (all p’s ≥ 0.022, minimum p-value in V1, does not survive 

FDR correction). Finally, fit baseline was higher during R2-neutral and R2-valid conditions 

than R1 in several ROIs (R2-neutral > R1: IPS0 and All ROIs Combined; R2-valid > R1: 

V3A, IPS0, IPS1, IPS2, IPS3, sPCS, All ROIs Combined, maximum p-value 0.018 for All 

ROIs Combined, R2-neutral > R1), as well as higher on R2 trials with a valid cue than with 

a neutral cue (Fig. 7D, R2-valid > R2-neutral: IPS0, IPS3, and All ROIs Combined, all p < 

0.001).

Improvements in WM representations of the cued item during Delay 2 of R2-valid trials 

were primarily found in their amplitude, with additional increases in spatially-global 

reconstruction baseline levels. The former amplitude increases reflect increased information 

content about the cued target position over a noisy baseline (Saproo and Serences, 2014, 

2010; Sprague et al., 2015, 2014), and the latter reflect non-spatially- specific increased 

mean activation levels in these regions following an informative cue (see also Fig S2).
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Cued WM representation amplitude tracks behavior

Finally, we tested whether any properties of the cued WM representation on R2-valid trials 

were related to participants’ behavioral performance on each trial. Since performance is 

likely related to the fidelity of WM representations over many brain regions, we focused on 

the All ROIs combined ROI.

We separated trials into low- and high-recall error groups based on the median recall error 

within each condition, session, and participant. During Delay 2, cued WM target 

representations were qualitatively clearer and quantitatively they were significantly higher in 

amplitude on low recall error trials compared to high recall error trials (Fig. 8, p < 0.001; see 

Fig. S8 for results from each ROI individually). This observation suggests that participant 

performance is related to the signal-to-noise ratio (i.e. amplitude over baseline) of the 

validly-cued WM representation.

Discussion

Behavioral judgments about sensory stimuli rely on population-level neural representations 

which decrease in fidelity as the amount of relevant information increases (Drew et al., 

2012, 2011; Tsubomi et al., 2013). When performing a demanding task in which stimuli that 

are used to guide behavior are no longer present in the display, only sustained internal 

representations held in working memory (WM) can be used, as no further information can 

be gathered from the environment. We used an image reconstruction technique (Fig. 2) to 

compare the fidelity of region-level WM representations across memory load conditions and 

replicated previous findings that behavioral performance (Fig. 1) and neural representations 

(Figs. 3–7) degrade with increasing load (Buschman et al., 2011; Emrich et al., 2013; 

Landman et al., 2003a; Sprague et al., 2014). However, upon presentation of an informative 

cue indicating which WM representation was relevant for behavior, the fidelity of a degraded 

representation substantially recovered (Figs. 4–7), and the quality of this recovered 

representation was related to behavioral performance on the task (Fig. 8). These data 

challenge the notion that WM representations rely primarily on active codes (e.g., spiking 

activity), for which degraded representations resulting from mutual suppression are 

permanently impaired (Bays, 2015, 2014). Instead, these data suggest that WM is supported 

by additional ‘spike-silent’ information that is manifest in a latent state invisible to typical 

measurement techniques (single unit firing rates or fMRI activation), but can be 

reinvigorated to an accessible, active state when task demands require an updated 

representation.

Our demonstration that a valid retro-cue enhanced the fidelity of WM representations 

primarily via an increase in their amplitude bears a striking similarity to the effects of spatial 

attention on visual representations as measured using neuroimaging and behavior (Gazzaley 

and Nobre, 2012; Itthipuripat and Serences, 2015; Lepsien and Nobre, 2007; Nobre et al., 

2004; Saproo and Serences, 2014, 2010; Sprague and Serences, 2013; Sprague et al., 2015). 

However, in these experiments information used to improve neural representations and 

performance on the task is directly accessible in the sensory input to the visual system. As 

such, it is not possible to make strong inferences about the ability of neural codes to store 

latent information that can augment degraded representations, as information is still 
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available in the environment during the performance of the task. By using a visual WM task, 

in which all task-relevant information is necessarily represented in the nervous system, we 

could demonstrate directly that latent information sources must be present in the brain to 

bolster neural representations above and beyond an initially degraded state which can then 

support improved behavioral performance.

Sources of recovered information

Both our behavioral (Fig. 1C) and neural (Figs. 4–8) results suggest that the fidelity of 

neural representations can improve following the presentation of an informative retro-cue. 

What was the format of this information before the cue appeared? In information theory, the 

data processing inequality theorem provides the strong constraint that the total information 

about one variable given the observed state of another variable (i.e. mutual information) can 

never increase with additional processing; it can at best remain constant (Cover and Thomas, 

1991; Quian Quiroga and Panzeri, 2009; Saproo and Serences, 2014, 2010; Shannon, 1948; 

Sprague et al., 2015). Accordingly, we can conclude that the information used to complete 

the behavioral recall task more accurately following the presentation of a retro-cue must be, 

in some way, present in the system before the cue appears. However, because WM item 

representations in fMRI-based image reconstructions were already degraded by the time the 

retro-cue appeared (Fig. 6; Sprague et al., 2014), the restored representation must result from 

neural response features inaccessible to or hidden from our BOLD activation pattern 

measurements before the cue.

One potential source of the restored representational fidelity is WM-related patterns of sub-

threshold membrane potential and/or changes in short-term synaptic efficacy, as suggested 

by prior theoretical and computational modeling efforts (Barak and Tsodyks, 2014; Edin et 

al., 2009; Mongillo et al., 2008; Stokes, 2015; Stokes et al., 2013). Both of these 

mechanisms render a circuit dynamically sensitive to input as a function of WM contents, 

and both processes may be difficult to detect with typical electrophysiological or 

neuroimaging techniques in animals or humans. Consistent with this view, a recent study 

found that motion-sensitive visual area MT did not carry information about the memorized 

stimulus over a brief delay interval via changes in spike counts (Mendoza-Halliday et al., 

2014). However, changes in local field potentials (LFP) did carry information about the 

contents of WM. Such LFP changes may reflect aggregate changes in the membrane 

potentials of nearby neural populations, which could enable more robust WM coding 

following re-allocation of attention (Griffin and Nobre, 2003; Landman et al., 2003b; 

Lepsien et al., 2011; Makovski and Jiang, 2007) or a sweep of non-specific activity 

(Mongillo et al., 2008; Stokes, 2015; Stokes et al., 2013; Wolff et al., 2015). In fact, 

Mendoza- Halliday et al. found evidence for such top-down control of LFP representations 

by identifying spike-field coherence between prefrontal spikes and MT LFP beta band 

activity (Mendoza-Halliday et al., 2014), and a recent study that decoded WM 

representations from EEG scalp potentials found evidence that nonspecific visual input can 

reveal such hidden states in visual WM (Wolff et al., 2015). Future experiments measuring 

membrane potentials of single cells while animals perform demanding WM tasks under 

varying load conditions (Buschman et al., 2011; Kornblith et al., 2015; Landman et al., 

2003a; Lara and Wallis, 2014, 2012) may reveal how such non-spiking sources of neural 
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information can augment neural population codes that are typically described solely in terms 

of spiking activity (Bays, 2014; Ma et al., 2006; Tan et al., 2014).

These potential physiological mechanisms could be part of a neural normalization process 

(Bays, 2015, 2014; Carandini and Heeger, 2012; Edin et al., 2009; Franconeri et al., 2013; 

Ma et al., 2014) whereby each of several simultaneously-held representations mutually 

suppresses the spiking output of (but not the synaptic input to) all other WM representations, 

resulting in degraded behavioral performance and degraded representations as measured 

with fMRI. This could allow for latent information encoded via short-term synaptic 

plasticity of inputs or subthreshold membrane potentials to exert an influence on spiking 

activity of cells after the presentation of an informative cue (e.g. the mid-delay retro-cue on 

R2- valid trials in the present study), perhaps by removing the suppressive influence of the 

irrelevant item on other representations. Then, synaptic input, which is “latent” in this case 

because it does not cause spiking while both representations are present, would now enable 

reinvigoration of active neural representations as measured by spike rates due to reduced 

inhibitory inputs from the neural representation of the non-cued item. A similar 

normalization account has also been used to predict attentional modulations as a function of 

the spatial extent of items attended (Reynolds and Heeger, 2009), which is supported 

experimentally by EEG and behavioral measurements of representational fidelity (Herrmann 

et al., 2010; Itthipuripat et al., 2014). Normalization of simultaneous representations may 

reflect a general neural constraint on representing information for the guidance of behavior 

(Carandini and Heeger, 2012).

Fidelity of feature representations in WM

Several previous studies cued participants to focus on a single item among multiple items 

maintained in WM. Lepsien et al (2007) post-cued participants to remember either a face or 

scene after both types of stimuli were encoded, and Lewis-Peacock, LaRocque and 

colleagues cued participants during the delay period to focus on one from among two 

different stimulus categories (LaRocque et al., 2013; Lewis- Peacock et al., 2012) . These 

studies found evidence for enhanced representations of the cued item category by either 

comparing mean signal amplitude in different category-selective ROIs (Lepsien and Nobre, 

2007) or comparing multivariate classifier evidence for each item category during the delay 

interval before and after the post-cue (LaRocque et al., 2013; Lewis-Peacock et al., 2012). 

These studies suggest that cueing one of several items in WM can effectively trigger a 

switch in the focus of attention to internal category-level representations, resulting in 

increased activation levels (or classifier evidence) associated with that category (LaRocque 

et al., 2013; Lepsien and Nobre, 2007; Lewis-Peacock et al., 2012). Such results are broadly 

consistent with our framework that information about items in WM can additionally be 

maintained via latent or unobserved neural signals. However, because these studies did not 

evaluate the fidelity of WM representations of the category members themselves (i.e., are the 

retrocued face representations in FFA more informative about which face is in WM?), they 

cannot rule out a competing account whereby the retro-cue triggers a shift in rehearsal 

strategy and/or category-specific prospective attention to the probe stimulus, but no change 

in the representations themselves. Moreover, they do not establish a relationship between 
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behavioral retro-cue benefits and improvements in representational fidelity of precise feature 

information in WM.

In contrast, we show here that latent information can be revealed by (1) cueing participants 

to one of several items of the same category (spatial positions) and (2) quantitatively 

evaluating the feature-specific information content of WM representations carried by fMRI 

activation patterns throughout the trial. Our results thus conceptually replicate the general 

finding that the contents of visual WM are dynamic and can be modulated by delay-period 

cues (Fig. 3). However, we show here that such cues can directly enhance the fidelity with 

which an individual cued item is represented via the use of latent information (Figs. 6–7) in 

a manner related to behavioral performance (Fig. 8).

Role of long-term memory

Improved behavioral performance and restored representational fidelity following a valid 

retro-cue could also result from long-term memory (LTM) retrieval. Recent behavioral 

studies have found that high-fidelity feature representations could be recalled from LTM 

(Brady et al., 2013; Sutterer and Awh, 2015) in tasks in which participants recalled precise 

features (e.g., color) associated with images or drawings of distinguishable objects. 

Performance on these tasks was nearly as robust as when maintaining an item in WM, 

though recall from LTM was poorer than WM for a single item (Brady et al., 2013). Thus, 

while there is a possibility that participants transfer spatial positions to LTM during the long 

delay intervals of our task and then recall those positions when given a valid cue, it would 

likely result in a degraded representation.

Information in measurements as a lower bound

In this study, we examined markers of WM representations using fMRI activation patterns. 

Consequently, all conclusions we draw about changes in neural information are inferred 

based on changes in information in our measured signals (BOLD activation patterns). While 

it could theoretically be the case that such changes do not relate in any meaningful way to 

neural activity occurring below the spatial, temporal, and physiological resolution of our 

measurements, we interpret our findings as placing a lower bound on the information 

content of the true neural codes. That is, the observation of information in a measurement is 

sufficient to infer information in the underlying cause of that measurement. But the 

observation of information with a measurement (e.g., a BOLD activation pattern) is not 

necessary given information in the underlying cause (neural activity state). Similar 

constraints hold when measuring neural spiking extracellularly: the observation of spikes is 

sufficient to conclude a change in the membrane potential of a cell, but changes in 

membrane potentials can occur without spikes. Similar arguments hold for all techniques in 

use in modern neuroscience, including additional information that can be available in 

synergistic codes across multiple neurons (Schneidman et al., 2003), wherein information 

could be missed by focusing on single neurons in isolation. Accordingly, the absence of 

evidence for information in a given technique should not be used to argue that information is 

absent (Dubois et al., 2015; Ester et al., 2016). This is well-illustrated in our observations 

that representations degrade in fidelity early in the delay period, but can recover with a valid 

cue (Fig. 1C, Figs. 5–8). The poorer fidelity of WM representations identified in measured 
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signals underestimated the actual information accessible within the brain, which was 

revealed upon cue presentation. The existence of the information after the cue is sufficient to 

conclude that information must have been available in the brain before the cue appeared.

Conclusions

We show that post-cuing an item accessible only in WM can enhance the fidelity of its item-

specific representation.. Information theoretic constraints preclude spike-based models from 

accounting for these post-cue effects because spike-based models predict that a loss of 

spiking integrity should be irreversible. Thus, these data suggest the maintenance of 

additional information about the cued item in a latent, high-fidelity state that can restore 

degraded active representations in response to changing behavioral demands. Finally, 

representations of information in neural activity patterns may more broadly rely on such 

sub-threshold components that are not typically assayed in neuroimaging or 

electrophysiological experiments.

Experimental Procedures

Participants—We recruited 6 participants naive to the purpose of the experiment. All 

participants underwent 3 fMRI scanning sessions and 1 retinotopic mapping scanning 

session, each lasting 2 hrs.

Spatial WM retro-cueing task—We presented 2 target stimuli (a red and a blue dot) for 

500 ms 3.5° from fixation on average. The fixation point immediately changed color to 

either red, blue, or purple. A red or blue fixation cue (1/3 of trials) indicated one target 

should be maintained in WM over the delay interval (R1). A purple fixation cue (2/3 of 

trials) indicated both targets should be maintained in WM (R2). After an 8 s delay interval 

(Delay 1), the fixation cue changed color once again. On ½ of R2 trials (1/3 of trials overall), 

the fixation cue changed from purple to either red or blue, cueing the participants to 

remember only the cued target (R2-valid condition). During all other trials, the fixation point 

became black, acting as a neutral cue. Following this cue, participants maintained 1 or 2 

items over an 8 s delay interval (Delay 2).

Participants also performed a spatial mapping task to estimate spatial sensitivity for each 

voxel (Fig. S3A–C) and a visual localizer task to select voxels for further analysis, each 

described in Supplemental Experimental Procedures.

Behavioral analysis—We defined behavioral recall error as the absolute distance 

between the position of the response bar and the actual coordinate of the recalled target. In 

fMRI analyses in which we split trials based on behavioral performance, we computed the 

median recall error within each WM condition within each scanning session and split trials 

based on performance above or below this median.

fMRI acquisition and preprocessing—We scanned on a 3 T GE MR750 scanner with a 

voxel size of 2×2×3 mm and 2,250 ms TR. Preprocessing included coregistration of scans 

across sessions, unwarping, slice time correction, motion correction, temporal high-pass 

filtering, transformation to Talairach space, and Z-score normalization.
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fMRI analysis: inverted encoding model—To reconstruct images of spatial WM 

contents, we implemented an inverted encoding model (IEM) for spatial position. This 

analysis involves first estimating an encoding model for each voxel in a region using a 

training set of data reserved for this purpose. Then, the encoding models across all voxels 

within a region are inverted to estimate a mapping used to transform novel activation 

patterns from the WM task into activation patterns in a modeled set of information channels. 

Details of the IEM analysis and quantification strategies are presented in detail in Figs. 2 & 

S3 and Supplemental Experimental Procedures.

Statistical procedures—All statistical inferences are based on resampling tests whereby 

a variable was computed over 1,000 iterations. During each, all single-trial variables from a 

given condition were resampled with replacement and averaged, resulting in 1,000 

resampled averages. For analyses comparing conditions (Figs. 1, 6–8), we computed the 

distribution of differences between one resampled distribution (e.g., R1) and another (e.g., 

R2), yielding 1,000 difference values. We tested whether these difference distributions 

significantly differed from 0 in either direction by comparing against 0 (p = % of values > or 

< 0; null hypothesis that difference = 0) and doubling the smaller p value. For comparisons 

of representational fidelity against 0 (Figs. 5–6), we used the % of values < 0, one-tailed.

Unless otherwise stated, we corrected all repeated tests within an analysis using the false 

discovery rate (Benjamini and Yekutieli, 2001), q = 0.05. All p-values for all tests are 

reported in Supplemental Tables. All error bars/intervals reflect 95% confidence intervals via 

this resampling procedure. The All ROIs Combined ROI was not independent of the other 

ROIs, so we independently corrected for multiple comparisons within that ROI alone.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Spatial WM performance recovers following a retro-cue
(A) On each trial, participants viewed 2 target stimuli (red and blue dots). A subsequent 

change in the color of the fixation point to red, blue, or purple cued participants to remember 

the location of the red target, the blue target, or both targets (respectively). On 33% of trials, 

we cued participants to remember the location of one target over the entire delay interval 

(fixation became red or blue, Remember 1; R1). On the remaining 67% of trials we cued 

participants to remember the locations of both targets (Remember 2; R2). This set of trials 

was further divided in half: on R2-neutral trials, we gave no information about which item 

was relevant (fixation point became black after an 8 s delay); on R2- valid trials the fixation 

point became red or blue, indicating which target would be probed at the end of the trial. 

After the 16 s delay, participants adjusted a horizontal or vertical bar to match the position of 

the remembered target. Dashed yellow circles illustrate remembered locations.

(B) The 2 targets appeared at positions uniformly drawn from 2 discs (0.6° radius centered 

3.5° from fixation; colored circles within dashed annulus). Targets never appeared within the 

same disc; they appeared ± 60°, ± 120°, or ± 180° polar angle apart on each trial. We 

randomly rotated the entire target arrangement on each trial.

(C) Memory performance was lower (i.e., higher recall error) during R2-neutral trials than 

R1 trials in all n = 6 participants. However, a valid cue (R2-valid) improved performance 

relative to R2-neutral trials, though performance remained lower than R1 trials. Asterisks 

indicate significance determined by pairwise resampling test, Bonferroni corrected for 3 

comparisons. Boxes with horizontal lines indicate 95% confidence intervals (CIs) computed 

via resampling and mean over resampling iterations, respectively. Each symbol in (C) is a 

single participant. See Fig. S1 for recall error histograms, and Fig. S2 for univariate fMRI 

activation for each condition.
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Figure 2. Inverted encoding model (IEM) for reconstructing and quantifying WM 
representations
To evaluate whether fMRI-based measurements of spatial WM representations are 

modulated by task demands, we implemented an inverted encoding model (IEM) which 

enabled reconstruction of spatial WM representations in retinotopically organized visual, 

parietal, and frontal regions.

(A) To estimate voxel-level encoding models, we modeled the response of each voxel as a 

weighted sum of 37 information channels, each defined as a round smooth spatial filter, 

spanning a hexagonal spatial grid. After predicting the activation of each channel on each 

trial of a separate mapping task (Fig. S3A–C), we used measured activation levels from all 

trials to estimate the contribution of each channel to each voxel. This results in 37 weights 

for each voxel, describing the contribution of the 37 channels to the observed signal in that 

voxel. Example trial shown; we used all mapping trials within a session.

(B) After estimating encoding models for all voxels within an ROI, we used the pattern of 

encoding models (37-dimensional weight vector for every voxel) across all voxels in an ROI 

to compute an IEM. We used the resulting inverted matrix to map WM delay activation 

patterns measured in “voxel space” into the “information space” defined by the 37 modeled 

channels of our encoding model (A). Next, we summed the spatial filters weighted by their 

estimated channel activation, resulting in a reconstructed image of the visual field. On this 

example trial, the bright region in the reconstruction (right) matches the position held in 

WM (left, dashed circle), and we call these “target representations”. We reconstructed 

images at each imaging volume (TR) in the trial and aligned all reconstructions across trials 

(see Supplemental Experimental Procedures, Fig. S3D) so that targets were at known 

positions, enabling us to average over trials with different WM contents.

(C) To quantify the strength of WM representations, we computed a “representational 

fidelity” metric by extracting a 1–d reconstruction as a function of polar angle by computing 

the mean reconstruction activation from 2.9–4.1° eccentricity (dashed black lines). Then, we 
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used this 1–d reconstruction to compute a vector mean of a circular set of unit vectors, each 

weighted by its corresponding activation. Finally, we projected this vector mean onto a unit 

vector pointing in the polar angle direction of the WM target (subset of unit vectors shown 

as colored lines; vector mean shown as black arrow; reconstruction rotated so that target at 

0°).

(D) We quantified several parameters of WM representations (amplitude, size, and baseline) 

by fitting a 2-d surface to average coregistered reconstructions (Fig. S3D) on each of 1,000 

resampling iterations (Figs. 7–8). To assess significance, we compared distributions of best-

fit parameters between conditions (Fig. 7) or behavioral performance bins (Fig. 8 and Fig. 

S8). See also Fig. S3 and Supplemental Experimental Procedures.
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Figure 3. Reconstructions show dynamic contents of WM
We reconstructed the contents of spatial WM at each TR during the trial using activation 

patterns from several ROIs defined using independent localizers (subset shown for brevity). 

Here we show reconstructions from an example target arrangement condition where WM 

targets were separated by an average of 120° polar angle (top row). We rotated all single-

trial reconstructions to match the cartoons and averaged over trials and participants (n = 6, 3 

2-hr scanning sessions each). Yellow circles indicate the position(s) held in WM at each TR. 

Each image shows a a reconstruction generated using activation patterns measured at a 

specific time point (columns) and ROI that we examined (rows). All images show a 12° × 

12° square visual field aperture and are plotted on the same color scale. See also Fig. S7 for 

exploratory prefrontal cortex ROIs.

(A) During R1 trials, stable WM representations emerged ~6–9 s following the first delay 

cue (delayed onset reflects hemodynamic lag) and remained present throughout the entire 16 

s delay interval.

(B) During R2-neutral trials, stable WM representations were preserved over the entire 16 s 

delay interval, although they remained substantially weaker than those on R1 trials.

(C) On R2-valid trials, 2 representations appeared initially, then a single representation 

appeared after the valid cue, tracking the manipulated contents of WM.
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Figure 4. WM reconstructions track target positions
WM reconstructions computed and plotted as in Fig. 3, for each target arrangement 

condition and averaged over 2 TRs during each delay (Delay 1: 6.75 and 9.00 s; Delay 2: 

15.75 and 18.00 s). A subset of ROIs is shown for brevity. In all cases, target representations 

track remembered positions. All reconstructions plotted on same color scale.

(A–B) During R1 trials, only the relevant item was represented over both delays, ruling out 

contributions from sensory transients (see also Sprague et al., 2014). Calibri,Bold

(C–D) During R2-neutral trials, both items were represented, though more weakly than 

during R1 trialsCalibri,Bold

(E–F) During R2-valid trials, both items were represented during Delay 1, then only the 

cued item was represented during Delay 2. The cued representation during Delay 2 appeared 

qualitatively stronger than each of the representations before the cue.
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Figure 5. WM representations persist throughout entire delay
We computed reconstructions along radial vectors spanning the full circle and averaged 

reconstruction activation from 2.9–4.1° eccentricity, then rotated all reconstructions such 

that the probed target appeared at 0° (Fig. 2C).

(A) Reconstructed target representations for each ROI and WM condition throughout the 

trial, averaged over all participants. A bright streak appears at 0° on many plots, indicating 

that a WM representation was present throughout the delay interval.

(B) WM representational fidelity (Fig. 2C) computed for each time point. Although 

representational fidelity weakened later in the trial on R1 and R2-neutral trials, 

representations could still be identified. On R2-valid trials, representational fidelity 

increased following the informative cue, indicating that the cue enabled the remaining 

representation to be bolstered. Filled symbols at y = 0 indicate significant WM 

representations, FDR corrected (q = 0.05; across all ROIs, WM conditions and time points); 

open symbols indicate non-significant trends at p ≤ 0.05, uncorrected; shaded regions mark 

95% CIs via resampling procedure.

Sprague et al. Page 24

Neuron. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. WM representations recovered after valid cue
(A–B) 1-d polar angle reconstructions as in Fig. 5A, averaged over each delay. Black 

asterisks indicate significant WM representations (FDR-corrected); gray asterisks indicate 

non-significant trends (p ≤ 0.05; uncorrected; see Table S2 for all p-values from this 

analysis); shaded regions mark 95% confidence intervals via resampling procedure.

(C) Direct comparison of WM representations between delay periods. After a neutral cue 

(R1 and R2- neutral), the fidelity of representations decreased in many ROIs. In contrast, a 

valid cue significantly enhanced WM representations in V1, IPS0, IPS1, and All ROIs 
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combined. Black asterisks indicate significant differences between delay periods, two-tailed, 

FDR-corrected (q = 0.05); gray asterisks indicate non-significant trends defined as p ≤ 0.05, 

uncorrected. Error bars mark 95% CIs via resampling procedure. See Table S3 for all p-

values from this analysis. See Fig. S4 for an alternate means of quantifying WM 

representations, Fig. S5 for a comparison of this effect between each pair of time points, and 

Fig. S6 for a comparison of this effect between each pair of ROIs.
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Figure 7. WM load and retro-cue altered WM representation amplitude
To quantify WM target representations, we coregistered reconstructions from each trial so 

that all targets appeared at the same position (red circle in A; see Fig. S3D). We resampled 

all trials within each condition, with replacement, 1,000 times, computed an average 

reconstruction from the resampled trials, and fit a surface allowed to vary in its size (full-

width half-maximum; FWHM), amplitude, and baseline constrained to the position with 

maximum reconstruction activation for that resampling iteration (see Supplemental 

Experimental Procedures; Fig. 2D).

(A,C) Average reconstructions over all resampling iterations with mean (+) and size (dashed 

circle) of best-fit surfaces.

(B,D) Best-fit parameters from surface fitting for each condition. We computed pair-wise p-

values between all condition pairs via resampling (see Experimental Procedures). Black 

symbols indicate significant pairwise differences after FDR correction within each fit 

parameter (q = 0.05). Gray symbols indicate trends, defined as p ≤ 0.05, uncorrected. Error 

bars indicate 95% CIs obtained from the distribution of best-fit parameters to resampled 

reconstructions. All p-values shown in Table S4.
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Figure 8. Recovered WM representation amplitude on R2-valid trials tracked behavioral 
performance
Within each participant, session, and WM condition, we split trials based on median recall 

error, then quantified low- and high-error reconstructions separately via a resampling 

procedure. All data shown are from reconstructions computed from All ROIs Combined (see 

Fig. S8 for each individual ROI). Plotted as in Fig. 7.

(A) During Delay 1, reconstructions were similar across high and low recall error trials.

(B) During Delay 2, the cued representation on R2-valid trials was visibly more robust on 

low- compared to high-error trials. This recovered WM representation was related to 

behavioral performance selectively via amplitude: on trials when participants performed 

more accurately, cued representation amplitude was higher. All other WM conditions and 

parameters showed no differences across behavioral performance bins. Error bars mark 95% 

CIs of fit parameters to resampled reconstructions. Black asterisk indicates significant 

differences after FDR correction (q = 0.05); gray asterisk indicates trends defined as p ≤ 

0.05, uncorrected. See Table S5 for all p-values.
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