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Abstract

Objective—Assess the suitability of high-resolution metabolomics (HRM) for measure of 

internal exposure and effect biomarkers from deployment related environmental hazards.

Methods—HRM provides extensive coverage of metabolism and data relevant to a broad 

spectrum of environmental exposures. This review briefly describes the analytic platform, 

workflow and recent applications of HRM as a prototype environmental exposure surveillance 

system.

Results—Building upon techniques available for contemporary occupational medicine and 

exposure sciences, HRM methods are able to integrate external exposures, internal body burden of 

environmental agents and relevant biological responses with health outcomes.

Conclusions—Systematic analysis of existing Department of Defense Serum Repository 

samples will provide a high-quality cross-sectional reference dataset for deployment-associated 

exposures while at the same time establishing a foundation for precision medicine.
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I. Critical need for deployment-associated exposure assessment

In 2011, the United States Institute of Medicine (IOM) recommended that the Department of 

Defense (DoD) collect individual breathing zone samples and conduct long-term studies of 

troop health outcomes to address concerns about perceived health risks from exposure 

during deployment (1–3). Realistically, there are inherent limits to exposure assessment in 

deployed settings. For example, the use of personal monitoring equipment limits mobility in 

active combat situations, logistics of sampler collection is challenging with large-scale troop 

movements, and assessment for biologically relevant dose requires additional molecular 

measurements. Furthermore, the post-exposure window of opportunity for measuring 

exposures or immediate consequences may range from hours to days for some agents. 

Therefore, valid and reliable measures are needed to characterize exposures that do not 

disrupt effective operation during deployment. Retrospective profiling of biological 

specimens collected pre- and post-deployment for biomarkers of exposure, effect and 

susceptibility provide a means of assessing the occurrence of chemical exposure related to 

poor health outcomes. Through the DoD Serum Repository (DoDSR), an extensive system 

exists for collection, cataloguing and storing of serum samples collected pre- and post-

deployment from active duty armed forces personnel (4, 5). Incorporating chemical 

screening measures using serum samples collected under the current DoDSR framework 

could therefore be completed with minimum disruption to military operations.

To fully realize the potential benefits of environmental chemical surveillance and bioeffect 

monitoring in serum specimens collected from armed forces personnel, there is a need to 

identify biomarkers relevant to exposure during the deployment period. A number of 

methods are being evaluated to improve deployment-related exposure assessment using 

DoDSR samples (1, 6). For instance, biomarkers of combustion products, including dioxins, 

free and protein-bound polycyclic aromatic hydrocarbon (PAH) are being used to assess 

burn pit exposures (7); circulating micro-RNA (miRNA), which play an important role in 

gene expression (8), provide epigenetic measures of biological response to exposure (9); 

cytokines and cardiovascular health markers are being applied to assess pathophysiological 

changes during deployment, particularly those related to respiratory pathways. While 

providing a means to evaluate exposure and biological response to environmental hazards, 

the measurements discussed above are limited by the need to a priori select chemical targets. 

A more complete understanding of how environmental exposures contribute to disease 

susceptibility and progression is required to mitigate risk, develop effective treatment 

strategies and identify at risk populations. Currently, no unified method exists to characterize 

the cumulative contribution of environmental and chemical exposures in disease.

A variety of approaches using genomics, metabolomics, lipidomics, transcriptomics, and 

proteomics are being pursued to determine how external and internal exposures from the 

environment impact health (10, 11). The application of omic technologies in environmental 

health research has enabled a more comprehensive measure of the continuum of exposure 

and bioeffect occurring within human populations. Here, we focus on metabolomics as a 

general approach to provide a cost-effective means to measure body burden of known 

chemicals, detect unidentified exposures, and monitor a broad spectrum of metabolic 

perturbations that could predict potential adverse health outcomes. We first describe high-
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resolution metabolomics (HRM) using liquid chromatography (LC) coupled to high-

resolution mass spectrometry (MS) as an analytical platform to simultaneously evaluate 

perturbations in metabolism and detect chemicals present at very low levels in biological 

samples (12). This methodology has been developed for precision medicine (13, 14), and is 

being refined for use to sequence exposures as part of a human exposome project (15). The 

exposome was introduced as a complement to the genome to account for environmental 

contributions to disease risk (16, 17), and is defined as the cumulative measure of 

environmental influences and biological responses throughout the lifespan, including 

environmental, dietary, microbiome, behavioral, therapeutic and endogenous processes (18). 

The second section of the review addresses the use of HRM for measurement of low-level 

chemical exposure biomarkers. The third section summarizes approaches to use HRM for 

deployment-associated exposure surveillance, where we address the challenges in using 

point measurements for reconstructing exposure history and the evolving concepts of 

exposure memory systems (19). Within the exposure memory framework, we discuss the 

need to pursue combined analyses of epigenetic changes and other biomarkers. Finally, we 

provide a brief perspective on opportunities and needs for development of HRM as an 

integral component of improved deployment exposure surveillance systems and the 

considerable societal benefit from having an in depth, cross-sectional reference database of 

high-quality metabolomics data in support of nation-wide precision medicine initiatives.

II. High-resolution metabolomics (HRM): advanced clinical chemistry

II. A Mass spectrometry for metabolic profiling

Mass spectrometry (MS) involves ionization of chemicals in the gas phase with subsequent 

detection of mass-to-charge ratio (m/z) and ion intensity. Because molecular mass is an 

absolute property of the chemical, the method is powerful for measurement of endogenous 

metabolites and environmental chemicals. Multiple types of mass spectrometers are 

available and have been recently reviewed (20–22). Nutrients and intermediate metabolites 

are often present in the micromolar (μM) to millimolar (mM) concentration range, and many 

analytic methods are available for targeted analysis (23–26). Using targeted approaches, 

analytes measured in biological samples are compared to a series of reference standards 

selected a priori and utilize optimized analytical workflows (including sample preparation 

and instrumental analysis) developed to maximize selectivity while providing sufficient 

sensitivity to detect metabolite levels observed over a prescribed concentration range (27–

30). Such approaches are useful for routine evaluation of individual metabolic characteristics 

and changes in association with deployment, however, due to limited chemical coverage 

(50–100 analytes) and requirement that analytical targets are selected prior to analysis, there 

is the potential to not detect unidentified exposure markers and biosignatures occurring 

during deployment.

Central metabolic pathways include approximately 2000 known metabolites, and improved 

coverage can be obtained using high performance liquid chromatography (HPLC) coupled to 

high-resolution MS for HRM analysis. The benefits of high-resolution MS instruments for 

screening are presented in Figure 1. Low resolution mass spectrometers, often utilized for 

targeted analysis, are capable of unit m/z accuracy (1 atomic mass unit (AMU)), which is 
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not sufficient to distinguish compounds with very similar molecular mass, requiring 

chromatographic separation prior to detection (i.e., gas- or liquid chromatography (GC; LC). 

Tandem MS (MS/MS or MS2) involves combined use of mass spectrometry components to 

obtain m/z measurements on an ion and then subsequent measurement of m/z for product 

ions generated following ion dissociation, enabling quantification of specific chemicals 

based upon product ions even when the precursor ion is not separated from chemicals with 

very similar mass (31, 32). High-resolution accurate MS (e.g. Fourier Transform Ion 

Cyclotron Resonance (FTICR) or Orbitrap based mass spectrometers) resolve ions and 

measure m/z with 0.0002–0.005 AMU accuracy (where mass accuracy is commonly referred 

to as parts-per-million, defined as: relative m/z error × 106). The high level of mass 

resolution achieved simplifies analyte separation requirements and provides improved 

capability to measure low abundance chemicals in complex biological samples. Hence, high-

resolution MS provides for identification and quantification of a broad spectrum of m/z 
features, facilitating the discovery of metabolic alterations since multiple metabolites in the 

same pathway can be measured simultaneously and tested for enrichment (33, 34) while not 

requiring selection of specific analytical targets prior to analysis.

A broader view of metabolism includes more than a million biochemicals derived from the 

diet, microbiome and environment, as well as a large number of lipids, peptides, glycans, 

peptidolipids, glycolipids, and peptidoglycans (14, 35). These chemicals have the potential 

to act as specific markers of exposure, toxicity and/or disease. Systematic knowledge of 

these biomarkers is not available, but information is rapidly accumulating and may provide 

useful early disease or disease-risk indicators. Many of the m/z features detected by HRM 

platforms are currently unidentified and include uncharacterized complex carbohydrates, 

environmental chemicals and their metabolites, complex lipids and amino acid metabolites 

derived from covalently modified proteins (36, 37).

II. B Quantification

High resolution MS offers an advantage for quantification of many metabolites since mass 

resolution is sufficient to separately quantify co-eluting ions when the accurate mass differs 

by >10 ppm (13). Over 90% of metabolites in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) have accurate mass m/z values that differ by >10 ppm (12). HRM 

profiling of blood plasma samples obtained from healthy individuals has indicated measure 

of metabolites from >80% of the pathways present in the KEGG database (Figure 2), 

enabling quantification with >85% accuracy based upon ion intensity in terms of the integral 

of precursor ions (MS1) (15, 38). Since HRM profiling is typically applied in an untargeted 

manner, analytical standards for absolute quantification are often not included within the 

analytical methodology, however, a number of strategies for quantification have been 

developed allowing determination of absolute concentrations. For example, different options 

are available using internal standardization with stable isotope dilution (39), surrogate 

standardization (40) or by external standardization with a method of additions (38). 

Systematic comparison of these methods shows that reference standardization, a procedure 

using a quantitatively calibrated pooled reference material, such as National Institute of 

Standards and Technology SRM1950, can support quantification of thousands of chemicals 

in a single analysis (15). Using reference standardization, quantification post-data 

Walker et al. Page 4

J Occup Environ Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acquisition is possible by referencing the pooled sample analyzed within each batch of 

samples. Known concentrations within the reference standard can be used to determine a 

chemical response factor and calculate analyte concentrations based on single-point 

calibration. Typically, intensity of the most reliable ion corresponding to a given chemical 

species is used for quantification, since combining multiple ions would result in error 

propagation. The benefit of reference standardization is that targeted quantification is only 

required in the reference sample, chemicals selected for quantification do not need to be 

selected a priori and population-wide estimates of plasma chemical concentrations can be 

determined without having to re-analyze samples using a targeted approach. Such results 

support development of cumulative databases to evaluate time- and intensity-dependent 

changes in exposure and related metabolic perturbations.

II. C Applications for precision medicine

In addition to reproducibility and accurate quantification, other practical issues for routine 

use of HRM in precision medicine include cost and throughput. Assuming single instrument 

operation at 24 h/day for 250 days/year (which allows 25% time for holidays, vacations, 

servicing and repair) and a 3-year instrument lease, cost for triplicate analysis using dual 

chromatography and (41) is approximately $125/sample and would enable analysis of 5500 

samples per instrument-year. Due to improved mass resolution and increased scan speeds 

available with next-generation instruments, cost per sample can be reduced to $50/sample 

and instrument-year throughput doubled by decreasing analytical run time to 5 minutes. 

Although detection of chemicals arising from exposure to environmental chemicals would 

be minimized, further cost reduction is also possible through focused analysis of high 

abundance metabolites (e.g., amino acids, lipids, vitamins/co-factors, fatty acids) that can be 

used for advanced clinical chemistry purposes. For example, routine analysis by HRM 

reliably detects approximately 1000 common, endogenous metabolites with coefficient of 

variation (CV) <10% (14, 15, 42–44). By limiting m/z detection to high abundance, 

endogenous metabolites, single replicate analysis on one column is sufficient, reducing 

analysis cost to approximately $15 per sample. The resulting throughput for single replicate 

analyses per instrument is 6 samples per hour, with analysis capacity of 150 samples/day 

(37,500 samples-per instrument year) possible. Thus, sufficient metabolic coverage for 

precision medicine purposes and detection of exposure related bioeffect could be obtained 

with sufficient data quality for lower costs using available instruments and appropriate 

automation.

The most important implication of these considerations is the potential feasibility of 

applying HRM to biological specimens collected for the DoDSR to obtain a comprehensive 

understanding of normal variations in metabolism and environmental exposures in young 

healthy adults from across the US. For instance, by selecting a random set of one million 

samples from the repository, one would be able to evaluate population differences due to 

geography, occupation, health habits, age, gender and disease, as well as trends over time. 

Using the cost structure discussed above, it would be possible to analyze one million 

samples (5 minute runtime with triplicate analyses) in five years using 20 instruments at a 

cost of $10 million/year; focused analysis of high-abundance metabolites could be 

completed using five instruments at a cost of $3 million/year. The data obtained from such 
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an analyses would provide a resource for DoD researchers to evaluate possible health 

concerns and provide a large reference database of normal values for future precision 

medicine initiatives involving diet and metabolism.

III. HRM for environmental chemical analysis

III. A Detection of low abundance chemicals

By increasing the number of replicate injections to three or more, the number of ions that 

can be reliably quantified in a biological sample is increased and noise reduction is 

improved. Improved sensitivity is important for measurement of environmental chemicals in 

biological samples, which are often present at four or five-orders-of-magnitude lower 

abundance than endogenous metabolites (Figure 3). A chemical present in only one sample 

out of 100 can be reliably measured if it is present in three replicate analyses of a sample 

(15, 43, 45), even though it is absent from the preceding 99 samples. With further relaxation 

of precision requirements, such as increasing CV thresholds from 50% to 100% and 

allowable number of samples with non-detected intensity values (which is justified by the 

usefulness of information on low abundance and low frequency exposures), >20,000 ions 

can be measured routinely on a single column; use of dual chromatography increases this to 

>30,000 ions (46). For high-abundance species, multiple adducts and isotopic forms will be 

detected based upon the ionization scheme used and molecule functional groups. The act of 

pairing different m/z features corresponding to the same chemical is referred to as 

deconvolution, and can be used as additional criteria for confirming identification. For 

example, the presence of an M+2 isotope corresponding to 37Cl confirms the presence of at 

least one chlorine functional group, which can qualify whether the identification is correct 

based upon chemical formula. Numerous strategies exist for deconvoluting high-resolution 

mass spectra, with rule-based methods relying on ion correlation, retention time matching, 

known adduct spacing, mass defect pairing and comparison of expected isotopic 

distributions to detected isotopes resulting in the lowest number of false groupings. Due to 

the low concentration of many chemicals present in biological samples (23), multiple 

features from highly abundant metabolic species represents a small portion of detected 

features and most low intensity ions appear to be exogenous chemicals detected as a single 

form. Thus, approximately >20,000 chemicals are uniquely detected using a dual column 

configuration. Although half of these ions do not match known chemicals in metabolomics 

databases, most are reproducible when analyzed on different LC-MS systems, indicating 

actual chemical signals and not instrumental noise or sample preparation artifacts. 

Therefore, HRM platforms, in addition to providing measure of endogenous metabolites, 

have multiple applications for profiling low abundance chemicals present in biological 

samples such as plasma (15, 47), urine (48, 49) or tissue biopsies (50, 51).

III. B Measurement of exposure and linking to body burden

Incorporating exposure information into population research has traditionally relied on 

monitoring approaches with varying levels of uncertainty. For example, heuristic models 

calibrated to chemical monitoring surveys have been employed to prioritize toxicity 

screening (52), geospatial models have been used to predict respiratory exposures (53), 

recall surveys have been used to estimate dietary exposures (54), ambient exposure 

Walker et al. Page 6

J Occup Environ Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measurements can be useful for estimating exposure to large groups, passive silicone and 

breathing zone samplers have been developed to estimate exposure over short and long-term 

periods (55, 56). While these are useful measures for evaluating the occurrence of 

environmental exposure, they represent generalized estimates and cannot be used to assess 

internal exposure and biological relevance. Furthermore, their implementation in active duty 

situations would negatively impact the efficacy of combat operations and daily functioning 

of a fighting force.

Measurement of exposure biomarkers within biological samples obtained from humans can 

reduce uncertainty in exposure assessment, however interpretation within an environmental 

health context can be challenging. Models used for risk assessment (57) as well as 

toxicokinetic studies (58, 59) provide frameworks for analysis, but more detailed studies are 

needed to interpret the meaning of spot measurements of environmental chemicals in single 

samples. Without knowledge of intensity, duration or route of exposure, inferences 

concerning abundance of chemicals in human samples are problematic. Similarly, for 

unidentified chemicals without time course data, the biologic half-life, the apparent volume 

of distribution and other toxicokinetic parameters cannot be estimated. Thus, one cannot 

readily evaluate the likelihood that a measurement represents an acute or long-term exposure 

from a single point measurement. On the other hand, routine, periodic measurement can 

provide the ability to detect regional differences and time-dependent differences in specific 

chemicals. Ongoing measurements, even for a small fraction of individuals, can therefore 

approximate a real-time surveillance tool to detect new or unexpected exposures. 

Importantly, the power of such a tool increases with time as the surveillance database 

expands with different exposure scenarios.

As discussed above, there is a need to measure exposure biomarkers arising from a range of 

environmental chemicals. Targeted biomonitoring utilizes measurement in biological 

specimens to estimate body burden of specific chemicals, providing information on internal 

dose and prevalence in a population. While biomonitoring has proven invaluable in 

population surveys, chemical coverage is often limited. For example, the National Health 

and Nutrition Examination Survey (NHANES) applied targeted biomonitoring to measure 

212 chemicals in a cross-section of the US population. However, over 100,000 chemicals are 

registered for commercial use with the Environmental Protection Agency, with recent 

estimates from the Toxic Substance Control Act suggesting 70,000 are commonly used. A 

recent survey by Dionisio, Frame (60) identified approximately 20,000 chemicals used 

directly in consumer products. The ability to provide chemical monitoring of this magnitude 

far exceeds the capability of targeted biomonitoring platforms and requires advanced 

chemical profiling techniques to identify and monitor occurrence of environmental 

exposures. The ability of HRM to advance measurement of exposure biomarkers in human 

samples is highlighted in Figure 4A. In this analysis, quantified PAH levels of anthracene 

measured using GC-MS in 30 non-identified serum samples (6, 61) were tested for 

association with m/z ions detected by HRM matching known adduct masses of PAH 

metabolites from the KEGG database. Twenty-four metabolites detected using HILIC 

chromatography with positive electrospray ionization and 18 using reverse-phase 

chromatography with positive atmospheric chemical ionization (46) were found to be 

significantly associated with serum PAH levels, supporting the use of HRM for a more 
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comprehensive measure of exposure biomarkers than available from targeted biomonitoring 

alone. Interestingly, anthracene levels were found to be predominantly associated with 

naphthalene metabolites (Figure 4B), suggesting possible co-exposures or synergistic 

metabolism. Successful applications of HRM in environmental chemical surveillance (15, 

62–65) further support the use of this approach in exposome and environmental health 

research.

III. C Characterizing internal dose response

Considerable data are available to show that environmental chemicals are present in all 

human blood and urine samples (15, 23, 62, 63, 66, 67). As indicated above, detection of 

chemicals within the body does not provide information concerning the source of exposure, 

and relatively little information is available concerning the distribution chemicals within 

human tissues and rates of elimination. Furthermore, analytical methods are very sensitive 

so that detection alone does not provide information concerning risk from exposure and 

biological relevance.

In addition to measurement of chemical surveillance biomarkers, HRM profiling can be used 

to elucidate biological response to chemical exposures. Association of exposure biomarkers 

with HRM measured metabolic alterations provides insight into toxicant targets, biomarkers 

of effect and chemical biological fate, such as metabolism, distribution and excretion within 

human populations. Recent examples using human populations exposed to high levels of 

environmental chemicals highlight the ability of HRM in identifying biological response. In 

the study by Jeanneret, Boccard (68), metabolic profiling of dioxin poisoning was completed 

to identify the metabolic changes related to extreme cases of exposure. The resulting series 

of metabolites were then tested as discriminatory biomarkers in 11 workers previously 

exposed (in the late 1960’s) to dioxin residues in a pesticide production plant and matched, 

healthy controls. Twenty-four endogenous metabolites associated with dioxin exposure and 

related to steroid metabolism were found to distinguish exposed workers from controls, and 

were consistent with the known aryl hydrocarbon receptor (AhR) binding of dioxins. 

Importantly, the data indicated biological response occurring due to a recent, acute dioxin 

exposure was still detected in individuals exposed 40 years prior. Thus, in addition to 

biomonitoring, measurement of metabolic derangement by HRM can be used to identify 

biosignatures indicating a history of exposure. Additional studies applying metabolic 

profiling of human exposure to cadmium (69, 70), pesticides (66), PAH exposure (71), 

welding fumes (72) and arsenic (73) support the use of retrospective chemical measurement 

for effect markers and evaluation of whether exposure has occurred at a biologically relevant 

dose.

HRM profiling of biological samples can also be applied in an environment wide association 

study framework to systematically examine chemical associations with disease, which can 

then be utilized to identify susceptibility to poor health outcomes. In a HRM study of 

Parkinson’s Disease (PD), groups of subjects (80 from 146 PD and 20 from controls) were 

matched by age, gender, smoking status and pesticide exposure to identify metabolic 

alterations associated with slow and rapid disease progression (38). Significant differences 

between 80 patients and 20 controls included matches to a polybrominated diphenyl ether 
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(PBDE), tetrabromobisphenol A, octachlorostyrene and pentachloroethane. The chemical 

feature corresponding to PBDE had a mean intensity 50% above controls, while the match to 

2-amino-1,2-bis(p-chlorophenyl)ethanol, was more than 50% higher in individuals with 

rapid disease progression. Although the population is too small to make firm conclusions 

and the identification of the chemicals were not confirmed by comparison to authentic 

reference standards, the presence of disease-exposure associations provides potential risk 

factors for further study

Important to the development of HRM in routine screening for biomarkers of exposure and 

effect has been the creation of software tools enabling a systems biology approach to 

understanding exposure-associated metabolic perturbations. For example, MetabNet (74), a 

software routine written in R, allows rapid analysis of metabolites and metabolic pathways 

correlating with individual chemicals in cross-sectional analyses. The analyses possible by 

MetabNet enable testing for correlations with environmental chemicals directly within the 

same metabolomics analyses, thereby avoiding the need for phenotypic biomarkers, which 

are often not available. For instance, HRM profiling was recently used for targeted 

measurement of the flame retardant triethylphosophate and untargeted metabolomics of 

plasma obtained from 150 healthy adults (15). By testing all metabolites for correlations 

with triethylphosphate, one obtains a targeted metabolome wide association study (MWAS), 

shown in Figure 5 as a Manhattan plot of −log p-value for the correlation as a function of 

retention time obtained using reverse phase LC. By evaluating feature association 

significance as a function of retention time, one can see that many of the ions correlated with 

the flame retardant exhibited retention times consistent with lipid species (retention time > 

300 seconds), which was verified by database matches to phospholipids and sterols. 

Metabolites identified through MWAS can then be utilized for metabolic pathway 

enrichment analysis, providing a starting point to begin studies of metabolic perturbations 

linked to body measures of environmental chemicals.

III. D Exposure memory

The need to include environment in understanding human disease led Christopher Wild to 

introduce the concept of the exposome in 2005 (17), which he defined as “encompassing 

life-course environmental exposures (including lifestyle factors), from the pre-natal period 

onwards.” The exposome is envisioned as a complement to the genome, where a life course 

of exposure and interaction with the genome defines risk for disease development. Unlike 

the genome, exposures are transient and change on both short and long-term time scales, 

making quantitative assessment challenging. A more tractable definition of the exposome 

was proposed by Miller and Jones (18): “The cumulative measure of environmental 

influences and associated biological responses throughout the lifespan, including exposures 

from the environment, diet, behavior, and endogenous processes.” Exposures in this 

framework are not only limited to external chemical exposures, but also include processes 

internal to the body (host factors), wider socioeconomic influences and maladaptations to 

external influences, with the interaction of these factors linking environment to health and 

disease (16, 75).
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Accumulating research indicates that multiple exposure memory systems exist to allow 

adaptation to environmental challenges over a lifetime (19). A consequence is that response 

can result in decreased flexibility and adaptability to subsequent challenges. Many of the 

body’s response to environmental insults are short-term and reversible; some, such as 

scarring, provide a long-term and sometimes permanent change in structure and function. 

For example, inhalation injury to the lungs can result in permanent change in structure and 

function, which may not be evident except in response to challenge. Computational methods 

are available to use the regularity/irregularity present in metabolomics data to measure 

health (76) and, in principle; these methods could be used with HRM to study metabolic 

resilience following deployment. Such methods could be applied to screen service personnel 

for exposure histories and identify individuals who would benefit from nutrition or medical 

intervention.

III. E Addressing the dark matter of the exposome

A critical aspect of post-deployment surveillance lies in addressing unknown exposures. 

While contemporary MS methods are powerful, characterization of unidentified chemicals in 

human samples has seriously lagged behind the progress in understanding human genetics. 

At least half of the ions detected by HRM are uncharacterized; if one pushes data extraction 

to the limits of contemporary methods, the fraction of uncharacterized ions is approximately 

80% (13). This represents the dark matter of the exposome, which includes detected but 

uncharacterized analytes and a spectrum of unknown unknowns, for which little effort has 

been made to distinguish. Resources to address this daunting challenge are currently 

unavailable, as emphasis has traditionally been placed on analysis of a relatively small 

number of recognized hazardous chemicals. As a consequence, risks associated with 

uncharacterized chemicals are largely unknown.

HRM methods provide a useful approach to this challenging problem. Already, data are 

available within the Emory University Clinical Biomarkers Laboratory for more than 

100,000 ions obtained from approximately 20,000 biological samples. All samples have 

been analyzed with rigorous standard operating procedures so that the accurate mass, 

retention time and ion intensity enable collation into a reference database. This type of 

database will provide a resource for comparison to post-deployment measurement for the 

detection of new ions, which could represent unidentified or unknown exposures and 

capabilities are now available to establish a rigorous analytical framework to regularly 

monitor exposures. With appropriate commitment and resources, an analytical resource can 

be established to support routine exposure surveillance in armed forces personnel.

IV. HRM in deployment exposure surveillance

IV. A Retrospective analysis using the DoDSR

For effective real-time analyses, databases representing normal exposures and ranges of 

unexpected exposures will be needed to provide reference values. Previous studies have 

established the integrity of samples stored within the DoDSR (61, 77) and therefore 

highlight the opportunity for further advancement of the repository as an environmental 

health resource. The recent development of reference standardization (15) to obtain 
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estimates of absolute concentrations of endogenous metabolites, health indicators and 

environmental chemicals, establishes an affordable approach. Additionally, the concepts are 

developed to use metabolic correlations for retrospective chemical identification (74), where 

correlations of a metabolite are obtained in reference populations so that the correlation 

structure can be used to identify chemicals using data from previously analyzed samples. 

Due to the use of rigorous sample collection, preparation and analysis procedures, the data 

from these analyses can be stored in a cumulative database for future analysis and data 

mining. As new hazards and exposures are recognized, the data will be available for 

retrospective analysis of individual exposures, their trends and associated health outcomes.

IV. B Prospective use for exposure surveillance

HRM is sufficiently developed to allow implementation on a test basis for ongoing 

deployment surveillance. For instance, metabolic indicators of nutrition (vitamins, amino 

acids), liver function (bilirubin), renal function (creatinine, uric acid) and other health 

phenotypes can be readily measured using routine analysis. At the same time, a range of 

PAH metabolites, persistent halogenated chemicals, insecticides, herbicides, flame retardants 

and other chemicals are detected (12, 15, 41, 51, 63, 78, 79). Thus, implementation of 

routine HRM for exposure surveillance would provide a means to address uncertainties 

concerning exposure. An example framework for specimen collection and implementation of 

HRM profiling that is consistent with current DoDSR protocols is provided in Figure 6. In 

this framework, chemical profiling of samples obtained pre- and post-deployment and over 

the course of service will enable evaluation for biomarkers of exposure, effect and poor 

health outcome. Routine detection of biomarkers will enable identification of individuals at 

risk for environment-associated disease, enabling intervention and preventive measures. 

Ultimately, such an analytical structure could facilitate improved management of risk 

associated with work in adverse environments.

IV. C Integration with targeted phenotypic and other omics platforms

Many mechanistic studies show that the combination of HRM with other phenotypic 

platforms (e.g. genomics, proteomics, transcriptomics) provides a powerful approach to 

understand mechanisms of toxicity and disease (75, 80–82). Although deployment 

surveillance does not necessarily require mechanistic understanding, the integrative 

approaches may be suitable for improved risk assessment. For instance, transcriptome-

metabolome wide association study (TMWAS) showed interaction hubs reflecting toxic 

reactions as well as early stress response and adaptive responses (83). Gene expression and 

metabolism in peripheral white blood cells may be sufficiently persistent to monitor adverse 

exposures for several weeks (84). Similarly, circulating miRNA in combination with 

metabolomics could provide a useful means to evaluate prior adverse exposures. The utility 

of integrative approaches was recently shown by the interaction of the lung microbiome with 

the metabolome measured in lung bronchoalveolar lavage fluid from healthy controls and 

HIV-1 infected individuals (85). In this study, increasing association stringency for 

microbiome-metabolome interaction using all individuals simplified a large number of 

significant associations to the top two genera of bacteria and top 3 metabolites, with the 

associations centered on bacteria causing opportunistic infection (Figure 7A–C). 

Microbiome-metabolome associations were then evaluated based upon significance of 
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association with HIV-1 status (Figure 7D–F). By decreasing the p-value threshold, clear 

visualization of the genera-metabolite hubs was obtained, which include the top 3 groups of 

bacteria specifically causing opportunistic infections in individuals with HIV-1. Thus, there 

are considerable opportunities to utilize HRM in combination with other powerful 

contemporary methods to enhance detection, understanding and management of post-

deployment health risks.

V. HRM: summary and perspective

High-resolution metabolomics (HRM) provides an advanced clinical chemistry platform for 

precision medicine that could be of considerable utility for exposure surveillance of armed 

forces personnel. HRM not only provides extensive coverage of metabolism but also detects 

a broad spectrum of exposure biomarkers, including both known and currently unidentified 

chemicals. Building upon contemporary occupational medicine and exposure science, HRM 

can be integrated into environmental health research through connecting external exposures 

and health outcomes to internal body burden of environmental agents and respective 

biological responses. Analytic platforms, workflow and available applications establish the 

suitability of HRM for development into an environmental exposure surveillance system. 

Systematic analysis of existing DoDSR samples using HRM would provide a high-quality 

cross-sectional reference dataset for deployment-associated exposures, while development of 

real-time analytical capabilities using HRM would provide a demonstration project for use 

in precision medicine. Furthermore, use of HRM is expected to improve the ability of 

healthcare practitioners to include exposure-related measurements in management and 

treatment of disease in active duty and retired armed forces personnel.
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Figure 1. 
High-resolution MS supports untargeted measurement of metabolic chemicals by reducing 

requirements for chemical separation and sample preparation while providing improved 

capability to measure low abundance chemicals in biological samples (14). Used with 

copyright permission from Annual Review of Nutrition.
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Figure 2. 
HRM profiling of plasma obtained from healthy individuals has indicated that metabolic 

intermediates from >80% of pathways present in the KEGG database can be detected 

(represented by black dots) using standardized sample preparation methods and dual-column 

chromatography.
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Figure 3. 
While a core metabolome consisting of metabolites required for life will be detected 

universally, environmental, drug and dietary chemicals in the metabolic profile are expected 

to vary greatly in concentration and presence. Adapted from (45).
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Figure 4. 
Cross-platform comparison of targeted polycyclic aromatic hydrocarbon (PAH) 

measurements using gas chromatography MS and suspect screening for PAH metabolites by 

HRM (A). Combining liquid chromatography and ionizations schemes maximized coverage 

of PAH metabolism (B).
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Figure 5. 
A targeted metabolome wide association study (MWAS) was completed by testing each 

metabolite for significant associations with triethylphosphate levels in plasma. Significant 

metabolites can be tested for pathway enrichment, providing a starting point in identifying 

perturbations linked to chemical exposure.
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Figure 6. 
HRM profiling of specimens collected from active duty individuals could readily be 

integrated into DoDSR protocols. In this example, HRM can evaluate the presence of 

exposure and effect biomarkers, identifying individuals at risk for exposure related diseases. 

Adapted from (45).
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Figure 7. 
Microbiome-MWAS of bronchoalveolar lavage fluid in HIV-1: A to C represent increasing 

stringency to identify network associations with greatest r meeting significance criteria. D to 

F contains the network subset associated with HIV-1, in order of increasing leniency. From 

(86).
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