Using primary data on urine pooling strategies (n = 4, 8, and 12 samples), we used a microsimulation to model the proportion (Pr) of correct binary classification around a prevalence threshold to indicate need for school-based preventive chemotherapy according to WHO (10% prevalence). The interpretation of the curves is provided in (a). The results are presented for: (b) 20 tests; (c) 50 tests; and (d) 250 tests. We compared traditional stool microscopy (duplicate Kato-Katz thick smears derived from one stool sample), single POC-CCA test, and the three urine pooling strategies (pool sizes of 4, 8, and 12) using the WHO 10% prevalence threshold. The strategies performed well within the center of a prevalence categorization, but poorly at the boundary between two prevalence categories. Increased number of tests resulted in lower classification error.