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Abstract
The epicardium plays an important role in coronary vessel formation and Tgfbr3-/- mice

exhibit failed coronary vessel development associated with decreased epicardial cell inva-

sion. Immortalized Tgfbr3-/- epicardial cells display the same defects. Tgfbr3+/+ and
Tgfbr3-/- cells incubated for 72 hours with VEH or ligands known to promote invasion via

TGFβR3 (TGFβ1, TGFβ2, BMP2), for 72 hours were harvested for RNA-seq analysis. We

selected for genes >2-fold differentially expressed between Tgfbr3+/+ and Tgfbr3-/- cells
when incubated with VEH (604), TGFβ1 (515), TGFβ2 (553), or BMP2 (632). Gene Ontol-

ogy (GO) analysis of these genes identified dysregulated biological processes consistent

with the defects observed in Tgfbr3-/- cells, including those associated with extracellular

matrix interaction. GO and Gene Regulatory Network (GRN) analysis identified distinct

expression profiles between TGFβ1-TGFβ2 and VEH-BMP2 incubated cells, consistent

with the differential response of epicardial cells to these ligands in vitro. Despite the differ-

ences observed between Tgfbr3+/+ and Tgfbr3-/- cells after TGFβ and BMP ligand addition,

GRNs constructed from these gene lists identified NF-kB as a key nodal point for all ligands

examined. Tgfbr3-/- cells exhibited decreased expression of genes known to be activated

by NF-kB signaling. NF-kB activity was stimulated in Tgfbr3+/+ epicardial cells after TGFβ2

or BMP2 incubation, while Tgfbr3-/- cells failed to activate NF-kB in response to these

ligands. Tgfbr3+/+ epicardial cells incubated with an inhibitor of NF-kB signaling no longer

invaded into a collagen gel in response to TGFβ2 or BMP2. These data suggest that NF-kB

signaling is dysregulated in Tgfbr3-/- epicardial cells and that NF-kB signaling is required for

epicardial cell invasion in vitro. Our approach successfully identified a signaling pathway

important in epicardial cell behavior downstream of TGFβR3. Overall, the genes and
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signaling pathways identified through our analysis yield the first comprehensive list of candi-

date genes whose expression is dependent on TGFβR3 signaling.

Introduction
The epicardium plays an important role in coronary vessel development (reviewed [1–3]). For-
mation of the epicardium occurs when a population of mesothelial cells, termed the proepicar-
dium, attach to and migrate over the heart tube myocardium [4, 5]. Subsequently, a
subpopulation of the epithelial, epicardial cells lose epithelial character, change shape, and
invade the underlying matrix in a process termed epithelial-mesenchymal transformation
(EMT). The resulting mesenchymal cells invade into the subepicardial space with some cells
proceeding to invade into the myocardium as well (reviewed [6]). These epicardial-derived
cells differentiate into distinct lineages [7–11], that include cardiac fibroblasts, pericytes, and
vascular smooth muscle cells, and support the formation of coronary vessels. Several reports
support epicardial contribution to the coronary endothelial cell lineage [12–14]. Numerous
lines of evidence are now revealing the importance of these same developmental processes in
cardiac repair and that the epicardium makes critical contributions to cardiac response to
injury (reviewed [6]). Despite this, the signaling processes which regulate epicardial EMT are
incompletely understood.

TGFβR3 deletion in mice leads to failed coronary vessel development [15]. Tgfbr3-/- hearts
featured a discontinuous epicardium overlying an expanded subepicaridal space. Further stud-
ies revealed a significant decrease in proliferation and invasion of epicardium and epicardially-
derived mesenchyme [16]. Overall, these studies demonstrated that TGFβR3 plays an impor-
tant and non-redundant role in epicardial behavior and coronary vessel development in vivo.

TGFβR3 binds TGFβ1, TGFβ2 and TGFβ3 and is uniquely required to bind TGFβ2 with
high affinity [17, 18]. TGFβR3 is also capable of binding and signaling in response to BMP2
[19] and functions as a receptor for inhibin [20]. TGFβR3 presents ligand to TGFβR2 to pro-
mote both Smad-dependent and -independent signaling [21]. The highly conserved 43 amino
acid intracellular domain of TGFβR3 is not required for ligand presentation [22] but may regu-
late other signaling events. Phosphorylation of the cytoplasmic domain of TGFβR3 by TGFβR2
at Thr841 is required for β-arrestin2 binding, leading to internalization of TGFβR3 and down-
regulation of TGFβ signaling. The 3 C-terminal amino acids of TGFβR3, STA, are a Class I
PDZ binding domain that binds the scaffolding protein GIPC which in turn stabilizes TGFβR3
on the plasma membrane to promote signaling [23].

Tgfbr3+/+ epicardial cells undergo loss of epithelial character and invasion into collagen gels
in vitro in response to TGFβ1, TGFβ2, and BMP2, ligands known to bind TGFβR3 [18, 24].
While loss of epithelial character was still observed after loss of TGFβR3, Tgfbr3-/- cells had
reduced invasion in response TGFβ1, TGFβ2, and BMP2, a response that was rescued by the addi-
tion of TGFβR3 [16, 25, 26]. TGFβ1 and TGFβ2 promoted smooth muscle differentiation in
Tgfbr3+/+ and Tgfbr3-/- cells while BMP2 did not [26]. Surprisingly, other ligands known to be
important in epicardial EMT also required TGFβR3 to promote invasion in epicardial cells (FGF2
[27, 28], High Molecular Weight HMW-HA [29, 30]). Impaired invasion of three-dimensional
gels by epicardial-derived mesenchyme was not due to the permanent loss of invasive properties,
as PDGFAA, PDGFBB and VEGFC still induced invasion in Tgfbr3-/- epicardial cells [16].

This ability of TGFβR3 to regulate epicardial cell behavior in response to an array of ligands
may explain the severity of the in vivo phenotype of Tgfbr3-/- embryos when compared to the
absence of a phenotype in mice lacking individual TGFβ ligands [31–33]. It is known that the
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loss of cell invasion has effects on cardiovascular development outside of the loss of the direct
contributions of these cells to the structure of the coronary vessels. The deletion of several
genes, encoding proteins that perform an array of functions including transcription factors,
adhesion molecules, and growth factor ligands or receptors, share a common phenotype of a
thinned myocardium (reviewed in [3]). These data as well as experimental embryology experi-
ments in avian embryos have been interpreted to demonstrate that epicardially-derived mesen-
chymal cells are necessary for growth of the compact zone of the myocardium (reviewed in
[34]). Therefore, the formation of the epicardium and the resultant generation of mesenchyme
is critical for the support of both coronary vessel formation and myocardial growth. For exam-
ple, targeted deletion of ALK5 in the epicardium in mice in vivo results in interrupted epicar-
dial attachment to the myocardium, loss of expression of specific adhesion molecules, thinned
myocardium, and a loss of coronary smooth muscle [33]. These embryos survive until birth,
suggesting that, unlike in embryos lacking TGFβR3, the coronary vessels function to some
degree as mice lacking coronary vessels die at approximately E14.5-E16.5 [35–37]. These data
suggest that TGFβR3 signaling regulates a common pathway accessed by several upstream reg-
ulators of cell invasion.

TGFβR3-dependent invasion stimulated by TGFβ1, TGFβ2, BMP2, HMW-HA, or FGF2 was
shown to require the cytoplasmic domain of TGFβR3 in vitro [16]. Overexpression of TGFβR3
rescued invasion in Tgfbr3-/- epicardial cells in vitro in response to TGFβ1, TGFβ2, BMP2,
HMW-HA, or FGF2, whereas constructs expressing a TGFβR3 mutant lacking the 3 C-terminal
amino acids required for GIPC binding fail to rescue invasion [16, 25, 26]. The importance of this
interaction is further supported by the observation that GIPC is not only required for invasion in
Tgfbr3+/+ epicardial cells, but GIPC overexpression can promote invasion in the absence of addi-
tional ligand. GIPC regulation of epicardial invasion depends on TGFβR3 since GIPC expression
in Tgfbr3-/- cells fails to rescue invasion and inhibition of GIPC expression impairs the ability of
TGFβR3 to rescue invasion in Tgfbr3-/- cells [16]. Similar results were observed in endocardial
cushions where the interaction of TGFβR3 with GIPC is required to promote TGFβ2- and BMP2-
dependent invasion in vitro [38]. These data linking defects in invasion of Tgfbr3-/- epicardial cells
to the cytoplasmic domain of TGFβR3, which is not required for ligand presentation, suggests a
unique, non-redundant role for TGFβR3 in regulating epicardial and endocardial EMT.

Here, we use a well defined in vitro system based on immortalized epicardial cells coupled
with RNA-seq analysis to generate a transcriptional profile of Tgfbr3+/+ and Tgfbr3-/- cells incu-
bated with ligands that stimulate TGFβR3-dependent invasion. The resulting transcriptional
profiles have identified regulators of epicardial cell behavior downstream of TGFβR3 and pro-
vided the first description of genes downstream of TGFβR3.

Methods

Generation of cell lines
Tgfbr3+/−:Immorto mice were generated as described [39] and maintained on a C57BL/6
SV129 mixed background. Tgfbr3+/+:Immorto and Tgfbr3−/−:Immorto immortalized epicardial
cell lines were generated from littermates as described [39] from E11.5 embryos (Fig 1A and
1B). The original work that covered the generation of the embryonic epicardial cell lines used
in these studies was carried out as approved on protocol M/13/156 (Joey Barnett, PI) by the
Institutional Animal Care and Use Committee of Vanderbilt University.

Cell culture
To maintain the immortalized state, cells were grown at 33°C in DMEM containing 10% fetal
bovine serum, 100 U/ml penicillin/streptomycin, Insulin–Transferrin–Selenium (ITS: 1 μg/ml
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insulin, 5.5 × 10−4 μg/ml transferrin, 0.677 μg/ml selenium), and 10 U/ml interferon γ (INFγ).
For experiments, the T-antigen was inactivated by culturing at 37°C in the absence of ITS or
INFγ. Cells were seeded at 200,000 cells per well of a 6-well tissue culture plate and allowed to
adhere overnight at 37°C. The following day the medium was replaced with media containing

Fig 1. Immortalized epicardial cells undergo loss of epithelial character. (A) The epicardium undergoes EMT at E11.5–13.5. Subsequently,
transforming epicardial cells invade the subepicardial space and myocardium towards forming coronary vessels. Blue- epicardium. Purple- endothelium.
Yellow- smooth muscle cells. Red- myocardium. (B) Immortalized epicardial cells were derived from E11.5 Tgfbr3+/+ and Tgfbr3-/- embryos which
expressed a temperature-sensitive large T-antigen. (C) Immunohistochemistry of Tgfbr3+/+ or Tgfbr3-/- immortalized epicardial cells after 72 hours
incubation with TGFβ2 or vehicle. TGFβ2 increased expression of SM22α and form stress fibers in the enlarged, elongated cells. ZO1 becomes
redistributed to the cytoplasm.

doi:10.1371/journal.pone.0159710.g001
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either VEH, 250 pM TGFβ1, 250 pM TGFβ2, or 5 nM BMP2. After a 72 hour incubation
period at 37°C, total RNA was isolated via standard phenol-chloroform extraction (TRIzol
Invitrogen). RNA was purified (Qiagen mini-prep kit) following the manufacturer’s protocol.
Quantity and quality of RNA was determined by an Agilent Bioanalyzer. One well of a 6-well
plate yielded 10–20 μg of RNA.

qRT-PCR
Quantitative Real Time PCR qRT-PCR was performed as described [16]. Briefly, cDNA was
generated from 1μg total RNA using oligo-dT primers and Superscript III polymerase (Invitro-
gen). Real-time PCR analysis was done with iQ SYBR Green Supermix (Bio-Rad) in the Bio-
Rad iCycler for 40 cycles. Primer pairs forward (F) and reverse (R): GAPDH F-ATGACAATG
AATACGGCTACAG, R-TCTCTTGCTCAGTGTCCTTG;Mylk F-CCAAGGACCGGATGA
AGAAATA, R-CCCTGAGATCATTGCCATAGAG; Sema3d F-TGGGACATAGAAGCATT
AG, R-AGAGGCTTGTTGGGATTTAGG; Sxc F-AGGGCCTATGAACAGAGAGAT, R-GTA
GAGAGCCAGCATGGAAAG; Cadm1 F-TCTGTAGGCGGCTCAGTATAG, R-CTCACAT
GTCGGGTCTGTTTAG; Krt8 F-GGCCAACCTTAGGAGGAATTT, R-GAGCCAGCTGAG
GCTTTATT; Chst7 F-GTGAGACACTGGGACTGATTTG, R-GCCAAGGTGTCTGTCATTA
CTT; Versican F-CAGGCTATCACAGGCAGATTAG, R-CAGAAGCCAAGGAGTCATTCA.

RNA-seq
The generation of RNAseq libraries without normalizations or RNA/cDNA fragmentation
were performed as described [40]. Libraries were sequenced as 50bp paired end sequences on a
single lane of the Illumina HiSeq2000. TOPHAT [41] (http://tophat.cbcb.umd.edu/) was used
to align HiSeq 2000 reads to produce bam files. Reads were normalized to total mRNA (total
aligned reads per gene-loci per million). Gene expression profiles were generated as described
[42] using a Bayesian p-value (S1 and S2 Figs). Data deposited at the Cardiovascular Develop-
ment Consortium (CvDC) Data Repository (https://hci-bio-app.hci.utah.edu/gnomex/), exter-
nal experiment number 38R1 (https://b2b.hci.utah.edu/gnomex/gnomexGuestFlex.jsp?
requestNumber=38R1).

SEAP Reporter System
The pNF-kB-SEAP (Clonetech) reporter was used to determine NF-κB activity in cells as
described [43, 44]. Briefly, cells were co-transfected with pNF-kB-SEAP and β-galactosidase
expression vector (p-CMVβ) and after 24 hours incubated with ligand (250pM TGFβ1, 250
pM TGFβ2, or 5nM BMP2). 24 hours after ligand addition the supernatant was assayed for
alkaline phosphatase. β-galactosidase activity was used to normalize alkaline phosphatase
activity.

Transwell Invasion Assay
Invasion assay performed using a collagen pad in a transwell as described in [16].

Results

Transcriptional profiles of Tgfbr3+/+ and Tgfbr3-/- cells confirm epicardial
cell identity and ligand response
We undertook a transcriptional profiling approach to examine the genes downstream of
TGFβR3 in epicardial cells in vitro. This system was chosen since it provides defined pheno-
typic endpoints to contrast between genotypes and different ligand incubation groups (Fig 2A).
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Tgfbr3+/+ and Tgfbr3-/- epicardial cells were incubated for 72 hours with VEH or ligands
known to drive TGFβR3-dependent invasion (TGFβ1, TGFβ2, BMP2) [25]. After incubation
RNA was harvested and analyzed by RNA-seq as described. More than 24 million reads were
obtained for each group (VEH, TGFβ1, TGFβ2, BMP2) in each genotype (Fig 2B–Genes). Over
13,900 genes were significantly expressed (Reads>10) in each dataset (Fig 2B–Reads). Of these
genes, we observed that markers of embryonic epicardial cells (Wt1 [45], Tbx18 [46], Sema3d
[14], Scx [14]) were expressed in all data sets (Fig 3A) but markers of endothelial (Cdh5 [47],
Pecam1 [48], Tie1 [49]) or myocardial (Tnni2 [50, 51], Tnni3 [51, 52]) lineages were not (Fig
3). Sema3a and Scx expression were confirmed with qRT-PCR (S3 Fig). The expression profile
observed confirms the epicardial identity of these cells.

We have previously reported that TGFβ1 and TGFβ2 promote loss of epithelial character,
invasion, and smooth muscle differentiation defined as the increased expression of the smooth
muscle markers α-Sma, Sm22α, and Cnn1 (reviewed [53]) in Tgfbr3+/+ and Tgfbr3-/- epicardial
cells (TGFβ2 depicted in Fig 1C). BMP2 promotes loss of epithelial character and invasion but
not smooth muscle differentiation [26]. RNA-seq data sets demonstrated that the level of
expression of α-Sma, Sm22α, and Cnn1 were>2-fold higher in TGFβ1- and TGFβ2-incubated
cells of each genotype (Fig 3B). BMP2 incubation resulted in a considerably lower induction of
smooth muscle markers (Fig 3B). Hundreds of genes had>2-fold increased or decreased
expression after TGFβ1 or TGFβ2 incubation (Fig 3B). Far fewer genes were>2-fold differen-
tially expressed after BMP2 incubation (Fig 3B) which may be at least partially due to the
inability of BMP2 to induce smooth muscle differentiation. Of note, fewer genes were induced
with TGFβ1 or TGFβ2 incubation in Tgfbr3-/- cells when compared to Tgfbr3+/+ cells, while the
opposite was found with BMP2 incubation. This transcriptional profile of Tgfbr3+/+ and

Fig 2. Tgfbr3-/- epicardial cells have dysregulated proliferation, apoptosis, and invasion. (A) Summary of the
phenotypes of Tgfbr3+/+ and Tgfbr3-/- epicardial cells in vitro. EC—epithelial character, SM Diff.- smooth muscle
differentiation. (B) RNA-seq analysis of Tgfbr3+/+ and Tgfbr3-/- epicardial cells incubated with ligand for 72 hours.
Reads—the total number of mapped sequences for each of the 8 groups (in duplicate). Genes—the total number of
genes with a significant number of reads (>10) mapped.

doi:10.1371/journal.pone.0159710.g002
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Tgfbr3-/- epicardial cells confirms both the epicardial identity and the known response of these
cells to ligand. Therefore, we used these data sets for further analysis towards delineating the
downstream signaling pathways of TGFβR3 in the epicardium.

Dysregulation of gene expression in epicardial cells lacking TGFβR3
To ascertain the genes differentially regulated after the loss of Tgfbr3, we compared the expres-
sion profiles of Tgfbr3+/+ and Tgfbr3-/- epicardial cells incubated with VEH, TGFβ1, TGFβ2, or
BMP2. We observed hundreds of genes>2-fold (p<0.001) differentially regulated between
genotypes in cells incubated with VEH (604), TGFβ1 (515), TGFβ2 (553), or BMP2 (632) (Fig
4A; S1–S4 Tables). The overlap between these>2-fold differentially expressed gene lists were
plotted (Fig 4B) identifying 129 genes similarly dysregulated across all groups. This list of
genes is defined as those that are differentially expressed after the loss of Tgfbr3 regardless of
ligand incubation. To gain a better understanding of the biological processes these genes may
be associated with, Gene Ontology (GO) analysis was undertaken using Database for

Fig 3. Tgfbr3+/+ and Tgfbr3-/- epicardial RNA-seq datasets confirm cell identity and differential ligand response. (A) Cells express
epicardial markers. Mean normalized reads between replicates and standard error are depicted. (B) Smooth muscle markers are markedly
induced with TGFβ1 and TGFβ2 compared to BMP2 incubation. Fold is relative to VEH for each genotype. (C) Endothelial or myocardial markers
are not expressed at significant levels (< 2 normalized reads). Mean normalized reads between replicates and standard error are depicted. (D)
Genes >2-fold differentially expressed after ligand treatment compared to vehicle are depicted. Fewer genes are induced by incubation with
TGFβ1–2 treatment in Tgfbr3-/- epicardial cells compared to Tgfbr3+/+, while the opposite is true with BMP incubation.

doi:10.1371/journal.pone.0159710.g003
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Annotation, Visualization, & Integrated Discovery (DAVID) software [54]. GO analysis identi-
fied enriched biological processes (p<0.0001) associated with cell adhesion and extracellular
structure organization indicating a potential defect in cell interaction with the ECM, a vital
component of cell invasion (Fig 4C–Top). In order to understand how these genes may inter-
act, Ingenuity Pathway Analysis (IPA) software (www.ingenuity.com) was used to perform
Gene Regulatory Network (GRN) analysis. An example network is depicted (Fig 4C–Bottom)
which revealed TGFβ and Notch signaling pathways [55], both known important regulators of
epicardial cell behavior and subsequent coronary vessel development. We also identified sig-
naling pathways previously unexamined in epicardial development. For example, NF-kB sig-
naling emerged as a central node in this analysis providing a candidate for further evaluation.

To gain a more detailed understanding of the genes dysregulated after loss of TGFβR3, we
examined genes with dysregulated expression in specific ligand incubation groups. When con-
sidering the overlap between genes in at least any two groups (VEH, TGFβ1, TGFβ2, or BMP2)
that are similarly>2-fold differentially expressed between genotypes (Fig 4B), we observed
that there are many more genes shared between TGFβ1-TGFβ2 (198) and VEH-BMP2 (191)
than any other comparison (for example; VEH-TGFβ1 (10), BMP2-TGFβ2 (22)). This may
reflect the fact that both TGFβ1 and TGFβ2 induce smooth muscle differentiation. GO analysis

Fig 4. RNA-seq analysis identifies genes dysregulated in Tgfbr3-/- epicardial cells. (A) (Left) The number of
genes >2-fold (p<0.001) differentially expressed between Tgfbr3+/+ and Tgfbr3-/- epicardial cells for each group.
(Right) The number genes similarly dysregulated within selected groups that were also annotated in the IPA
database are shown with genes found in each. (B) The number of overlapping genes >2-fold differentially regulated
(p<0.001) was determined and mapped. 129 genes were similarly dysregulated across all groups. (C) (Top) Gene
ontology analysis of these 129 genes by DAVID revealed a significant (p<0.0001) enrichment of genes associated
with specific biological processes. emb.- embryonic. (Bottom) A representative network generated by gene
regulatory network analysis of the 129 genes using Ingenuity Pathway Analysis software is depicted. Green-
expressed higher inTgfbr3+/+, Red- expressed higher in Tgfbr3-/-.

doi:10.1371/journal.pone.0159710.g004
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of the 198 genes uniquely dysregulated in Tgfbr3-/- cells after TGFβ1 and TGFβ2 incubation
identified vasculature development as the most enriched biological process (p<0.001)
(Table 1). This analysis is consistent with altered vascular development in the epicardium after
loss of Tgfbr3. However, processes associated with vascular development were not found to be
significantly enriched by GO analysis in the 191 genes uniquely>2-fold dysregulated between
genotypes with VEH and BMP2 incubation or in the 221 genes uniquely dysregulated with
BMP2 incubation (Table 1).

Although we have reported that TGFβ2 promotes loss of epithelial character and smooth
muscle differentiation via ALK5 signaling and BMP2 promotes only the loss of epithelial char-
acter via ALK3 signaling, both ligands require TGFβR3 to mediate invasion [26]. To gain a bet-
ter understanding of how TGFβ and BMP signaling are impacted by the loss of Tgfbr3, we
examined genes>2-fold differentially expressed between Tgfbr3+/+ and Tgfbr3-/- epicardial
cells incubated with TGFβ2 or BMP2. GO analysis identified that biological processes associ-
ated with blood vessel development and angiogenesis were enriched (p<0.0001) in TGFβ2 but
not BMP2 gene lists (genes including Fgf2 and Vegfc) (Fig 5A). Thus, while TGFβ induces
smooth muscle differentiation in Tgfbr3-/- cells, there remain defects in the signaling networks
associated with formation of the vasculature. Biological processes enriched in both of these
TGFβ2 and BMP2 gene lists include processes associated with cell adhesion, extracellular
matrix (ECM) organization, and proliferation (Fig 5A and 5B). These results are consistent
with the known epicardial phenotype of Tgfbr3-/- embryos [15, 16].

To reveal interactions, genes>2-fold differentially expressed between genotypes after
TGFβ2 or BMP2 incubation were used to generated GRNs using IPA software. Example net-
works are depicted in Fig 5C and 5D. The TGFβ2 network features predicted proteins known
to be located in the ECM that regulate cell-ECM interactions. Several of these genes have lower
levels of expression in Tgfbr3-/- cells compared to Tgfbr3+/+ cells (green nodes). Also present
are several genes encoding cytoplasm and plasma membrane proteins that are expressed at
higher levels in Tgfbr3-/- epicardial cells compared to Tgfbr3+/+ cells (red nodes). These genes

Table 1. GO Analysis of Genes >2-fold Differentially Expressed Between Genotypes Unique to Spe-
cific Ligand Incubation Groups.

GO Term p-value

TGFβ1 + TGFβ2

GO:0001944~vasculature development 3.71E-04

GO:0000122~negative regulation of transcription from RNA polymerase II promoter 0.001014

GO:0032963~collagen metabolic process 0.001046

GO:0006357~regulation of transcription from RNA polymerase II promoter 0.001059

GO:0001525~angiogenesis 0.001153

VEH + BMP2

GO:0022037~metencephalon development 0.017354

GO:0050900~leukocyte migration 0.018991

GO:0030902~hindbrain development 0.043128

GO:0042127~regulation of cell proliferation 0.048931

GO:0008284~positive regulation of cell proliferation 0.051412

BMP2

GO:0007242~intracellular signaling cascade 1.63E-04

GO:0009069~serine family amino acid metabolic process 0.001428

GO:0006534~cysteine metabolic process 0.002140

GO:0007188~G-protein signaling, coupled to cAMP nucleotide second messenger 0.002451

GO:0030534~adult behavior 0.002719

doi:10.1371/journal.pone.0159710.t001
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are associated with epithelial sheet stability and adhesion, for example Krt18 and Krt8, whose
expression pattern was confirmed using qRT-PCR (S3 Fig). The BMP2 network also features
genes that are expressed at higher levels in Tgfbr3+/+ cells whose proteins are known to associ-
ate with the plasma membrane to regulate cell adhesion and cell migration (Lin7a [56], Amot

Fig 5. Gene regulatory network analysis identifies NF-kB signaling as a central node.Genes >2-fold
(p<0.001) differentially expressed between Tgfbr3+/+ and Tgfbr3-/- epicardial cells incubated with either TGFβ2 (A)
or BMP2 (B) were subjected to gene ontology analysis (using DAVID software, p<0.0001). (C-D) NF-kB signaling
(orange circle) is a central node in representative networks generated by gene regulatory network analysis (using
Ingenuity Pathway Analysis software). Green- expressed higher inTgfbr3+/+, Red- expressed higher in Tgfbr3-/-.
(E) The distribution of the predicted protein location in the cell is depicted (proteins with unknown location are not
shown).

doi:10.1371/journal.pone.0159710.g005
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[57]). Nodes associated with ECM protein synthesis (Csgalnact1 [58]) or post translation mod-
ification of receptors that interact with ECM (Chst7 [59]) were also observed in the BMP2 net-
work and the induction of Chst7 in immortalized epicardial cell was confirmed using qRT-PCR
(S3 Fig). These networks indicate a deficit in the ability of cells to interact with the ECM and a
potential defect in cell motility. NF-kB was a central node in not only the TGFβ2 and BMP2 net-
works (Fig 5C and 5D–Orange circle), but also in GRNs derived from genes differentially
expressed between genotypes with VEH or TGFβ1 incubation (S4 Fig). We identified several
genes known to be downstream of NF-κB signaling that were differentially regulated in each
ligand incubation group (S5A–S5D Fig) when compared between genotypes. A table depicting
the overlap between these genes is shown (Fig 6A–Top). GRN analysis indicates that NF-kB sig-
naling may be dysregulated with loss of TGFβR3 in epicardial cells. The dysregulated NF-kB sig-
naling in both TGFβ2 and BMP2 gene lists, where a common phenotype is loss of invasion,
suggests that NF-kB signaling may regulate cell invasion in response to these ligands.

NF-kB signaling is dysregulated in Tgfbr3-/- epicardial cells in vitro
To test the hypothesis that TGFβR3 promotes NF-kB signaling to regulate epicardial cell inva-
sion we examined if NF-kB activity was induced by TGFβ2 or BMP2 ligand incubation in

Fig 6. Tgfbr3-/- epicardial cells fail to activate the NF-kB signaling pathway. (A) (TOP) Genes dysregulated in
each group (>2-fold, p<0.001) were counted. (BOTTOM) Shared targets of NF-kB signaling dyregulated in all
groups are shown. Red—expressed higher inTgfbr3+/+, Green—expressed higher in Tgfbr3-/-. (B) Cells
transfected with an NF-kB responsive SEAP reporter construct and incubated with VEH, TGFβ1, TGFβ2, or BMP2
revealed the inability of Tgfbr3-/- cells to induce NF-kB signaling. (C) Incubation of Tgfbr3+/+ epicardial cells in a
transwell invasion assay with an NF-kB inhibitor (BMS345541) significantly reduced invasion (* = p < .01) in
response to ligands known to promote Tgfbr3-dependent invasion.

doi:10.1371/journal.pone.0159710.g006
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epicardial cells in vitro (Fig 6B). Immortalized epicardial cells incubated with TGFβ2 or BMP2
increased NF-kB activity compared to VEH in Tgfbr3+/+ epicardial cells as described [44].
TGFβ2 or BMP2 ligand incubation failed to induce NF-kB activity in Tgfbr3-/- cells (Fig 6B).
To determine if NF-kB signaling was required for epicardial cell invasion in vitro, we per-
formed a collagen pad, transwell invasion assay with TGFβ1, TGFβ2, and BMP2 in the pres-
ence or absence of the NF-κB inhibitor, BMS345541. BMS345541 (10 μm) significantly
decreased TGFβ1-, TGFβ2-, or BMP2-induced invasion in Tgfbr3+/+ cells when compared to
VEH (Fig 6C). Together these data demonstrate that NF-kB signaling is dysregulated in
Tgfbr3-/- epicardial cells and that NF-kB is required for epicardial cell invasion in vitro. These
data support the hypothesis that TGFβR3 promotes NF-kB activity to regulate epicardial cell
invasion.

Discussion

Transcriptional profiling of epicardial cells
We developed a transcriptional profiling strategy using immortalized, embryonic epicardial
cells in vitro to identify genes and signaling pathways downstream of TGFβR3 that regulate cell
invasion. Previous studies have profiled gene expression in adult epicardial cells [60, 61], the
proepicardium [62], and primary epicardial cells (E12.5) [63] using microarrays, but a compre-
hensive transcriptional profiling of embryonic epicardial cells has been lacking. Additionally,
our choice of this system allows for a first systematic examination of the genes and signaling
pathways regulated by TGFβR3.

Tgfbr3-/- epicardial cells have altered expression of ECM associated
genes
GO and GRN analysis of genes whose expression was>2-fold dyregulated between Tgfbr3+/+

and Tgfbr3-/- cells for each ligand incubation group revealed biological processes associated
with ECM production, ECM binding, cell adhesion, and invasion. The dysregulation of gene
expression associated with these processes is consistent with the known defects identified after
loss of Tgfbr3 in vivo and in vitro. Epicardial cell abnormalities in Tgfbr3-/- embryos include
expansion of the subepicardial space and a hyperplastic, irregular epicardium, both of which
suggest defects in epicardial cell interactions with the ECM [15]. Invasion of epicardial cells is
also defective in vivo and in vitro in cells lacking TGFβR3 [16]. Consistent with a defect in cell
interaction with the ECM, we observe that epicardial cells in vitro fail to invade in response to
high molecular weight HA [16, 64], a major ECM component of the subepicardial space [65].
CD44 is the cell surface receptor which binds HA and this interaction is important for epicar-
dial invasion [44]. Upregulated expression of the chondroitin sulfotransferase, Chst7, is associ-
ated with increased chondroitin sulfation of CD44 and decreased CD44-HA binding in
multiple cell types [59, 66, 67]. Chst7 had markedly increased expression (>4-fold) in Tgfbr3-/-

cells when compared to Tgfbr3+/+ cells across all ligand incubation groups. These data suggest
that the inability of Tgfbr3-/- cells to undergo invasion in respond to HA may result from
increased chondroitin sulfation of CD44.

The myocardium and proepicardium both contribute to the ECM contained in the subepi-
cardial space [65, 68], yet the exact makeup and source is unknown. Tgfbr3-/- epicardial cells
show dysregulated expression of genes encoding proteins found in the ECM, suggesting that
epicardial contributions to the ECM are altered after loss of TGFβR3.Mgp, Eln, and Tnc have
decreased expression in Tgfbr3-/- cells when compared to Tgfbr3+/+ cells, whileMatn4 and Emi-
lin1 have increased expression irrespective of ligand. Alterations in the expression of specific
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genes were also found to be ligand-specific. Versican is an ECM component contained in the
supepicardial space [69] that promotes cell invasion in some cancer cells (reviewed [70]) and is
required for endocardial cushion formation and subsequent EMT [71, 72]. Versican has
>2-fold higher expression after ligand (TGFβ1, TGFβ2, BMP2) incubation when compared to
VEH in Tgfbr3+/+ cells. Ligand induction of Versican expression is decreased in Tgfbr3-/- cells
(S3 Fig), demonstrating that Versican expression is dependent on Tgfbr3-ligand interaction.
Together, these data suggest the defects in coronary vessel development are due to both the
altered response to, and expression of, ECM components by epicardial cells following the loss
of Tgfbr3.

TGFβ- and BMP-mediated gene expression programs are dysregulated
in Tgfbr3-/- epicardial cells
Distinct differences were observed in dysregulated gene expression between epicardial cells
incubated with BMP and TGFβ ligands after loss of TGFβR3. Analysis of the genes dysregu-
lated between Tgfbr3+/+ and Tgfbr3-/- epicardial cells revealed potentially different mechanisms
between BMP2 and TGFβ1 or TGFβ2 mediated-GRNs that may underlay a defect in cell inva-
sion. BMP2 is important in the specification and maintenance of proepicardial cell identity
[73], directed proepicardial cell migration [74], and epicardial cell loss of epithelial character
and invasion [25]. GRNs generated from the genes dysregulated between genotypes after
BMP2 incubation revealed a grouping of genes encoding PDZ domain-containing proteins
that had decreased expression in Tgfbr3-/- epicardial cells when compared to Tgfbr3+/+ cells
(Amot, Cadm1, Cnksr3, Lin7a,Mpp6). Several of these genes (Amot [57, 75, 76], Cadm1 [77],
Cnksr3 [78], Lin7a [56, 79]) have been previously reported to promote cell migration but a role
in the epicardium has not been described. These observations are consistent with the known
role in BMP2 in directing epicardial migration and the decrease of invasion observed in
Tgfbr3-/- epicardial cells. These data also provide an intriguing set of candidate genes as the
PDZ domain of TGFβR3 and a protein that interacts with this domain, GIPC, are required for
TGFβR3-mediated invasion in vitro [16]. GRNs generated from the genes dysregulated
between genotypes after TGFβ1 or TGFβ2 incubation had different features from the BMP2
network. A large grouping of genes whose expression was reduced after loss of TGFβR3 was
localized to the extracellular space in the TGFβ1 and TGFβ2 networks. These genes were
involved in the production of ECM components (Eln), matrix degradation (Mmp3, Elastase),
and ECM organization (Mfap2). A different grouping of genes expressed at higher levels after
loss of TGFβR3 localized to the cytoplasm were associated with epithelial sheet stability and
non-motile cells (Krt8, Krt18). The GRNs are consistent with a population of cells with dysre-
gulated ECM interaction and reduced motility. In addition, genes in signaling pathways associ-
ated with vascular development and angiogenesis were dysregulated between genotypes with
TGFβ1 and TGFβ2 but not BMP2 incubation. This finding is particularly interesting as factors
secreted by the epicardium after injury to the heart are hypothesized to promote the formation
of new vessels in the impacted area [80]. To support proper coronary vessel development sig-
naling events must be tightly regulated in the epicardium in vivo. Our data demonstrates
TGFβR3 is an important component of the regulatory machinery that integrates TGFβ and
BMP signaling in epicardial cells.

Loss of TGFβR3 disrupts NF-κB signaling in embryonic epicardium
TGFβR3 is required for invasion promoted by TGFβ1, TGFβ2 and BMP2, suggesting that a
TGFβR3-dependent signaling mechanism that regulates invasion is shared between these
ligands. Our data predicts NF-kB signaling is dysregulated in Tgfbr3-/- epicardial cells. GRN’s
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generated from genes>2-fold differentially expressed between Tgfbr3+/+ and Tgfbr3-/- epicar-
dial cells across each ligand incubation group (VEH, TGFβ1, TGFβ2, BMP2) identified NF-kB
signaling as a central node. In support of a role for NF-kB signaling, genes known to be regu-
lated directly or indirectly downstream of NF-kB were also dysregulated. Incubation of epicar-
dial cells with TGFβ2 or BMP2 increased NF-kB activity in Tgfbr3+/+ but not in Tgfbr3-/- cells,
demonstrating that TGFβR3 is required for NF-kB activity in epicardial cells. Several mecha-
nisms may account for the ability of TGFβR3 to regulate NF-kB signaling. Previous studies
have found that TGFβR3 can suppress NF-kB signaling via interaction with β-arrestin2 [81].
IL-1β, an upstream regulator of NF-kB signaling, can suppress TGFβR3 signaling by binding to
TRAF6 which subsequently sequesters TGFβR3 from TGFβR2 [82]. Here, reduced NF-kB
activity may result from a>2-fold reduction in the expression of an important upstream regu-
lator of NF-kB signaling, Il-1r (reviewed [83]), in Tgfbr3-/- cells when compared to Tgfbr3+/+

cells. Reduced NF-kB activity may also result from decreased expression in Tgfbr3-/- cells of
Myosin Light Chain Kinase (Mylk) as seen in RNA-seq (S1–S4 Tables) and by qRT-PCR (S3
Fig). MYLK has recently been shown to promote activation of NF-kB signaling [84]. MYLK
kinase activity is required for MyD88 and IRAK4 complex formation, which in turn is required
to activate NF-kB downstream of lipopolysaccharide [85, 86], in lung endothelial cells [84].
Given the known roles ofMylk in regulating smooth muscle behavior [87], cell migration [88],
and a link to coronary artery disease [89], the elucidation of the regulatory interactions between
MYLK, TGFβR3, and NF-kB in epicardial cells may provide key insights into coronary vessel
development.

While TGFβR3 signaling has been previously reported to both inhibit [81, 90] and promote
[91] NF-kB signaling, a consistent fact in all of these studies is that a decrease in NF-kB activity
was coincident with decreased invasion. Here we used a small molecule inhibitor and showed
that NF-kB activity was required for epicardial cell invasion. In a recent, separate study [92],
we confirmed that invasion is dependent upon NFκB signaling and that Tgfbr3-/- cells lack
both invasion and NFκB activation. Overexpression of TGFβR3 in Tgfbr3-/- cells rescues
ligand-dependent invasion that is sensitive to NFκB inhibitors. Further, endocardial cell inva-
sion, a TGFβR3-dependent process [93], is decreased by the inhibition of NFκB activity. These
data suggest that NF-kB is a shared signaling pathway downstream of ligand and that TGFβR3
interaction is required for cell invasion. Therefore, we propose that the disruption of TGFβR3
regulated NF-kB signaling is a mechanism responsible for the loss of invasion in epicardial
cells and ultimately failed coronary vessel development in Tgfbr3-/- embryos.

Supporting Information
S1 Fig. Variability of RNA-seq data sets. The reads for the two biological replicates (n = 1,
n = 2) for each group (VEH, TGFβ1, TGFβ2, BMP2) in Tgfbr3+/+ (A-D) or Tgfbr3-/- (E-H)
were plotted against each other. There was a high degree of agreement in Tgfbr3+/+ (A-D)
(R>0.87) or Tgfbr3-/- (E-H) (R>0.89) datasets. These comparisons support a high degree of
agreement between biological replicates.
(TIF)

S2 Fig. Comparison of differential gene expression between biological replicates. Plots
mapping the fold (log base 2) difference>2-fold in expression between VEH and ligand incu-
bated groups in Tgfbr3+/+ (A) or Tgfbr3-/- (B) in biological replicates (X-axis: n = 1, Y-axis:
n = 2) shown. Genes that have agreement, defined as having>2-fold (p<0.001) increased or
decreased expression in a specific comparison in both replicates, are mapped to quadrants I
(upper right) or III (lower left) of a plot. Genes that show disagreement, defined as having
>2-fold (p<0.001) increased expression in a tissue in one replicate and decreased in another
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(or vis versa), are mapped to quadrants II (upper left) or IV (lower right). There was a high
degree of agreement in Tgfbr3+/+ (A) (R>0.85) or Tgfbr3-/- (B) (R>0.89) datasets across all
comparisons [94]. Variability between biological replicates was determined.
(PDF)

S3 Fig. Genes with dysregulated expression in Tgfbr3-/- epicardial cells. Differential gene
expression between Tgfbr3+/+ and Tgfbr3-/- epicardial cells observed in RNA-seq data was eval-
uated using qRT-PCR analysis (n = 3). Expression was normalized to the constitutive expres-
sion level of GAPDH RNA and the ratio of transcriptional abundance found in Tgfbr+/+ to
Tgfbr-/- is depicted.
(TIF)

S4 Fig. Gene regulatory network analysis identifies NF-kB signaling as a central node.
Genes>2-fold (p<0.001) differentially expressed between Tgfbr3+/+ and Tgfbr3-/- epicardial
cells incubated with either TGFβ1 (A) or VEH (B) were subjected (A) to gene ontology analysis
(using DAVID software, p<0.0001). (C-D) NF-kB signaling (orange circle) is a central node in
representative networks generated by gene regulatory network analysis (using Ingenuity Path-
way Analysis software). Green- expressed higher inTgfbr3+/+, Red- expressed higher in
Tgfbr3-/-.
(PDF)

S5 Fig. Genes downstream of NF-kB signaling dysregulated with loss of Tgfbr3 in epicardial
cells in vitro. Genes identified as being>2-fold differentially regulated between Tgfbr3+/+ or
Tgfbr3-/- epicardial cells incubated with (A) VEH, (B) BMP2, (C) TGFβ1, or (D) TGFβ2. Solid
lines denote a direct interaction while dotted lines denote indirect interaction between proteins.
Green- higher expression in Tgfbr3+/+. Red- higher expression in Tgfbr3-/-.
(PDF)

S1 Table. Genes>2-fold dysregulated between Tgfbr3+/+ and Tgfbr3-/- epicardial cells after
VEH incubation. Genes identified as being>2-fold differentially regulated between Tgfbr3+/+

or Tgfbr3-/- epicardial cells incubated with VEH. Genes listed in descending order of signifi-
cance for each of 2 biological replicates. For each gene, p-value, location in cell, and function
are listed.
(XLSX)

S2 Table. Genes>2-fold dysregulated between Tgfbr3+/+ and Tgfbr3-/- epicardial cells
after TGFβ1 incubation. Genes identified as being>2-fold differentially regulated between
Tgfbr3+/+ or Tgfbr3-/- epicardial cells incubated with TGFβ1. Genes listed in descending order
of significance for each of 2 biological replicates. For each gene, p-value, location in cell, and
function are listed.
(XLSX)

S3 Table. Genes>2-fold dysregulated between Tgfbr3+/+ and Tgfbr3-/- epicardial cells
after TGFβ2 incubation. Genes identified as being>2-fold differentially regulated between
Tgfbr3+/+ or Tgfbr3-/- epicardial cells incubated with TGFβ2. Genes listed in descending order
of significance for each of 2 biological replicates. For each gene, p-value, location in cell, and
function are listed.
(XLSX)

S4 Table. Genes>2-fold dysregulated between Tgfbr3+/+ and Tgfbr3-/- epicardial cells
after BMP2 incubation. Genes identified as being>2-fold differentially regulated between
Tgfbr3+/+ or Tgfbr3-/- epicardial cells incubated with BMP2. Genes listed in descending order
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of significance for each of 2 biological replicates. For each gene, p-value, location in cell, and
function are listed.
(XLSX)
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