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Abstract

Purpose of review Tight junctions (TJs) are specialized

differentiations of epithelial and endothelial cell mem-

branes. TJs play an important role in the adhesion of cells

and their interaction with each other. Most cancers origi-

nate from epithelial cells. Thus, it is of significance to

examine the role of TJs in the tumor microenvironment

(TME) and how they affect cancer metastasis.

Recent findings In epithelium-derived cancers, intactness

of the primary tumor mass is influenced by intercellular

structures as well as cell-to-cell adhesion. Irregularities of

these factors may lead to tumor dissociation and subse-

quent metastasis. Low expression of TJs is observed among

highly metastatic cancer cells.

Summary In this review, we summarized findings from

current literature in consideration of the role of TJs in

relation to the TME and cancer. Deeper understanding of

the mechanisms leading to TJ dysregulation is needed to

facilitate the design and conceptualization of new and

better therapeutic strategies for cancer.

Keywords Tight junctions � Intercellular permeability �
Tumor microenvironment � Metastasis � Cancer

Introduction

Since epithelial cells line hollow organs, they are prone to

damage and are much exposed to carcinogens in the

environment. For this reason, they demand high renewal

rate. Due to their vulnerability, about 90 % of human

cancers originate from the epithelial tissues [1•].

Constant remodeling of cell-to-cell contacts takes place

for renewal and replacement of old or damaged cells. In

addition, this process helps to incorporate newly differen-

tiated cells without compromising the integrity of the

barrier [2]. In epithelium-derived cancers, intactness of the

primary tumor mass is influenced by intercellular structures

as well as cell-to-cell adhesion [3]. These factors should be

maintained since irregularities may lead to tumor dissoci-

ation and subsequent metastasis [4]. Tight junctions (TJs)

are among those that preserve cell adhesiveness in this

tumor mass. Therefore, alterations in the TJs present could

result to split of the tumor mass [5]. In addition, TJs also

suppress cell proliferation [6].

Owing to these facts, research has focused greatly in

drawing the link between TJs and the tumor microenvi-

ronment (TME). In this review, we surveyed current lit-

erature in consideration of the role of TJs in relation to the

TME and cancer.

Characteristics of Tight Junctions

Tight junctions (TJs) are specialized differentiations of

epithelial cell membranes [5]. They form a continuous

intercellular barrier between epithelial cells and separate

tissue spaces which regulate selective transport across the

epithelium [7•].
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TJs serve various functions. Foremost, they seal inter-

cellular spaces and separate the apical and basolateral fluid

compartments of epithelia and endothelia. They regulate

epithelial and endothelial cell permeability and act as

points of contact between the plasma membranes of

neighboring cells, occluding the extracellular space. They

also act as cell-to-cell adhesion molecules. They play a role

in cell adhesion and paracellular barrier functions and form

an intercellular barrier and an intramembrane diffusion

fence [5]. The diffusion of solutes is regulated by TJs

through size and charge selectivity and differs depending

on epithelial cell type. TJs are impermeable to most

macromolecules but are permeable to inorganic ions. As

such, TJs, together with adherens junctions and desmo-

somes, maintain the integrity of the epithelial cell layer and

protect multicellular organisms from the external envi-

ronment [5]. In addition, they play a role in cell polarity,

differentiation, growth and proliferation through their

involvement in cell signaling processes. They are sug-

gested to be involved in the regulation of cell proliferation

by controlling epithelial cell microenvironment [8]. Due to

this, they are able to suppress malignant phenotype of cells

during tumorigenesis. Furthermore, they function as cell

migration barrier. Their functions are shown to be regu-

lated by phosphorylation. A link between barrier disruption

due to TJ dysfunction and disease has long been estab-

lished [9].

The main cause of lethality among cancer patients is

metastasis [10]. Metastasis takes place with various pre-

requisites. Primarily, cancer cells need to be able to sur-

mount the barriers, mostly epithelial and endothelial tissues

consisting of cells bound together by tight junctions (TJs).

Dissociated cells provide easy access to metastasizing

cancer cells. Therefore, the intactness of TJs helps prevent

cell dissociation [11, 12].

Tight Junctional Components

Transmembrane proteins occludin, claudins, junctional

adhesion molecules (JAMs), and tricellulin as well as

intracellular scaffold proteins like zonula occludens (ZO)

and cingulin comprise the molecular make-up of tight

junctions (TJs).

Transmembrane Proteins

Occludin

The first discovered molecular component of the TJs is

occludin [13]. Although it was first suggested to form the

structural unit of the TJs, it has later been found out that

embryonic stem cells lacking occludin are still capable of

forming TJ structures which shows that occludin is not

indispensable for TJ structural assembly. To demonstrate

this, occludin null mice were born without any signs of

abnormal phenotype but later showed growth retardation.

The TJs appear morphologically unaltered but histological

abnormalities were observed in several tissues [14]. In

addition, occludin knock-out mice manifest atrophic gas-

tritis, testicular atrophy, male infertility, salivary gland

dysfunction, osteoporosis, and brain calcifications [14, 15].

Apical-basal polarity is used to sense cell–cell contacts

on epithelial surfaces. It has been observed that hippo

pathway elements co-localize with occludin, creating a

possible sensor system in pancreatic epithelial cells which

may regulate their proliferation [16•]. It has been reported

that epigenetic silencing of occludin could promote

tumorigenic and metastatic properties of cancer cells [17].

For example, occludin was shown to inhibit Raf-1 signal-

ing which induces tumor growth [18]. A low level of

occludin expression results to an increased progression and

metastatic potential in breast, ovarian, endometrial, and

liver carcinoma [19–22]. The increased metastatic poten-

tial, however, might not be due to occludin downregulation

but the activation of epithelial to mesenchymal transition

(EMT) which leads to downregulation of adhesion-asso-

ciated proteins [23].

Claudins

Of the various proteins classified as TJs, the claudin family

made up of transmembrane proteins appears to be of major

significance for TJ selectivity. Expression of many types of

claudins is altered in cancer cells [5]. The expression of

one particular claudin may be upregulated or downregu-

lated depending on the type of cancer. Among the various

members of the claudin family, claudin-1, -3, -4, and -7 are

among the most frequently dysregulated both at the tran-

scriptional and post-transcriptional levels [24]. Physiologic

plasticity of the TJ involves claudin switching which is the

adaptability of claudin expression and gene-specific

retention in the TJ [25•].

Claudins are found to be involved in tumor progression

and play a role in epithelial to mesenchymal transition. The

expression pattern of claudins influences tumor behavior in

various types of epithelial neoplasia. For example,

decreased expression of claudin-1, -2, and -7 coincides

with more intrusive breast carcinoma [26–29]. Meanwhile,

overexpression of claudin-3 and -4 is found in several

neoplasias such as in ovarian, breast, pancreatic, and

prostate cancers [24]. Also, in order to clarify its role in

tumor progression, the role of claudin-7 in esophageal

squamous cell carcinoma was analyzed. Results proposed

that the reduced expression of claudin-7 could lead to

tumor progression and subsequent metastatic events [30].
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Junctional Adhesion Molecules

Junctional adhesion molecules (JAMs) are located in cell-

to-cell contacts such as tight junctions. They are expressed

by leukocytes and platelets as well as by epithelial and

endothelial cells [31]. They regulate cell interactions in the

immune system and tight junction formation in epithelial

and endothelial cells during the acquisition of cell polarity

[32]. JAMs are involved in the EMT, a process that plays a

vital role in the invasiveness and metastasis of various

cancers. It has been shown that JAM-A upregulation could

induce EMT and when JAM-A expression is silenced,

EMT is reversed [33•].

Plaque Proteins

Zonula Occludens

Zonula occludens (ZO) are scaffold-forming intracellular

plaque proteins located between the transmembrane pro-

teins and the actin cytoskeleton [34]. They regulate the

assembly of cellular junctions. They bind actin, occludin,

and claudins [35].

Several ZO are involved in cell proliferation. For

instance, ZO-1 is demonstrated to interact with so-called

ZO-1-associated nucleic acid binding (ZONAB) proteins, a

Y-box transcription factor. This implies that ZO-1 is

involved in gene expression regulation, cell proliferation,

and morphogenesis of epithelial tissue [36].

Decreased expression of ZO-1 was shown to correlate

with increased invasiveness in breast, colorectal, and

digestive tract cancers [37]. It is also found to be involved

in tumor invasion-associated EMT implicating its role in

tumor growth process [38].

Tumor Microenvironment

The tumor microenvironment (TME) is composed of all the

normal cells, blood vessels, signaling molecules, and

extracellular matrix (ECM) surrounding the tumor cells. It

is made up of malignant and nontransformed cells that

interact with each other such as endothelial cells, pericytes,

fibroblasts, adipocytes, and also contains cells of the

immune system, the tumor vasculature, and lymphatics

(Fig. 1) [39•].

The TME has the ability to influence tissue function as

well as the development of malignancies [40]. The

interaction as well as the penetration of both the

endothelium and mesothelium by a tumor cell is a sig-

nificant step for tumor metastasis. In order for carcinoma

to invade, tumor cells need to be able to degrade the

underlying basement membrane as well as the

extracellular matrix (ECM) as a first step. The breakdown

could then lead to invasion of neighboring tissue par-

enchyma [41]. However, since the TME has ways by

which to maintain its normal conditions, this could only

be possible once the TME is altered. In this case, deviant

immune responses and altered homeostasis facilitate and

modulate tumorigenesis. For instance, when the tumor

acquires the capacity to bypass the means by which the

TME signals it to normalcy, intercellular interactions are

disrupted, forcing the TME to adapt to the growing tumor

[42•].

Cancer cells are not the only ones responsible for the

manifestation of disease. Instead, normal cell types both

resident and recruited to the TME contribute to the per-

sistence of cancer and cancer-related symptoms. For

instance, alterations in both tumor and endothelial cells are

essential for cancer cells to grow and metastasize. The

dysregulation of significant TJ proteins leads to the loss of

cell-to-cell association, cell contact inhibition that results

to uncontrolled growth, and loss of adhesion to the base-

ment as well as its degradation [43].

Low expression of TJs is observed among highly

metastatic cancer cells. On the other hand, weakly

metastatic tumor cells demonstrate increased TJ expres-

sion. Control of cellular proliferation involves various TJ-

associated proteins such as transmembrane, adaptor and

signaling proteins as well as transcription factors. When

the expression levels of these proteins are changed,

intercellular permeability is increased, polarity and con-

tact inhibition are lost and expression of growth-stimu-

latory genes in the nucleus increases. According to

research conducted on human tumors, there is a correla-

tion of the loss of functional TJs in cancer progression

and metastasis. In addition, it has also been shown that

some proteins associated with TJs suppress tumors and

regulate signal transduction which suggests the partici-

pation of TJ disruption in early carcinogenesis. It has

been observed that mutant mice that lack specific TJ

proteins develop hyperproliferative disorders [44]. The

location of epithelial cells allows their direct exposure to

the external environment making them prone to injury or

attack by toxins, microbes, and viruses. Damage in the

epithelial cells brings about loss of TJ integrity. This

becomes a cue for the cells to launch a repair program

involving cellular proliferative and migratory activities in

the damaged area. This is accompanied by TJ reassembly

in order to reform the epithelial layer. The loss of

adherence between epithelial cells during the process of

EMT allows them to become more motile and acquire

mesenchymal characteristics. Studies show that this

mechanism relates to a functional loss of E-cadherin [45].

Other events associated with EMT are loss of polarity

which takes place together with the loss of TJs [46].
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Tight Junctions in Different Tumorigenic Tissues

Tight junctions (TJs) are important in the regulation of

selective transport across the epithelium [7•]. For this

reason, their involvement in cell proliferation through

control of the epithelial cell microenvironment is impli-

cated [8]. They are thus suggested to affect metastasis of

tumorigenic cells. Expression of TJ-associated proteins is

shown to be dysregulated in various tumorigenic tissues

(Table 1).

Glioma and Glioblastoma

Gliomas are the most frequent tumors of the central ner-

vous system. They are associated with a poor prognosis and

high lethality. The blood–brain barrier (BBB) restricts the

delivery of therapeutics into the brain making most of the

systemically administered drugs ineffective in the brain

tumor treatment. Progression of glioma leads to structural

changes in endothelial cells of the BBB resulting in

enhanced permeability and brain edema [47]. Damaged

cerebrovascular endothelial cells cEND cultured in the

presence or absence of astrocytic factors, for example,

induced mRNA expression of inflammatory markers, alter

calcium ion levels and decreased tight junction proteins

claudin-5 and occludin expression [48]. Severe cerebral

edema is observed in most patients with glioma and it is a

main cause of mortality in glioma patients. Vasogenic

edema is caused by the disturbance of the BBB either by

the destruction of TJs or by the increase of endothelial

fenestrations and pinocytosis [49].

Glucocorticoids (GCs) are the most common molecules

used to treat tumor-associated cerebral edema [50]. GCs

regulate the BBB and target occludin, claudins and VE-

cadherin. Transactivation of certain target genes leads to

improved barrier properties of endothelial cells [51]. For

instance, at the cellular level, GCs have been shown to

strengthen the BBB properties by increasing the

Fig. 1 The tumor microenvironment (TME) and tight junctions

(TJs). The TME is composed of normal cells, blood vessels, signaling

molecules, and extracellular matrix (ECM) surrounding the tumor

cells. Both malignant and nontransformed cells interacting with each

other are present. Vital to this interaction are the TJs which regulate

selective transport across the cells
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transendothelial electrical resistance (TEER) of endothelial

monolayer and decreasing the paracellular permeability for

small and large molecules [52, 53]. TJs proteins occludin,

claudin-5, and ZO-1 have been identified as GC targets at

the BBB [52–56]. GC treatment leads to direct binding of

glucocorticoid receptor to glucocorticoid response ele-

ments in the occludin promoter or to activation and binding

of other transcription factors such as p54 [57, 58]. GC-

mediated claudin-5 increase was observed in brain

endothelial cells from different species and the induction of

claudin-5 was observed at the promoter, mRNA, and pro-

tein levels [53, 54, 58]. In addition, induction of other

BBB-associated claudins, claudin-1 and -12, was observed

in brain endothelial cells after GC treatment [59, 60]. VE-

cadherin, a component of adherens junctions, plays a role

in the formation and regulation of TJs and is also induced

by GC-treatment [61].

Glioma cells express high amounts of vascular

endothelial growth factor (VEGF). VEGF is induced by

hypoxia, promotes angiogenesis and increases BBB per-

meability. Increased levels of VEGF lead to down-regu-

lation of TJ proteins claudin-5 and occludin [62]. GCs also

modulate the expression of VEGF in brain tumor cells and

in brain endothelial cells contributing in this way to the

stabilization of the BBB [63]. Downregulation of claudin-1

and claudin-5 has been detected in human glioma and has

been associated with tumor progression [64, 65]. However,

the BBB in peripheral glioma remains essentially intact and

this is one of the reasons for the poor treatment efficacy of

this tumor [66].

Cutaneous Squamous Carcinoma

TJs in epidermis form a barrier to prevent diffusion of

molecules from and into the body. Claudin-1 knock-out

mice showed fetal dehydration from skin due to impaired

barrier function in the epidermis [67]. During the pro-

gression of skin tumorigenesis, changes in the expression

and distribution pattern of TJ-proteins have been observed.

Human cutaneous squamous carcinoma (SCC), its precur-

sor tumors and sun-exposed skin models showed broader

localization of ZO-1 and claudin-4 as well as downregu-

lation of claudin-1 in deeper epidermal layers at the TJs in

comparison to healthy skin [68–70]. In addition, SCC

showed complete loss of occludin at the TJ. This feature

seems to be common for different types of tumors.

Table 1 Regulation of tight junctional (TJ) proteins expression in various tumorigenic tissues

Tumor type Tight junctions References Tight junctions References

downregulated upregulated

Mammary gland adenocarcinoma Claudin 1 [63, 72•] Claudin 3 [24, 29, 75•]

Claudin 2 [27] Claudin 4 [24, 29]

Claudin 3 [72•]

Claudin 4 [72•]

Claudin 7 [28, 29, 73, 74]

Claudin 12 [72•]

ZO-1 [70, 76, 77, 78]

ZO-2 [70, 76, 77, 78]

Glioma/Glioblastoma Claudin 1 [64, 65]

Claudin 5 [64, 65]

Colorectal carcinoma Claudin 1 [86•] Claudin 2 [88]

Claudin 4 [86•]

Claudin 7 [86•]

ZO-1 [37]

Hepatocellular carcinoma Claudin 1 [81]

Pulmonary carcinoma Claudin 6 [94]

Prostatic carcinoma Claudin 3 [24]

Claudin 4 [24]

Cutaneous squamous carcinoma Claudin 1 [68, 69] Claudin 2 [68]

Claudin 4 [69, 70]

Occludin [69]

ZO-1 [7•, 69]
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Occludin downregulation is associated with decreased

epithelial adhesion and susceptibility to apoptosis [69].

Claudin-2 upregulation accompanied by claudin-1 down-

regulation was associated with tumor progression [68].

Mammary Gland Adenocarcinoma

Cell-to-cell contacts in the epithelium are not just static

points that hold the cells together since they consistently

undergo remodeling and incorporation of newly differen-

tiated cells. Although this does not lead to loss of barrier

function, alterations in TJs could impact breast cancer

progression due to modified cell polarity, cell fate, and cell

migration. The major characteristic of cancer is abnormal

proliferation. However, progression of cancer is not only

determined by rapid proliferation in tumor cells. It is also

due to other factors such as apoptosis resistance as well as

the ability to bypass senescence pathways. In addition,

individual TJ proteins may also play a role in modulating

breast cancer progression.

Impairment of functional control over polarity and cell

fate determination, or cell motility characteristics, may

result from alterations in the TJ complex at the onset of

breast cancer. Dysregulation of these cellular processes

could lead to breast cancer progression and metastasis. The

differentiation of the mammary gland is significant in the

reduction of the risk reduction for breast cancer. In one

study, a role for the estrogen receptor b (ERb-/-) in the

organization and adhesion of epithelial cells as well as for

differentiated tissue morphology was suggested. Findings

implicated that by facilitating terminal differentiation of

the mammary gland ERb could contribute to the risk

reduction for breast cancer [71].

In another study, functional regions of occludin in human

tissues and breast cancer cell lines were amplified. It has

been observed that tumor tissues have truncated or variant

signals of occludin. Moreover, expression of occludin in

the human breast cancer cell lines tested also varied. This

demonstrates the significance of occludin in TJ integrity

maintenance in breast tissues [22].

One study showed a link between the expression of

interleukin (IL)-18, reported to have a pro-tumor effect in

various cancers, and claudins in breast cancer migration.

This study showed that exogenous IL-18 could enhance

breast cancer cell migration and inhibit the expression of

claudin-1, 3, 4, and 12 in human breast cancer cell lineMCF-

7. Upon knocking down these claudins, all except claudin-1

increased breast cancer cell migration with claudin-12 gen-

erating the most effects. The results suggest that IL-18 is

important for the induction of breast cancer cell migration by

down-regulating claudin-12 and activating the p38 mitogen-

activated protein kinase (MAPK) pathway [72•]. Another

study showed that expression of claudin-7 is lower in

invasive ductal carcinomas of the breast compared to normal

breast epithelium [29]. In addition, reduced expression of

claudin-7 corresponds to a higher tumor grade as well as

metastatic disease [73]. Using immunohistochemistry and

tissue microarray, it was observed that claudin-7 is strongly

expressed in normal luminal epithelial cells of the breast

lobule compared to ductal carcinoma and invasive breast

carcinoma.Claudin-7was significantly lower or absent in the

carcinomas [74]. Still in another study conducted using two

breast cancer cell lines of metastatic origin (MCF-7 and

MDA-MB-415), a marked overexpression of claudin-3

protein was shown. When protein levels of claudin-3 were

suppressed, the rate of cellular motility decreased. These

results could indicate that claudin-3 overexpression may

play an important role in the disruption of TJ integrity

leading to enhanced cell motility which is a key determinant

of tumor progression [75•].

Meanwhile, lowZO-1 and ZO-2 expressionwere observed

to correlate with poor prognosis in breast cancer [70, 71,

76–78].

Prostatic Carcinoma

Like in many organs and tissues such as the brain, the

enteric epithelium or the testis where TJs abound due to the

presence of a barrier where they help to regulate barrier

function, it has been shown that TJs also exist in prostate

tissue due to the blood-prostate barrier [72•]. In one study,

the effect of hepatocyte growth factor (HGF) on TJ func-

tion in human prostate epithelial, prostate stem cell-like

and prostate cancer cell lines was evaluated. It has been

demonstrated that HGF could impact the metastasis of

prostate cancer. During this process, TJs play a vital role

and they are found to be regulated by HGF. TJ function

regulation by HGF was found to be dependent on cell

tumorigenicity [79•]. In another study, the overexpression

of claudins is implicated in the invasive potential of human

prostate cancer. The effects of flavonoids have been studied

and it was observed that they subdue claudin expression

which leads to suppression of cancer migration and inva-

sion [80].

Hepatocellular Carcinoma

Loss of TJs in the liver has been associated with malignant

transformation. Nonetheless, a growing body of evidence

reveals the upregulation of TJ protein expression in cancer

tissue and their role in cell invasion and metastatic pro-

gression. In hepatocellular carcinoma (HCC), overexpres-

sion of claudin-1 led to increased expression of

transcription factors regulating epithelial-mesenchymal

transition (EMT) of human liver cells [81]. However,

another study showed correlation of claudin-1
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downregulation and a poor prognosis in HCC. Claudin-7

mRNA overexpression was also detected in HCC. In this

case, overexpression of claudin-7 correlated with a better

prognosis among patients [82]. Downregulation of claudin-

5 expression in sinusoidal endothelial cells of HCC patients

was correlated with a poor prognosis [83].

Gastric/Colorectal Adenocarcinoma

Claudins are vital for the absorption of nutrients in the small

intestine [84]. In the same way, they are vital in cell prolif-

eration and transformation during cancer. For instance, in

colon cancer, claudin-1 was shown to promote transforma-

tion as well as metastatic behavior [85]. Expression of

claudin-1, -4, and -7 was found to decrease in colorectal

cancer. This implies critical effects on cell proliferation,

motility, invasion, and immune response against the tumor

[86•]. One study did an analysis of the allele frequencies on

three common single nucleotide polymorphisms (SNPs) in

the genes for claudin-1 and 7 in colon cancer patients. It was

observed that polymorphisms in both claudins investigated

are related to differentiation and tumor state in colon cancer

[87•]. On the other hand, deficiency in claudin-15 results to

megaintestine and a decreased paracellular ion permeability

of the intestinal epithelium. Nonetheless, no tumorigenesis

was detected among those exhibiting the phenotype [8].

Also, in colorectal cancer, it has been demonstrated that

resveratrol, a naturally occurring polyphenol, upregulates

intercellular junctions such as desmosomes, gap- and tight

junctions (claudin-2), and adhesionmolecules (E-cadherin).

On the other hand, it downregulates the NF-jB pathway.

These processes lead to inhibition of the EMT phenotype

[88]. In another study, CITED4, a transcriptional cofactor

deregulated in colorectal cancer, was knocked down via

shRNA-mediation in the colorectal cancer cell line SW480.

Changes in proliferation, apoptosis/cell cycle, migration,

invasion, colony formation, and adhesion were analyzed.

Decreased cellular proliferation and modulation of actin-

associated adherens junctions/TJs expression have been

observed [89].

Meanwhile, the function of junctional adhesion mole-

cules (JAMs) which comprise the integral parts of TJs in the

gastric epithelium and in gastric cancer cell proliferation,

invasion, and apoptosis was investigated. It has been shown

that JAM-A promotes the proliferation but inhibits apoptosis

of gastric cancer [90]. On the other hand, decreased ZO-1

expression was noted in the human digestive tract.

Pulmonary Carcinoma

The expression of TJ proteins such as claudins in different

lung tumors varies. For instance, occludin was found in

adenocarcinomas but not in squamous cell carcinomas,

small or large cell carcinomas [91]. Meanwhile, claudins

show variable patterns of expression in tumor cells.

Squamous cell carcinomas express claudin 1 but not

claudin 5 while adenocarcinomas express claudin 5 but not

claudin 1 [20]. Epithelial metastases of lung tumors

showed a 50–70 % expression of claudins 1, 2, 3, 4, and 5

and a 90 % expression of claudin 7 [92]. TJ proteins are

usually overexpressed in lung tumors. Besides TJ protein

overexpression, matrix metalloproteinases are also

increased which leads to spread of the tumor [93]. On the

other hand, immunohistochemical study of tissue from

patients with nonsmall cell lung cancer revealed low

claudin-6 expression indicative of a worse prognosis [94].

Nonetheless, permeability of pulmonary epithelium can be

governed by various factors. For example, in using human

alveolar epithelium cell line H441, it has been shown that

soluble factors obtained from human lung endothelial cell

line HPMEC-ST1.6R could influence the barrier properties

of the former [95]. Thus, in the TME where there is

interplay of different cell types, the possible effects that the

different interactions among these cells bring about need to

be further explored.

Cytokines, Tight Junctions, and the Tumor
Microenvironment

Dysfunction in the TME as well as the epithelium can be

crucial for carcinogenesis [96]. It is suggested that cancer

cases are triggered by mutation and inflammation, although

most cases have unknown origin [97]. Chronic inflamma-

tion could lead to cellular events that promote cell trans-

formation resulting to cancer formation. Inflammation

activates cytokine production within the TME [98]. There

is greater oxidative stress in the microenvironment sur-

rounding inflammation compared to normal. Inflammation

leads to expression of cytokines which in turn activates the

inflammatory cascade [97]. Moreover, cytokines contribute

to the promotion of cell tumor proliferation as well as

apoptosis inhibition and anti-tumor immunity suppression.

When epithelium surrounding the stroma is altered, it also

alters the stroma along with the mediators leading to TME

formation [99]. In the same manner, when TJs within the

TME are disrupted, cytokine-mediated perturbation of TJs

occurs which in turn leads to increased paracellular per-

meability [100] and promotes TJ remodeling [101].

Conclusions

The tumor microenvironment (TME) engages a complex

interaction among the component cells that comprise it.

Communication and cross-talk in the TME are maintained
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by the tight junctions (TJs). Dysregulation of TJs at the

TME could affect cell permeability which could influence

tumor metastasis. Hereof, deeper understanding of the

mechanisms surrounding TJ dysregulation is needed to

facilitate the design and conceptualization of new and

better therapeutic strategies for cancer.
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97. Brücher B, Jamall IS (2014) Cell-Cell Communication in the

Tumor Microenvironment, Carcinogenesis, and Anticancer

Treatment. Cell Physiol Biochem 34:213–243

98. Landskron G, Dela Fuente M, Thuwajit P, Thuwajit C, Hermoso

M (2014) Chronic Inflammation and Cytokines in the Tumor

Microenvironment. Journal of Immunology Research. 2014:19.

doi:10.1155/2014/149185

99. Quante M, Varga J, Wang TC, Greten FR (2013) The gas-

trointestinal tumor microenvironment. Gastroenterology

145(1):63–78. doi:10.1053/j.gastro.2013.03.052

100. Capaldo C, Nusrat A (2009) Cytokine regulation of tight junc-

tions. Biochimica et Biophysica Acta (BBA) -. Biomembranes.

1788(4):864–871

101. Capaldo C, Farkas A, Hilgarth R, Krug S, Wolf M, Benedik J

et al (2014) Proinflammatory cytokine-induced tight junction

remodeling through dynamic self-assembly of claudins. Mol

Biol Cell 25(18):2710–2719. doi:10.1091/mbc.E14-02-0773.99

Curr Pathobiol Rep (2016) 4:135–145 145

123

http://dx.doi.org/10.1155/2014/149185
http://dx.doi.org/10.1053/j.gastro.2013.03.052
http://dx.doi.org/10.1091/mbc.E14-02-0773.99

	Tight Junctions and the Tumor Microenvironment
	Abstract
	Purpose of review
	Recent findings
	Summary

	Introduction
	Characteristics of Tight Junctions
	Tight Junctional Components
	Transmembrane Proteins
	Occludin
	Claudins
	Junctional Adhesion Molecules

	Plaque Proteins
	Zonula Occludens


	Tumor Microenvironment
	Tight Junctions in Different Tumorigenic Tissues
	Glioma and Glioblastoma
	Cutaneous Squamous Carcinoma
	Mammary Gland Adenocarcinoma
	Prostatic Carcinoma
	Hepatocellular Carcinoma
	Gastric/Colorectal Adenocarcinoma
	Pulmonary Carcinoma

	Cytokines, Tight Junctions, and the Tumor Microenvironment
	Conclusions
	Open Access
	References




