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Abstract—Biomaterial vaccines offer cargo protection, tar-
geting, and co-delivery of signals to immune organs such as
lymph nodes (LNs), tissues that coordinate adaptive immu-
nity. Understanding how individual vaccine components
impact immune response has been difficult owing to the
systemic nature of delivery. Direct intra-lymph node (i.LN.)
injection offers a unique opportunity to dissect how the
doses, kinetics, and combinations of signals reaching LNs
influence the LN environment. Here, i.LN. injection was used
as a tool to study the local and systemic responses to vaccines
comprised of soluble antigen and degradable polymer par-
ticles encapsulating toll-like receptor agonists as adjuvants.
Microparticle vaccines increased antigen presenting cells and
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lymphocytes in LNs, enhancing activation of these cells.
Enumeration of antigen-specific CD8" T cells in blood
revealed expansion over 7 days, followed by a contraction
period over 1 month as memory developed. Extending this
strategy to conserved mouse and human tumor antigens
resulted in tumor antigen-specific primary and recall
responses by CD8" T cells. During challenge with an
aggressive metastatic melanoma model, i.LN. delivery of
depots slowed tumor growth more than a potent human
vaccine adjuvant, demonstrating local treatment of a target
immunological site can promote responses that are potent,
systemic, and antigen-specific.

Keywords—Lymph node, Vaccine, Adjuvant, Microparti-
cle and nanoparticle, Cancer, Immunotherapy.

INTRODUCTION

Historically vaccine design has focused on generat-
ing potent, specific immune responses. However,
equally important for vaccines aimed at persistent and
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emerging diseases, is the need to better control the
nature of the immune responses that are generated.
For example, in the context of cancer vaccination,
tumor-specific CD8 * T cells that exhibit memory-like
characteristics and proliferate at very high rates might
help overcome the immunosuppressive tumor
microenvironment.'®** Even vaccines aimed at well
controlled pathogens—such as flu—could benefit from
formulations that offer better immunomodulatory
capabilities, in this example, by conferring increased
production of mucosal antibodies.” Another area of
intense research along these lines is in the exploitation
of new adjuvants—such as toll like receptor agonists
(TLRas) that stimulate pathogen-detecting inflamma-
tory pathways. These molecules can be delivered alone,
or in combination to create polarizing or synergistic
effects.®26-3%31:55 Better understanding of the effects of
specific vaccine components, adjuvants, and carriers,
along with knowledge of how these agents work to-
gether, would help support the design of more effective
vaccines.

Lymph nodes (LNs) are tissues that initiate, main-
tain, and regulate adaptive immune response, and are
thus critical targets for vaccines and immunotherapies.
At these sites, antigen presenting cells (APCs) display
antigens to T and B cells with the same specificity to
mount antigen-specific effector function.'* Thus the
local signals integrated in LNs help define the speci-
ficity, magnitude, and nature of the resulting systemic
responses. A key hurdle facing new vaccines and
immunotherapies is efficiently targeting these sites.*
For example, to effectively prime lymphocytes against
a specific antigen, both the antigen and an adjuvant or
other stimulatory immune signal need to be localized
to the same tissue, while the combinations and relative
concentrations of vaccine components dramatically
impact the characteristics of this response. Unsurpris-
ingly, significant interested has developed in strategies
that allow more efficient delivery to LNs and more
precise control over the local environment in these
tissues.

To address the challenges above, many reports in
the past several decades have investigated biomaterial
carriers (e.g., polymer particles,>>*  liposomes
15:21.32:48y that encapsulate or adsorb combinations of
antigens and adjuvants.> The tunable sizes, particulate
nature, and ability to co-deliver cargos make these
vehicles attractive as vaccine formulations that can be
injected and drain to LNs or can be carried there by
APCs."® Particle size plays a major role in the effi-
ciency and route by which these vaccines reach LNs,*
an area that has been heavily investigated.”'® While
many exciting approaches have been reported, even
those that generate robust immune responses are lim-
ited in the control they provide over the routes or doses

by which particles reach LNs after injection. Instead,
vaccines generally rely on passive draining through
lymphatic vessels, uptake by APCs and subsequent
trafficking to LNs, or more recently, active targeting
using receptor/ligand interactions.>'® Thus, a rela-
tively small faction of the total injected dose actually
reaches LNs,'”*? increasing the required dose in some
cases, or preventing efficacious response in others.
These effects are also important since some vaccine or
immunotherapy components have toxic or inflamma-
tory effects that limit the dose or frequency of
administration.

A consideration specific to biomaterial carriers is
the growing list of polymers, such as poly(lactic-co-
glycolic acid) (PLGA), polystyrene, and others, 3747
that exhibit intrinsic inflammatory effects even in the
absence of other immune signals.” PLGA, for example,
is used in countless vaccine and immunotherapy
studies, but can activate the inflammasome and
increases stimulatory response to TLRas.*” While these
are characteristics that can be harnessed, they can also
complicate vaccine research because of the increased
complexity resulting from ‘‘carrier-effects” that alters
how the immune system responds to antigens or other
vaccine components. A better understanding of how
immune signals—and their biomaterial carriers—in-
teract with the local LN microenvironment, and how
these interactions direct systemic immunity would help
improve vaccine performance, while also contributing
to more rational vaccine design strategies.

We recently developed a strategy to deposit bio-
material vaccine depots directly in LNs of mice using
intra-lymph node (i.LN.) injection.>**? This platform
allows direct control over delivery of vaccine compo-
nents to LNs, and sustained release of encapsulated
cargo within these tissues. In our previous work, we
discovered i.LN. delivery of microparticles (MPs)
encapsulating adjuvant generate more potent
responses than nanoparticles or soluble adjuvant be-
cause these large particles are better retained in LNs.?
Therefore, we sought to use i.LN. injection of adju-
vant-loaded MPs as a tool to study the evolution of
these local and systemic responses over time in mice.
We demonstrate that i.LN. deposition of vaccine de-
pots consisting of PLGA MPs loaded with a TLR3a
and suspended in soluble ovalbumin (OVA) antigen
increases the number of APCs and lymphocytes in LNs
over the course of 7 days. Treatment does not alter the
relative composition of these compartments, but does
increase the activation of resident APCs. A single
treatment with these vaccine depots expands antigen-
specific CD8 " T cells locally in treated LNs and sys-
temically in peripheral blood, evolving from a potent
effector response at day 7 to a memory response by day
28. We also show this approach is generalizable: i.LN.
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injection of vaccine depots loaded with either PolylC
or CpG—potent TLRas being explored in human tri-
als—and then mixed with conserved human melanoma
antigens potently expand tumor-specific CD8 " T cells.
These effects correlate with slowed tumor progression
during an aggressive challenge with metastatic mela-
noma. Together this work demonstrates that local
programming of distinct LNs with adjuvant depots can
be used to drive local alterations that promote immu-
nity that is systemic and antigen-specific.

MATERIALS AND METHODS

Particle Synthesis

Degradable MPs were synthesized via a double-
emulsion, solvent evaporation technique.*** For lipid
stabilized particles, 1,2-dioleoyl-sn-glycero-3-phospho-
choline, 1,2-distearoyl-sn-glycero-3-phosphoethanolam-
ine-N-[amino(polyethylene glycol)-2000], and 1,2-di-
oleoyl-3-trimethylammoniumpropane (Avanti Polar Li-
pids) were prepared at a 60:20:20 mol ratio and dried
under nitrogen. 80 mg of PLGA (Sigma) was dissolved
with the 5.15 pmol of lipids in 5 mL of dichloromethane.
An inner aqueous phase containing 500 uL of water or
5 mg of polyinosinic-polycytidylic acid (PolyIC) (In-
vivogen) in 500 uL of water was added to this organic
phase containing polymer and lipid and sonicated for 30 s
at 12 W to form the first emulsion. This emulsion was
then added to 40 mL of water, homogenized for 3 min at
16,000 rpm, and then allowed to evaporate overnight
while stirring to remove any excess organic solvent. Par-
ticles stabilized with poly(vinyl alcohol) (PVA, Sigma)
were formed as above by removing lipids and replacing
the second water phase with a 2% w/v solution of PVA.
For particles containing CpG (sequence: 5 T-C-C-A-T-
G-A-C-G-T-T-C-C-T-G-A-C-G-T-T 3, IDT), 3 mg of
CpG in 500 uL of water was used for the first aqueous
phase. After overnight stirring, all particle formulations
were passed through a 40 um cell strainer to remove any
large aggregates and collected via centrifugation
(5000xg, 5 min, 4 °C). Supernatants were removed and
particles were washed three times with 1 mL of water then
suspended in water or PBS for animal studies, or lyo-
philized and stored at 4 °C prior to use. For preparation
of fluorescently-labeled particles, 5 ul. of Dil (Invitro-
gen) was added to the organic phase.

Particle Characterization

Particle diameter was determined using an LA-950
laser diffraction analyzer (Horiba). Zeta potential was
measured using a Malvern Zetasizer Nano ZS90.
PolyIC and CpG loading levels were determined via
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UV/Vis spectrophotometry after hydrolyzing a known
mass of lyophilized particles overnight in 0.2 M
NaOH. Absorbance values were compared to standard
curves of known concentrations of PolyIC or CpG to
determine a mass of cargo per mass of polymer.

i.LN. Injection

For each animal study, a small region of fur was
removed from the lateral hind quarter of 4-6 week old
C57BL6 mice (The Jackson Laboratory) by shaving the
area and applying a mild depilatory. Tracer dye (Evans
Blue) was then injected subcutaneously (s.c.) on each
side of the tail base as previously reported.>*?* After
allowing 16 h for the tracer dye to drain to the inguinal
LNs for visualization, a 31G insulin needle was used to
inject 10 uL containing the indicated treatment into
each inguinal LN. For visualization of particles in LN,
1 mg of Dil labeled MPs were injected. For model
antigen studies, vaccinations consisted of 1 mg of par-
ticles encapsulating ~8.5 ug PolyIC/mg MPs suspended
in PBS with 25 ug soluble ovalbumin (OVA, Wor-
thington) (‘PolyIC MP/OVA’), an injection of 1 mg of
PLGA MPs with no cargo (‘Empty’), or an injection of
buffer alone (‘sham’), as indicated. In experiments
comparing PolylC and CpG depots, equivalent doses of
adjuvant encapsulated in MPs were administered i.LN,
after being suspended in PBS with 25 ug of soluble
OVA or soluble Trp2 (SVYDFFVWL, Genscript)
antigens. After priming, mice were boosted with soluble
vaccine treatments s.c. at each side of tail base at day 21,
with each injection consisting of 25 ug antigen
and 25 ug adjuvant. For studies comparing melanoma
antigens (Trp2, hgp100), treatments included 1 mg of
particles containing ~3.5 ug CpG/mg MPs suspended in
PBS with 25 ug of soluble Trp2 (‘CpG MP/Trp2’) or
soluble hgpl00 (KVPRNQDWL, Genscript; ‘CpG
MP/hgp100’) antigens, or strong pre-clinical vaccine
consisting of 50 pg of CpG and 50 ug peptide formu-
lated with montanide ISA 51 (Seppic; ‘Montanide/
CpG/Trp2’ or ‘Montanide/CpG/hgp100°). After vacci-
nating i.LN. at day 0, subsequent boosts for MP groups
were given at days 15 and 36 post prime and were
identical to the prime but administered s.c. at the tail
base. For the montanide groups, all injections were s.c.,
but the second boost consisted of soluble Trp2 or sol-
uble hgp100 mixed with CpG (see caption). All animal
studies were approved by the University of Maryland
IACUC and conducted in accordance with local, state,
and federal guidelines.

Tissue Collection, Processing, and Flow Cytometry

At the indicated times after treatment, LNs were
collected from mice, placed in PBS, and processed into
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single cell suspensions by mechanical dissociation
through a 40 um strainer. Cells were split into three
portions. One portion of cells was centrifuged (800xg,
5 min, 4 °C) and suspended in FACS buffer (1 x PBS
with 1% w/v bovine serum albumin, Sigma) containing
1% DAPI (Invitrogen) and Liquid Counting Beads
(BD) to quantify cell viability and enumerate total cell
numbers using a FACS Canto 11 (BD), respectively. The
other two portions of cells were washed once with 1 mL
of FACS buffer then blocked with Fc Block (anti-
CD16/CD32, BD) for 10 min at room temperature to
inhibit any non-specific binding. After blocking, one
portion of cells was stained for innate cell type and
activation with indicated antibodies against cell surface
markers including CD11c, F4/80, CD40, CD80, CD86,
and I-A/I-E (mouse MHCII). Cells were then washed
twice, suspended in FACS buffer, and quantified via
flow cytometry. The final portion of cells was stained for
lymphocyte populations and antigen-specific tetramer
levels. First, 25 uL of anti-SIINFEKL tetramer was
added and incubated for 30 min at room temperature.
Then, 25 uL. of antibodies against surface markers
including B220, CD3, CD4, and CDS8 were added and
incubated for 20 min at room temperature. Cells were
then washed and evaluated, as above. The frequency of
each cell population (percent of parent population) and
number of counted cells per identical acquisition vol-
ume (80 puL) was evaluated. The B220 antibody was
purchased from eBiosciences and all other antibodies
were purchased from BD.

MHC Tetramer Staining of Peripheral Blood

Every 7 days, 100 uL. of blood was collected from
mice treated as above via submandibular bleeding. Red
blood cells were removed by adding 1 mL of ACK lysis
buffer to the blood, incubating for 3 min, collecting
cells via centrifugation (800xg, 5 min, 4 °C), and
repeating with 1 mL of fresh ACK lysis buffer. After
the second round of ACK lysis buffer, cells were sus-
pended in FACS buffer, blocked with Fc Block, and
stained with a tetramer specific for either SIINFEKL
(CDS8-epitope of OVA), Trp2, or hgp100 for 30 min at
room temperature. All tetramers were purchased from
MBL International. Following incubation, cells were
stained against surface markers CD3, CD8, CD44, and
CDO62L for 20 min at room temperature. After wash-
ing twice with FACS buffer, cells were suspended in
FACS buffer containing DAPI and the percentage of
antigen-specific cytotoxic T cells (DAPI™, CD8 ™, tet-
ramer ") was quantified via flow cytometry. To deter-
mine generation of central memory T cell phenotypes,
tetramer© CD8" cells were gated for CD44"eh
CD62L"" populations and compared to the percent-
age of effector memory T cells (CD44"€"/CD62LY).

Tumor Challenge Studies

In some studies, after treating mice with the indicated
vaccines, mice were administered 300,000 B16-F10 cells
(ATCC)in 100 pL of 1 x PBS s.c. at the hind flank. Each
day following inoculation, body weight was monitored
and tumor burden was calculated as a product of two
orthogonal diameters. Mice were euthanized according
to TACUC-approved humane endpoints when the
aggregate tumor burden reached 150 mm?.

Immunohistochemical Analysis

At indicated time points, inguinal LNs were removed
and frozen in OCT compound (Tissue-Tek). Using a
Microm HM 550 cryostat (Thermo Fisher Scientific
Inc.), 6 um sections of LNs were cut, transferred to
slides, and allowed to dry overnight. LN tissue was then
fixed for 5 min in ice-cold acetone then washed in 1x
PBS. Samples were then blocked for non-specific bind-
ing of secondary antibody using 5% goat and 5% don-
key serum in 1x PBS for 30 min. After washing in PBS,
tissues were stained for cell surface markers including
B220 (eBioscience), CD3 (Abcam), and CD11¢ (BD) for
1 hat room temperature. After washing twice with PBS,
fluorescent secondary antibodies (Jackson Immunore-
search) were added for 45 min then washed three more
times. After staining, sections were fixed with 4%
paraformaldehyde, washed with PBS, quenched with
1% glycerol in PBS, and washed again before mounting
in Prolong Diamond Antifade Mountant (LifeSciences)
and imaging using an Olympus IX83 fluorescent
microscope. Processing of images was conducted versus
an antibody iso-type control and levels were adjusted
equally for all similar channels.

Statistical Analysis

Student’s ¢ tests were used in comparison of two
groups. One-way ANOVA with a Tukey post-test was
used to compare three or more groups, or two-way
ANOVA for comparisons over time. In all cases,
analyses were carried out with Graphpad Prism (ver-
sion 6.02). Error bars in all panels represent the
mean = SEM and p values <0.05 were considered
significant. Levels of significance were defined as
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

RESULTS

PLGA MPs are Dispersed in LNs Following i.LN.
Injection

PLGA MPs were synthesized via a double-emul-
sion/solvent evaporation technique allowing for the
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inclusion of negatively charged nucleic acid TLRa
adjuvants PolyIC or CpG with loading levels of 8.5 ug/
mg MP or 3.5 ug/mg MP, respectively (Table 1).
Addition of PolyIC led to an increase in particle
diameter from 2.2 to 4.3 um and a shift in zeta
potential from 24.9 mV to —23.7 mV; replacement of
PolyIC with CpG led to similar shifts (Table 1). To
first confirm retention of injected MPs into LNs, we
injected Dil-labeled MPs into inguinal LNs of mice
using the approach we previously described
(Fig. 1a).>*?*> 28 days after injection, LNs were
removed and then stained for B cell (Fig. 1b, cyan) and
T cell zones (Fig. 1b, white). Fluorescent microscopy
confirmed retention of MPs in the LNs at this time
point (Fig. 1b, green).

TABLE 1. Characteristics of adjuvant loaded PLGA-MPs
used in i.LN. injection studies.

Loading Zeta Potential
Diameter (um)  (ug cargo/mg MP) (mV)
Empty 219 + 0.14 n/a 24.93 + 0.91
PolylC 4.26 + 0.09 8.53 + 0.46 —23.70 + 0.71
CpG 4.02 + 0.14 3.45 + 0.37 —23.23 + 2.54
(@) "\, /\/
Tracer drains N
to LN
—_— —_—
Ya
Tracer injection i.LN. injection MPs localized
at tail base of MPs to LN
(b)

B Cells T Cells Microparticles

FIGURE 1. Vaccine depots can be locally deposited in LNs
via i.LN. injection. (a) Schematic depicting i.LN. injection of
vaccine depots. A tracer dye is injected s.c. at the tail base,
which then drains to the inguinal LNs allowing visualization of
the LN through the skin. Vaccine depots can then be injected
into the LN; (b) Histological section of LN 28 days after i.LN.
injection of fluorescent depots. B cells (B220*, cyan), T cells
(CD3*, white), PLGA MPs (Dil, green). Scale bar = 200 um.
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i.LN. Injection of PolyIC MP|OV A Increases the
Number of APCs and Lymphocytes in LNs

After confirming MPs are retained in LNs of mice
over 4 weeks, we used i.LN. injection to administer a
vaccine of PolyIC MPs mixed with soluble OVA
(PolyIC MP/OVA), or to administer a buffer injection
(sham). Cell viability and the frequency and number of
DCs, macrophages, T cells, and B cells in the treated
nodes were then monitored over 1 week using identi-
cally-treated sets of groups. Following treatment,
PolyIC MP/OVA, while slightly diminishing initial cell
viability relative to sham, did not impact viability after
1 week (Fig. 2a). Particles did cause an increase in the
overall number of cells (Fig. 2b), as well as the volume
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FIGURE 2. i.LN. injection of PolylIC MP/OVA depots
increases innate cell numbers in the LNs without affecting cell
viability. (a) Viability and (b) total number of LN cells after i.LN.
injection of PolylC MP/OVA depots or a sham injection of PBS
at days 1, 3, and 7. (c) Percentage of total LN cells which are
DCs (CD11c*) and macrophages (F4/80*) and (d) number of
DCs and macrophages in LNs counted in an identical acqui-
sition volume (80 uL). n=9-10 LNs per group with bars
depicting mean = SEM. (*p<0.05; **p<0.01; **p<0.001).
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i.LN. injection of PolylC MP/OVA depots increases total number of T and B lymphocytes within LNs. (a) Percentages

and (b) total numbers of B cells (B220"), T cells (CD3*) as well as CD4* T cells (CD3*/CD4*) and CD8* T cells (CD3*/CD8*) in LNs
after i.LN. injection of PolylC MP/OVA depots or a sham injection of PBS at days 1, 3, and 7. Numbers are counted in an identical
acquisition volume (80 uL). n=9-10 LNs per group with bars depicting mean = SEM. (*p<0.05; **p<0.01; ***p<0.001;

*++p < 0,0001).

of each LN (discussed below), with nodes treated with
PolyIC MP/OVA exhibiting significantly more cells
per LN than the sham at day 1 (p < 0.01); a similar
trend was observed over 1 week. In investigating how
PolyIC MP/OVA treatment influenced innate immune
cell populations, we discovered the frequency of DCs
(CD11c™) did not significantly change over 1 week,
while a slight elevation in macrophage (F4/807) fre-
quency was observed (Fig. 2c). However, the number
of each of these cell types (normalized to equivalent
tissue cell suspensions) increased over time, with sig-
nificantly more DCs (p < 0.001) and macrophages
(p <0.01) accumulating in the LNs over 7 days fol-
lowing PolylC MP/OVA injection (Fig. 2d). Similarly,
we observed modest changes in the frequency of lym-
phocytes in the B cell (B220") and T cell (CD3™;
CD3%/CD4"; CD3"7/CD8") compartments relative
to sham injections (Fig. 3a). However, enumeration of
the number of lymphocytes again revealed PolylC MP/
OVA increased the number of cells in each population,
with the maximum difference between groups occur-
ring 7 days after the immunization. Immunohisto-
chemical staining of the LNs at 1 day (Fig. 4a) and
7 days (Fig. 4b) after injection confirmed the increased

total number of cells, indicated by the increased area
evident in each section; all sections are presented at the
same scale. These studies also qualitatively confirmed
the increased DC levels we measured in response to
PolyIC MP/OVA treatment relative to sham, and the
increase in DC number as a function of time. These
trends are illustrated in the insets of Fig. 4b at day 7
(i.e., sham vs. PolyIC MP/OVA) and the insets of
Figs. 4a and 4b for PolyIC MP/OVA (i.e., day 1 vs.
day 7), respectively.

PolyIC MP|OVA Treatment Activates LN-Resident
APCs

After determining that i.LN. treatment with PolylC
MP/OVA increases the number of APCs, we tested if
these populations exhibited an increased activation
state by staining for surface activation markers asso-
ciated with co-stimulation and antigen presentation
(i.e., CD40, CD80, CDS86, I-A/I-E). In all cases,
PolyIC MP/OVA caused a significant increase in the
number of cells positive for each marker compared to
the sham injected control (Fig. 5a). Interestingly, the
number of activated DCs increased over time with the
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(a)
Day 1

Sham

PolylC
MP/OVA

(b)
Day 7

Sham

PolylC
MP/OVA

B Cells (B220%) T Cells (CD3*) DCs (CD11c")

Overlay

FIGURE 4. Increased LN size and DC numbers in LNs occurs by day 7 after i.LN. injection of PolylC MP/OVA depots. Histological
staining of LNs for B cells (B220*, cyan), T cells (CD3*, white), and DCs (CD11c*, green) in LNs 1 day (a) and 7 days (b) after i.LN.
injection of PolylC MP/OVA depots or a sham injection of PBS. Scale bar = 400 um; 20 um in inset.

highest levels of each marker occurring 7 days after
treatment (Fig. 5a, red). The macrophage population
exhibited similar activation effects (Fig. 5b). However,
compared to DCs, which showed increases in the
number of cells expressing each marker over time, only
CD40 and I-A/I-E increased as a function of time.
Macrophage expression levels of CD80 and
CD86—while higher than levels in sham-injected
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nodes—remained at a near-constant, elevated level
over 1 week.

Local Changes in APC Function Drive Local and
Systemic Antigen-Specific CD8" T Cell Response

We next used MHC-I tetramer staining to investi-
gate if the local activation we observed drove genera-
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FIGURE 5. PolylC MP/OVA depots injected i.LN. drive prolonged increase in surface activation marker expression in DCs and
macrophages. Number of DCs (a) and macrophages (b) in LNs expressing activation markers CD40, CD80 CD86 and I-A/I-E at 1, 3,
and 7 days after i.LN. injection of depots. Numbers are counted in an identical acquisition volume (80 uL). n = 9-10 LNs per group
with bars depicting mean + SEM. (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).

tion of antigen-specific T cells, both in treated nodes
and systemically. Analysis of LNs after treatment re-
vealed that vaccinating with PolyIC MP/OVA
increased both the frequency and number of antigen-
specific CD8 " T cells within the LN (Figs. 6a and 6b).
While the sham injection (Figs. 6a and 6b, blue) re-
mained at a constant, low level, the PolyIC MP/OVA
treated mice exhibited a significant (p < 0.01) increase
in SIINFEK L-specific T cells 7 days after priming. To
investigate how these local changes to the LN
microenvironment impacted systemic changes in anti-
gen-specific responses, mice were treated with either
PolyIC MP/OVA, empty MPs, a sham injection, or left
untreated. After vaccination on Day 0, blood was
collected weekly and SIINFEKL tetramer staining was
used to determine the percentage of antigen-specific
CD8" T cells circulating in peripheral blood. Fig-
ures 6¢—6f depicts representative flow cytometry plots
showing the gating scheme applied to samples from
naive (Fig. 6c, gray), sham (Fig. 6d, blue), empty MP
(Fig. 6e, green), or PolylC MP/OVA (Fig. 6f, red)
treated mice 7 days after immunization. The average
SIINFEKL tetramer levels revealed that treatment
with  PolyIC MP/OVA significantly increased
(p < 0.0001) systemic levels of SIINFEKL-specific

CD8" T cells 7 days after treatment, followed by a
prototypical contraction period through day 28
(Fig. 6g). The elevated level of SIINFEKL-specific
CDS8" T cells at day 28 suggested development of
immune memory, which we assessed using common
markers for effector T cells and memory T cells among
CDS8 " /Tetramer * cells. These studies revealed a
nearly twofold increase in the percentage of central
memory T cells (CD62LME"/CD44ME" among SIIN-
FEK L-specific CD8") and a subsequent decrease in
effector memory phenotypes (CD62L°Y/CD44Mieh)
over this same time (Fig. 6h).

To test the robustness and modularity of this plat-
form, we next tested if 7. L. injection expands antigen-
specific T cells with vaccines containing different
TLRas or other antigens, in particular, Trp2 pep-
tide—a clinically-relevant tumor associated antigen
conserved in murine and human melanoma.*® Depots
were formulated with either PolyIC or CpG—a potent
adjuvant being studied to induce anti-tumor immunity
1249__and mixed with soluble OVA or Trp2. Mice were
immunized i.LN at day 0 with vaccine depots encap-
sulating identical doses of adjuvant, and then boosted
at day 21 with soluble vaccine components s.c. at the
tail base. At days 7 and 28 (7 days after the prime and
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FIGURE 6. i.LN. injection of depots drives antigen-specific T cell responses locally in LNs and systemically in the periphery. (a)
Percentage and (b) numbers of SIINFEKL-tetramer* CD8* T cells in LNs at 1, 3 and 7 days after i.LN injection of PolylC MP/OVA
depots or a PBS sham injection. Numbers are counted in an identical acquisition volume (80 uL). n = 9-10 LNs per group with bars
depicting mean + SEM. (**p<0.01; ***p<0.001) Mice were immunized i.LN. with PolylC MP/OVA depots, Empty MPs, a sham
injection of PBS or left untreated (naive), and leukocytes from peripheral blood were stained for SIINFEKL-tetramer* CD8" T cells
weekly starting 7 days after immunization. Representative flow cytometry plots illustrating the gating scheme for SIINFEKL tet-
ramer staining of untreated mice (c), mice immunized i.LN. with a sham injection of PBS (d), Empty MPs (e), or PolylC MP/OVA
depots (f) 7 days after treatment. (g) Mean percentage of SIINFEKL-tetramer positive T cells and (h) percentage of SIINFEKL
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detailed in (c—f). n =8 mice for Day 0, n =10 mice per group at Day 7, and n = 4-5 mice per group for Days 14-28. (*p <
0.05; *p<0.01; **p<0.001; ***p<0.0001).
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FIGURE 7. CpG MPs induce superior tumor-specific CTL
responses compared to PolylC MPs. Mice were primed at day
0 i.LN. will either PolylC MPs or CpG MPs, and either a model
antigen (OVA) or a melanoma associated antigen (Trp2) in a
soluble form. Mice were boosted at day 21, and antigen-
specific MHC-I tetramer was used to measure antigen specific
CD8" T cell responses compared to a sham injection. (a)
7 days after priming, PolylC and CpG MPs both induced po-
tent levels of SIINFEKL-specific CD8*, but no differences were
observed as a function of TLRa. In the Trp2 model, both
PolylC and CpG MPs increased the levels of Trp2-specific
CD8" T-cells, with CpG exhibiting a statistically significant
increase compared to both the sham and PolylC MP injec-
tions. (b) At day 28, 7 days after the boost, a similar response
was seen with a robust response in the OVA model for both
PolylC and CpG MPs, but without dependence on the specific
TLRa included in the particles. In the Trp2 studies, only CpG
MPs induced a significant, potent recall response. (*p<0.05;
**p<0.01; **p<0.001; ***p<0.0001).

boost injections), peripheral blood was drawn and
MHC-I tetramer staining was used to quantify the
percentage of antigen specific CD8" T cells (Trp2
tetramer for Trp2 immunized mice, SIINFEKL tetra-
mer for OVA immunized mice). For mice immunized
with OVA vaccine depots both treatments induced
very potent antigen-specific responses, but no signifi-
cant differences were measured between responses in-
duced by CpG MPs and PolyIC MPs at either day
(Fig. 7, left). However, in mice treated with Trp2
vaccine depots, a significantly higher level of Trp2
specific CD8 " T cells was observed in mice immunized

with CpG depots compared to PolylC depots at both
time points (Fig. 7, right).

Local administration of CpG particles promotes anti-
tumor immunity

We next used an aggressive melanoma model—B16-
F10—to test the functionality of anti-tumor immunity
induced by vaccine depots administered by the i.LN.
route. Since vaccine depots formulated with CpG
promoted superior expansion of Trp2-specific cyto-
toxic T lymphocytes (CTLs) compared with PolylC
(Fig. 7), we immunized mice with CpG depots con-
taining 3.5 ug of CpG and suspended in either Trp2, or
another conserved melanoma antigen, hgp100.%*2° In
these studies, mice were primed on day 0 with either
CpG MP/tumor antigen, or as a potent benchmark,
50 ug CpG and tumor antigen emulsified in mon-
tanide, one of the strongest adjuvants currently under
study.?”* Animals were then boosted on day 15 with
identical doses and formulations, but all injections
were administered s.c. as a heterologous prime-boost
regimen. MHC-I tetramer staining for either Trp2- or
hgp100-specific CD8" T cells revealed formulations
containing CpG MPs exhibited significant increases in
these populations relative to other groups after both
priming and booster injections (Figs. 8a and 8b). After
a second boost on day 36, mice were challenged with
B16-F10 metastatic melanoma by implantation of
3 x 10° cells s.c. at the hind flank. Compared to the
untreated group (Figs. 8c and 8h), the mice primed s.c.
with montanide/CpG/hgpl100 (Figs. 8d and 8h) or
i.LN. with CpG MPs/hgp100 (Figs. 8f and 8h) did not
exhibit any therapeutic gains. In contrast, i.LN
immunization with CpG MP/Trp2 slowed tumor
growth, resulting in 40% survival at day 20 (Figs. 8g
and 8h), while all untreated mice succumbed by this
day (Figs. 8¢ and 8h). Interestingly, while Montanide/
CpG/Trp2 prolonged survival of mice to 29 days after
tumor challenge (Figs. 8¢ and 8h) the effect appeared
less potent than those generated by CpG MP/Trp2
vaccine regimens, which survived for up to 35 days.
The mean survival was 23.0 + 4.5 days for the CpG
MP/Trp2 treated group, compared to 20.0 £+ 2.4 days
for the Montanide/CpG/Trp2 treated group, and
16.3 &£ 1.7 days for the untreated group, further
demonstrating the ability of local LN treatment to
promote functional, systemic immunity.

DISCUSSION

Biomaterials offer a robust platform to co-deliver
immune signals, target vaccines to specific tissues, and
control delivery kinetics. However, most vaccines have
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FIGURE 8. i.LN. injection of CpG MP/Trp2 depots promote functional anti-tumor immunity. (a) Mice were left untreated, immu-
nized s.c. with Montanide/CpG/Trp2, or immunized i.LN. with CpG MP/Trp2, followed by s.c. boosts consisting of identical treat-
ments at Day 15. Trp2-tetramer specific T cells were quantified in peripheral blood at 6, 14 and 21 days after immunization. (b) A
study conducted using identical treatment regimens as in (a), but including an additional tumor antigen, hgp100. hgp100-specific
CD8* T cell responses in peripheral blood were quantified using hgp100 MHC-I tetramer in peripheral blood at 6, 14 and 21 days
after immunization. Values indicate mean = SEM. (**p<0.01; ***p<0.001; ****p<0.0001 between CpG MP groups and naive;
##p<0.01; #¥p<0.001; #*p<0.0001 between CpG MP groups and montanide). (c-h) Mice were left untreated, immunized with
Montanide/CpG/hgp100, Montanide/CpG/Trp2, CpG MP/hgp100 (i.LN.), or CpG MP/Trp2 (i.LN.) followed by s.c. boosts at Day 15 and
Day 36 as described in the methods. 43 days after the priming injection, mice were challenged with B16-F10 melanoma. Individual
tumor traces of untreated mice (c), mice immunized with Montanide/CpG/hgp100 (d), Montanide/CpG/Trp2 (e), CpG MP/hgp100 (f)
and CpG MP/Trp2 (g). (h) Percent survival of mice in the groups shown in (c-g).

complex formulations with multiple components, and
understanding how each component influences the
immune response alone or together has been chal-
lenging thus far. Previous research has shown that
altering material properties can influence and improve
the targeting of vaccines to LNs through lymphatic
drainage or trafficking within specific APCs after
internalization.?%-3%-404149 ; 1 . delivery, however, of-
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fers a unique opportunity to directly study how the
form and combination of signals that ultimately reach
LNs impact immune response without the complexities
that occur after vaccines are administered by tradi-
tional routes. For example, even efficacious vaccines
only result in a small fraction of the injected dose
reaching the LN and spleen—as little as 0.1%, whereas
pre-clinical and clinical trials studying i.LN. delivery of



Targeted Programming of Lymph Node Function 429

soluble vaccines have demonstrated dose-sparing fac-
tors as high as 10° relative to common peripheral
injection routes.>>*>* With respect to nanoparticles,
past studies have revealed that particles administered
along common peripheral routes drain to LNs most
efficiently when the diameters are in the range of 20-
30 nm, whereas even 100 nm particles drain an order
of magnitude less efficiently.*> MP drainage relies
heavily on APC trafficking.> Our own past findings
demonstrate that improved retention of adjuvant in
LNs achieved by encapsulation in MPs too large to
freely drain from LNs after i.LN. injection drives very
strong T cell responses compared to equivalent doses
of soluble adjuvant administered i.LN., or adjuvant
MPs administered peripherally (e.g., in muscle).?” In
contrast, nanoparticles or soluble adjuvant are re-
tained in LNs at intermediate and low levels, respec-
tively, driving correspondingly lower responses relative
to MPs.?? Thus, here we used i.LN. injection of MPs to
add new understanding of how these local treatments
alter LN function over time, and how this local evo-
lution impacts systemic immunity.

With respect to local changes in LN, several of our
findings together suggest an adjuvant mechanism
underpinned by increased activation of LN-resident
APCs. First, we generally observed large difference in
the number of immune cells in treated nodes relative to
sham injections, with more modest differences in the
relative cell compositions. These frequencies—for both
innate and adaptive immune cells—were similar to
those previously reported in LNs of C57BL6 mice.**
Second, we observed persistence of fluorescent MPs for
at least 4 weeks (Fig. 1b), and increased activation of
LN-resident APCs (e.g., macrophages, DCs) as soon as
1 day after injection. Thus, one important role for the
depots appears to be enhanced local APC function that
could help increase lymphocyte proliferation and
infiltration. The resulting antigen-specific responses
showed enhancements consistent with strong T cell
response. For example, OVA-specific T cells developed
locally in LN over 7 days, by which time a dramatic
increase was measured in peripheral blood. This evo-
lution is consistent with primed lymphocytes migrating
out of the LNs as they expand against SIINFEKL
presented in these sites.”® Similarly, a shift towards a
central memory phenotype and away from effector
response was also observed over time, a goal for
effective vaccines.” Interestingly, we did observe that
both depots and sham injections caused mod-
est—sometimes, transient—increases in the frequency
of B cells and CD4" T cells. Thus, an additional
enhancing mechanism could be mild inflammation
caused by injection that, for example, could upregulate
adhesion molecules (e.g., P-, E-selectin) to better retain
circulating T and B cells. The absence of toxicity, and

the intact follicular structure of LNs after either sham
or adjuvant MP treatment, further supports the com-
patibility of this strategy for fundamental or applied
uses.

The link between the kinetics of vaccine dosing and
induction of immune response is well established, with
elegant studies demonstrating that increasing dosing
regimens drive synergistic immune responses more
effectively than equivalent doses administered in a
bolus or at evenly spaced equal doses.?* This discovery
supports the basic premise for delivery of controlled
release depots to LNs, as the local dose of vaccine
components locally increases in LNs as cargo is re-
leased from degrading polymer particles.”> Further,
while there is significant potential made possible by
determining whether vaccine particles loaded with
antigen, adjuvant, or both might be most potent for a
particular vaccine,?® design of adjuvant-loaded parti-
cles offer the appeal of “plug-n-play” vaccination
whereby the particle is simply mixed with a soluble
adjuvant of interest.

We found i.LN. injection of adjuvant MPs drove
antigen-specific T cell responses against both model
antigen (i.e., OVA) and tumor-associated antigens (i.e.,
Trp2, gp100) mixed with the depots. Interestingly, for
OVA, both PolylC-loaded and CpG-loaded depots
performed equivalently, while CpG was more effective
in generating responses against tumor-associated
antigens. CpG has stimulated great interested in pre-
clinical cancer studies owing to effective priming of
CTL response.' '3 Thys, we benchmarked i.LN.
delivery of CpG MPs mixed with common conserved
melanoma antigens, against these same antigens
emulsified with CpG and montanide, one of the
strongest vaccine formulations under study.”?”>* With
respect to both tumor-specific T cell expansion and
anti-tumor immunity, i.LN. depots were superior to
montanide, but interestingly, the dose of CpG in MP
formulations (3.5 pg/LN) was 14-fold lower than the
50 pg dose of CpG emulsified in the montanide vac-
cines. Thus, although the efficacy achieved with i.LN.
depots in this study was modest (~40% of mice
exhibited significantly increased survival), the en-
hanced performance compared with montanide and
this dose-sparing supports the potential of future MP-
based vaccines administered to LNs.

There are some considerations that might account
for the limited efficacy observed in tumor challenge
studies. First, the chosen melanoma model is highly
aggressive. Second, general features of the tumor
microenvironment likely limit immunogenicity,
including suppression and antigen editing that prevents
tumor-specific CTLs from maintaining function or
recognizing antigens in tumors.>*** Third, in our
experiments, we observed much higher frequencies of

% BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org



430 ANDORKO et al.

SIINFEKL-specific T cell responses after a single i.LN.
immunization with OVA depots relative to either
melanoma antigen, even after the latter were admin-
istered in several booster injections. OVA is a foreign
antigen, whereas Trp2 and hgpl00 are self-antigens
and typically much less immunogenic. Since cross-
presentation of minimal epitope peptides such as Trp2
and hgpl00—can enhance immunogenicity,'®'®%3
encapsulation of antigen in MPs alone, or in con-
junction with adjuvant might offer one route to further
improve potency. However, since significant popula-
tions of antigen-specific CD8 " T cells were generated
against either tumor antigen, we speculate more robust
responses might improve effectiveness. Along these
lines, recent pre-clinical and clinical studies reveal
simultaneously activating multiple TLR pathways
during cancer therapy can enhance therapeutic effi-
cacy,>!332 suggesting another strategy based on
loading of MPs with multiple TLRas.

i.LN. delivery of MPs also provides some unique
opportunities to impact the tumor microenvironment
through appropriate selection of the LN for injection.
In our studies we selected the inguinal LN for ease of
injection based on our past work, and what has been
used in recent human trials involving i.LN. delivery of
soluble tumor antigens to inguinal LNs.** However,
this technique could also be used to target tumor
draining lymph nodes (TDLN), sites which have re-
cently been shown to be effective for passive targeting of
cancer vaccines.”'%*** Remarkably, several landmark
studies also demonstrate that both anti-tumor T cells
and regulatory T cells (Trggs)—cells that suppress anti-
tumor response in tumors—are primed in the same
LN.3!7 Thus, direct LN targeting of TDLNs might al-
low local polarization toward effector cells while also
reducing suppressive Trggs that play an important role
in maintaining the suppressive tumor microenviron-
ment. This may further provide an opportunity to
effectively combat tumors without affecting natural
regulatory activity in other distant LNs. It is also pos-
sible that targeting TDLNs is not necessary if optimized
particles expand tumor-specific cells that are able to
migrate to tumors, but further studies will be needed to
investigate this possibility. Finally, creating opportu-
nities to overcome the suppressive characteristics of
tumors by directly targeting the TDLN, or pairing with
exciting new immunotherapies such as checkpoint
blockades could also have offer significant potential for
cancer vaccination.>®*

CONCLUSION

i.LN. injection allows direct control over the dose
and combinations of materials administered to LNs,
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supporting a new approach for studying the impact of
vaccines on the LN microenvironment. Here, we
demonstrate that a single i.LN. injection can lead to
dramatic local changes in these tissues, increasing the
number and function of both APCs and lymphocytes.
The local changes result in systemic, but antigen-
specific pro-immune function that provides functional
anti-tumor immunity in a melanoma model. Thus, this
approach might hold clinical utility for vaccines based
on intra-LN controlled release of antigens and adju-
vants, while also providing a strategy to evaluate the
immunogenicity of biomaterial carriers themselves, or
to design carriers loaded with defined combinations of
antigens and adjuvants.
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