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Abstract—Lymphocyte-specific protein tyrosine kinase
(LCK) is a key activator of T cells; however, little is known
about the specific autoregulatory mechanisms that control its
activity. We have constructed a model of LCK autophos-
phorylation and phosphorylation by the regulating kinase
CSK. The model was fit to existing experimental data in the
literature that presents an in vitro reconstituted membrane
system, which provides more physiologically relevant kinetic
measurements than traditional solution-based systems. The
model is able to predict a robust mechanism of LCK
autoregulation. It provides insights into the molecular causes
of key site-specific phosphorylation differences between
distinct experimental conditions. Probing the model also
provides new hypotheses regarding the influence of individ-
ual binding and catalytic rates, which can be tested exper-
imentally. This minimal model is required to elucidate the
mechanistic interactions of LCK and CSK and can be further
expanded to better understand T cell activation from a
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systems perspective. Our computational model enables the
evaluation of LCK protein interactions that mediate T cell
activation on a more quantitative level, providing new
insights and testable hypotheses.

Keywords—Systems biology, Computational modeling, T cell
signaling, Parameter estimation.

INTRODUCTION

Lymphocyte-specific protein tyrosine kinase (LCK)
is a key regulator of T cell activation and differentia-
tion.®*® LCK helps to activate healthy T cells against
diseased cells in the body by phosphorylating
immunotyrosine activating motifs (ITAMS) on the
CD3( chain of the T cell receptor (TCR).>® Mutations
in the LCK gene can lead to autoimmune disease'* and
contribute to cancer.” Recently, LCK has been shown
to play an important and complex role in the activa-
tion of chimeric antigen receptor (CAR) engineered T
cells.”> CARs are engineered proteins that contain a
variety of T cell signaling domains linked to an
extracellular antibody single chain variable fragment
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(scFv). These proteins can activate T cells against a
tumor-associated antigen to eradicate cancer cells.”>*’
As CARs are adapted and modified to more specifi-
cally target different types of cancer cells,
understanding the detailed mechanisms that govern
their activation has become more important. Despite
its strong role in regulating T cell signaling, little is
known about the specific mechanisms that control
LCK catalytic activity.

LCK is a multi-domain protein that can catalyze the
phosphorylation of many substrates in T cells,
including itself. LCK has two main phosphorylation
sites, the tyrosine residues Y394 and Y505. Y394 is
located close to the kinase domain, and, therefore, has
been shown to play a significant role in substrate
specificity.” Y505 is located near the C-terminal tail of
the protein. When phosphorylated, this tail is thought
to fold up and bind in cis, locking the molecule in a
“closed” conformation.’ Therefore, it is commonly
accepted that phosphorylation at Y394 (denoted as
LCK species P394Usqs) increases the catalytic activity
of LCK and phosphorylation at Y505 (species
Us94P505) decreases catalytic ac‘[ivi‘[y.44 It has been
shown that the unphosphorylated and doubly phos-
phorylated forms of LCK (species UszgqaUsps and
P394P50s, respectively) retain an intermediate catalytic
activity when acting on some substrates,'> although
they may have more complex kinetics on others. These
four forms of LCK distribute and aggregate differently
within cells,** and, while all four forms exist in resting
T cells, efforts to calculate the exact ratios of the spe-
cies have been inconclusive.?*

Several proteins have been shown to control LCK
phosphorylation. For example, C-terminal Src kinase
(CSK) is a regulatory kinase that phosphorylates LCK
specifically at Y505.*' In addition, several phos-
phatases act on LCK and CSK, most notably CD45
and PTPN22.% It is commonly accepted that LCK can
autophosphorylate at Y394,* but it has only recently
been appreciated that LCK can also autophosphory-
late at Y505."

The kinetics of these LCK phosphorylation and
dephosphorylation reactions determine the pool of
catalytically active LCK available to control T cell
activation in vivo. Traditionally, the kinetics of these
reactions are studied experimentally with recombinant
proteins in solution®?3; however, inside the cell, LCK
is largely bound to the plasma membrane, in a two-
dimensional density distribution.'®*® This binding to
the plasma membrane can profoundly influence a
protein’s kinetics in several ways: (i) by altering the
conformation of the protein, opening or closing
available binding pockets, (ii) by changing the diffu-
sion kinetics, which can alter the rate at which the
enzyme encounters its substrate, and (iii) by altering

E BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org

the spatial segregation of certain groups of proteins in
densely packed membranes, which may alter the ratio
of active to inactive molecules in the system.* Indeed,
Hui et al. showed that the kinetics of LCK phospho-
rylation are vastly different when LCK is able to
autophosphorylate on a membrane surface compared
to in solution. These differences are both qualitative, in
the order of phosphorylation of the two sites, and
quantitative, in the rates of phosphorylation."”

In order to better understand the mechanisms
through which LCK is regulated on the cell membrane,
we have developed a computational model of LCK
autophosphorylation and phosphorylation by the
regulating kinase CSK. The model is fit to experi-
mental data from the two-dimensional reconstituted
membrane system developed by Hui and Vale.'> This
data uses two concentrations of LCK: 500 molecules/
pum?, which corresponds to a physiological level of
LCK in the cell, and 50 molecules/um> One concen-
tration of CSK is used, 500 molecules/um?, which is
slightly higher than the maximal amount of CSK
present in the cells. Modeling this minimal system will
allow us to predict the fundamental mechanisms of
LCK activation and improve our understanding of the
differences between two- and three-dimensional en-
zyme kinetics. Several computational models have
been developed to study the early phosphorylation
events in T cell activation'***’; however, none of them
have accounted for the different species of LCK or the
effects that the various catalytic and binding activities
of these different species will have on T cell activation.
The model of LCK activation that we have developed
provides a basis for understanding LCK phosphory-
lation and catalytic activity and can be implemented in
larger models of T cell signaling. Thus our work will
enable a better understanding of how LCK autoregu-
lation affects the control of T cell activation in the
context of TCR antigen discrimination and CAR sig-
naling.

MATERIALS AND METHODS

Data Extraction

Experimental data was extracted from Hui and
Vale'® using the MATLAB GRABIT program (The
MathWorks Inc., Natick, MA). To correspond to the
data, all simulations were normalized by the simulated
amount of LCK at 90 min.

Model Structure

Several different models were tested to find the
simplest mechanism that is able to reproduce the data.
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Each model was progressively more complex. First, a
mechanism in which the LCK phosphorylation events
are directly catalyzed without a binding step to form
intermediate dimers, a model described by 18 kinetic
parameters, was implemented. Subsequently, a Mi-
chaelis—-Menten mechanism in which the individual
LCK enzymatic species have the same catalytic rate
regardless of the substrate, a model involving 25 ki-
netic parameters, was implemented. Neither of these
models was able to both reproduce training data used
for parameter estimation and predict data not used in
the fitting process (results not shown).

The third model implemented a Michaelis—Menten
mechanism in which all of the LCK species have dif-
ferent binding and catalytic rates. This mechanism was
able to fit the training data and predict new data. In
this model, it is assumed that the phosphorylation
events are primarily governed by two main factors: the
strength of the interaction between the enzyme-sub-
strate pair (i.e., the dissociation constant, k), and the
catalytic rate of the enzyme on the substrate. The
dissociation constant is the dissociation rate (K,;) di-
vided by the association rate (K,,). To avoid over
parameterizing the model, we assume the association
rate to be the same for all of the 16 LCK pairs,
reducing the number of LCK binding parameters from
32 to 17. In Michaelis—Menten kinetics, the catalytic
rate is generally the rate limiting step, so K, was kept
constant for all LCK-LCK or LCK-CSK binding
pairs, as it is not expected to be rate limiting. The
simplification of the association rates is also supported
by studies showing that K, generally falls within a
relatively small range (about one order of magnitude)
for many different protein interactions.’'* However,
we still allow the k,; values to differ between the LCK
dimers by implementing a different K, for each pair.
By estimating the same association rate and different
dissociation rates for the different LCK dimers, each
binding pair can remain bound for different amounts
of time depending on the strength of the individual
interactions, allowing the k; to span its full physio-
logically relevant range (more than 10 orders of mag-
nitude).?*

Numerical Implementation of the Model

The model used to fit the training data is comprised of
23 non-linear ordinary differential equations
(ODEs) (Supplementary File 1), and the model used for
generating predictions with the catalytically inactive
LCK is composed of 73 ODEs. The equations were
written as a set of rules in BioNetGen,'' and implemented
in MATLAB (The MathWorks Inc., Natick, MA). The
model BioNetGen file is provided in Supplementary File

2, and the catalytically inactive model BioNetGen file is
provided in Supplementary File 3.

Parameter Estimation

Binding, on and off, and catalytic rates were esti-
mated in an unbiased approach to find parameter sets
that could both qualitatively differentiate between the
rate of phosphorylation of Y394 and Y505 of LCK
and quantitatively provide the best fit to the data.

Due to the large number of parameters to be fit, 38,
and a lack of prior information about their possible
ranges, a two-step approach was used to fit the model.
First, a series of parameter sets was calculated by
minimizing the weighted sum of the squared residual
for a hybrid objective function (WSSRyyp,) that
accounts for both the quantitative fit to the data and
the qualitative order of the phosphorylation curves of
the two substrate sites (Y394 and Y505).2° Without the
addition of the qualitative order of the curves in the
hybrid WSSR, all of the optimal parameter sets over-fit
the conditions in which Y394 is phosphorylated faster
than Y505 (High LCK, High LCK + CSK, and Low
LCK) without capturing the increase in Y505 phos-
phorylation in the Low LCK + CSK case. Parameter
sets that did not capture that increase were penalized
by having a higher WSSRy, .

The WSSRyyp, is calculated by adding the WSSR
for each data point to the WSSR for the distance
between the Y394 and Y505 curves in each experi-
mental condition:

min ( WSSRhybr(H))

_ min( - [le394 (CY394 _ CY394(9))}2

exp,i sim,i
i=1

n 2
e[ - )]
i=1
n
iff Y394 Y505
+Z]: |:Wld ((Cexp,i - Cexp,i)

—(cxeio) - ca <9>)>} )

Y39 Y505

where C;o77 and C,,7 are the ith experimentally
measured LCK phosphorylation data point for Y394
or Y505, respectively. C13%% and C1% are the simu-
lated LCK phosphorylatidn at the ith time point.
W% w05 and W are weighting terms, taken as

1/CP% 1/CY05 ) and 1 /(CY394 _ CY505>’ respectively.

exp,i> exp,i? exp,i exp,i
n is the total number of experimental measurements.
The minimization is subject to the upper and lower
bounds of the free parameters, 0.
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Particle swarm optimization (PSO)'” was used to
find 1000 parameter sets that reached a minimum in
the WSSR for the hybrid objective function. Briefly,
PSO is able to efficiently search a parameter space by
mimicking the ways in which groups of animals make
decisions, for example how a colony of bees finds a
new nesting site. Many particles move around the
parameter space communicating their WSSR at each
position. With each iteration, the positions and
velocities of the particles are updated such that they
approach a minimal WSSR. We used 31 particles
searching a 38-dimensional bounded parameter space,
with the particles starting at random points in the
parameter space. Each iteration, a WSSR is calculated
for every particle and the particles’ positions and
velocities are then updated based on the their current
WSSR and the global minimal WSSR. The algorithm
is terminated when the global minimum WSSR re-
mains constant for 50 iterations.

Next, the parameter sets from the hybrid WSSR
were tailored to fit a quantitative WSSR (WSSR gyan()-
The 1000 hybrid parameter sets were then used in the
second step as inputs to a more local parameter esti-
mation approach, performed by the MATLAB
Isqnonlin function. This algorithm solves the non-lin-
ear least squares problem using the trust-region-re-
flective optimization algorithm, minimizing the
WSSunant:

min (WSSRguan(0))

oS0 [w (ept - cito)]

=1
30w (s - Cﬁi‘??(@))f)
i=1

where the variables are the same as those used in the
WSSR b, function.

Clustering

Parameter set clustering was done using the MA-
TLAB kmeans function. The optimal number of clus-
ters was determined using the silhouette method.*® The
silhouette plots measure the confidence that a given
point lies in the cluster to which it is assigned, with
each point getting a score from —1 to 1. We used the
sum of the silhouette plot to calculate the optimal
number of clusters, which was found to be three.

Sensitivity Analysis

The extended Fourier amplitude sensitivity test
(eFAST), a global variance-based sensitivity analysis,
was used to understand how different parameters
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(“model inputs”) affect model predictions (“model
outputs”). This method has been used previously to
analyze computational biological models.'*** In this
method, the values of all of the inputs are varied to-
gether at different frequencies within a specified range
and the model outputs are recorded. We varied the
parameters 100-fold up and down from their median
values, shown in Table 1. The Fourier transform of the
output indicates which parameter frequencies con-
tribute most, thus, which parameters are most sensi-
tive. Varying all of the parameters together allows us
to calculate two different indices of sensitivity: the first-
order FAST indices, Si, a measurement of the local
sensitivity of individual inputs, and the total FAST
indices, STi, a measurement of the global sensitivity
which accounts for second and higher-order interac-
tions between multiple inputs. A greater total index
than first-order index indicates that an input is more
important in combination with other parameters than
alone. We implemented the eFAST method using
MATLAB code developed by Kirschner and col-
leagues.”’

Statistical Analysis

All statistical analyses were determined with a one-
way analysis of variance (ANOVA) using Graphpad
Prism version 6 for Mac (GraphPad Software, San
Diego, CA).

RESULTS

Model Construction

We have constructed a model of LCK autophospho-
rylation and phosphorylation by the kinase CSK. Below,
we describe the salient features of the model, and full
details are provided in the Methods section. Hui et al.
experimentally proved that LCK, starting from a pool of
unphosphorylated LCK, is able to phosphorylate itself in
trans, and that this is the predominant form of phos-
phorylation.'> Accordingly, our model assumes that each
LCK substrate site, Y394 and Y505, must be phospho-
rylated by a catalytic site on a different LCK molecule.
This is done by implementing a Michaclis—Menten
mechanism in which each pair of enzyme and substrate
LCK species has different binding and catalytic rates.
This model is characterized by 38 kinetic parameters.

In the model, each of the four LCK species, referred
to by their phosphorylation status as UsguUss,
P394Usgs, UzgaPs0s5, and P394Psgs, are able to bind and
phosphorylate the four substrate sites, Y394 of
U394U505 and U394P505 and Y505 of U394U505 and
P394Usgs, with different kinetics. To simulate this, the
catalytic domain of one LCK species in the model can
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TABLE 1. Reacting species and parameters.

Enzyme Substrate* Dissociation rate (s~'): Median, (90% CI¥) Catalytic rate (s'): Median, (90% Cl)
Usg4Us0s Use4Us0s5 koff,1 1.0 x 1071: kcat,1 2.7 x 103,

(4.8 x 1077=3.0 x 1073 (2.1 x 10°-6.5 x 10%)
Uszg4Usos Us94Us0s koff,z 4.9 x 102, kcat,2 4.2 x 101,

(4.1 x 10>~1.5 x 10°) (2.9 x 10'-8.4 x 10"
Uszg4Usos P394Us0s koff,s 6.1 x 105, kcat,3 7.6 x 10_11,

(9.7 x 10%-2.8 x 10°) (25 x 107152 x 1078)
P3g4Usos Use4Us05 Koft,4 2.6 x 107, Kcat,4 22 x 1078,

(4.6 x 10°-2.8 x 10) (5.1 x 107°-1.3 x 1077)
P394Usos Uszg4Us0s koff,s 6.4 x 102, kcat,S 3.9 x 101,

(5.5 x 10>-5.1 x 10°) (5.4 x 107'-5.0 x 10")
Uszg4Usos Us94Ps05 Kot 7.6 x 1074 Kcat6 4.6 x 1078,

(2.6 x 107°-1.5 x 1079 (1.2 x 1078-6.6 x 107°)
Usz94Ps05 Usg4Us0s Koft,7 1.1 x 1078, Kcat,7 5.9 x 10712,

(1.2 x 107°-1.8 x 107?) (8.3 x 107'2-3.8 x 10719
Uz94Ps05 Uszg4Us0s Kofi,8 1.2 x 1078, Kcat,s 6.6 x 107",

(1.9 x 107°-6.1 x 107?) (1.0 x 107"-1.8 x 1077)
P3g4Usos P394Usos Kotr,9 2.3 x 102, Keat,0 1.3 x 101,

(1.8 x 10%-7.0 x 10?) (9.4 x 10°-3.0 x 10")
Us04Ps05 P394Us0s Koff, 10 5.3 x 101, Keat, 10 6.3 x 1078,

(1.3 x 10°-7.7 x 109 (1.9 x 107822 x 107%)
P3g4Usos U394Ps505 Koff, 11 7.7 x 10%, Keat,11 9.5 x 1073,

(1.3 x 10°-2.1 x 10% (2.3 x 107°-5.4 x 107")
Us04Ps05 Us394Ps05 Koff, 12 5.4 x 101, Keat,12 1.9 x 1076,

(1.0 x 10'=1.1 x 10% (3.4 x 1077-1.0 x 107%)
P394Ps0s Usg4Us05 Koff, 13 1.6 x 107, Keat,13 9.2 x 107

(1.8 x 1073-5.1 x 10") (2.0 x 10%-9.1 x 10°)
P394Ps0s Usg4Us0s Kot 14 5.6 x 105, Keat, 14 58 x 107",

(1.1 x 10°-9.1 x 10°) (8.0 x 1072-6.5 x 107°)
P394Ps0s P394Usos Koff, 15 2.4 x 107", Kcat, 15 8.1 x 1074,

(1.8 x 107"'-9.7 x 1079 (8.1 x 107%-8.1 x 1074
P394Ps0s Us394Ps505 Kot 16 1.6 x 10°, Kcat, 16 6.3 x 1072,

(6.8 x 107'=2.5 x 10°) (9.0 x 107°-6.6 x 1072)
CSK Usg4Us0s Koft,csk-UU 4.4 x 1072, Keat,csk-uu 21 x 1078,

(2.5 x 1072-8.6 x 107?) (1.5 x 107°-2.0 x 1079)
CSK P394Usos Koft,csk-PU 1.3 x 107, Keat,csk-PU 1.8 x 107,

(1.4 x 1077-1.4 x 1079)

(9.3 x 10°-2.6 x 107)

Parameter values represented as the median of 20 best-fit parameter sets.

* Substrate site shown in bold.
# Confidence Interval.

interact with the Y394 or Y505 residue from another
LCK species. This results in several possible dimer
conformations between an LCK pair that each has the
same association rate (K,,), but have different disso-
ciation rates (K,z). The phosphorylation reactions can
also be catalyzed at different rates depending on both
the enzyme and substrate; subsequently, each of the 16
LCK dimer intermediates has a different catalytic rate
(K.qs). As an illustrative example, the interactions for a
representative pair of LCK species, Us94Usgs and
P394U5ps, are shown in Fig. la. These two species have
3 different phosphorylation sites, Y394 on UsgqUsgs
and Y505 on UszguUsps and P3g4Usgs, resulting in three
different intermediate dimers. After binding with the
same rate of association (K,,), each of these species can
unbind (Kup7, Kopr2, Ko 3) or catalyze a phosphory-

lation reaction (K...;, Kearz Kearz) with different
rates.

Like the LCK homodimers, CSK is able to associate
with all of its substrates with the same association rate
and has different dissociation and catalytic rates,
depending on the substrate (Fig. 1b). It has been
widely established in the literature that CSK is only
able to phosphorylate LCK at Y505.*' Therefore, there
are only two substrates available to CSK in the model
(U394Us05 and P394U5ps), resulting in two intermediate
CSK-LCK dimers.

The complete list of interacting pairs in the model
and their respective dissociation and catalytic rates is
shown in Table 1. In total, the model includes 23 un-
ique species, the concentrations of which are described
by 23 ordinary differential equations (ODEs) (Sup-
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(a) Enzyme Substrate

—OLYoR
—
Koft,csk-uu

Phosphorylated

Enzyme Species

FIGURE 1. Schematic of LCK interactions. (a) The possible interactions between a representative pair of LCK species, U3zg4Us05
and P394Us505, are illustrated. LCK can phosphorylate itself in trans when the catalytic domain of one molecule binds to a tyrosine
phosphorylation site on another molecule. Phosphorylated tyrosine residues are red and have a filled red circle labeled with “P”,
unphosphorylated sites are green and have an empty red circle. Each LCK species (U3g4Us0s5, P394Us05, U394P505, and P3g4Psgs) is
represented by a different color molecule. All of the species can bind to a substrate site (Y394 or Y505) with a single rate of
association (K,,) and different dissociation rates (Kos 1, Korr, 2, Kosr,3). The catalytic rates are also different depending on the enzyme
and substrate pairs (denoted as Kcat, 1, Kcat,2, Kcat,3)- (b) Diagram of all possible interactions of the enzyme CSK with LCK. CSK can
phosphorylate LCK U3g4Us05 Or P394Us0s 0n Y505. The pairs can bind with the same association rate (K,n,csk), but CSK-LCK pairs
will dissociate (Kot csk-uus Korr,csk-pu) and phosphorylate (Kcacsk-uu, Keat,csk-pu) With different rates.

plemental File 1). The association rate for all LCK
pairs (K,,) has a median value of 8.9 x 10°*
pm?/molecules's and a 90% confidence interval of
6.8 x 107*-1.9 x 10~ um?*/moleculess. The associa-
tion rate for all CSK-LCK pairs (Ko, csk) has a
median value of 5.9 x 107* um?/molecules's and a
90% confidence interval of 4.4 x 107*-1.2 x 1073
pm?/molecules-s. The procedure used to estimate these
rates is described in detail below.

Determining the Optimal Parameter Sets

The model was fit to quantitative western blot data
of LCK phosphorylation at Y394 and Y505 in a two-
dimensional membrane reconstituted system obtained
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by Hui and Vale.!> We used four sets of Y394 and
Y505 site-specific phosphorylation data to train the
model: 500 molecules LCK/um?, 500 molecules LCK/
pm? + 500 molecules CSK/um?, 50 molecules LCK/
pm?, and 50 molecules LCK/um”> + 500 molecules
CSK /um?”. A fifth set of site-specific data in which 50%
of the LCK in the system is catalytically inactive was
used as model validation, to test that the model
parameters are able to predict data not used in the
fitting process.

As most kinase kinetic studies are performed in
solution, we could not directly apply any previous
assumptions for the range of parameter values in this
two-dimensional system. While there are numerical
techniques that enable conversion of three-dimensional
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FIGURE 2. Method for choosing the optimal parameter sets. (a) The cumulative density function of the weighted sum of the
squared residuals (WSSR) for training data sets that were used to fit the model. The tail of low WSSR parameter sets was selected
(purple region). (b) The parameter sets from the purple region in panel (a) were sorted into a cumulative density function based on
the WSSR for the validation data set. Parameter sets with low WSSR were selected (yellow region) and further filtered based on
their ability to reach steady state by the end of the 90 min simulation time. (c) The resulting 33 parameter sets were sorted into
clusters and compared for trends in their parameter values as well as their ability to fit the training data. The red cluster showed the
best fit to the predictive data set, as well as strong statistical differences between many of the parameter values, indicating a clear

mechanism of LCK autoregulation.

kinetic parameters to a two-dimensional system, there
is no kinetic binding data of LCK-LCK dimers in ei-
ther a two-dimensional or three-dimensional system to
start from, apart from the autophosphorylation de-
scribed in the paper by Hui and Vale. Additionally,
Hui and Vale compared the autophosphorylation of
LCK in solution to their two-dimensional membrane
system and found that the phosphorylation kinetics for
Y394 and Y505 do not change proportionately when
transitioning between the two systems. In the mem-
brane system, Y394 is phosphorylated much faster
than Y505, while in solution it appears that Y505 is
phosphorylated faster. In the solution data there is an
initial rapid jump in Y505 phosphorylation above that
of Y394, followed by a plateau and then a second
phase in which both sites are rapidly phosphorylated,
while in the membrane data the phosphorylation of
Y505 is much steadier. These different dynamics imply
that it would not be straightforward to inter-convert
two-dimensional and three-dimensional kinetics.
Therefore, we used an unsupervised fitting procedure
in which the parameters are allowed to vary within
very wide bounds (1072° to 10'° um?/molecules's for
K,,, and 107" to 10'° 1/s for Ko and Ky).

We used a two-step fitting procedure to search the
large parameter space and find parameter sets that can
both qualitatively and quantitatively describe the
training data. In the first step, we used particle swarm
optimization (PSO) to minimize a hybrid weighted sum
of the squared residuals (WSSR) objective function.?
This hybrid WSSR was used to optimize both the
quantitative fit to the data points as well as a quali-
tative readout of the difference between the curves of
phospho-Y394 and phospho-Y505 in each experimen-
tal setting (see methods for more detail). We used PSO

to obtain 1000 parameter sets that could describe the
differences in the rates of phosphorylation of the two
sites for the different experimental conditions. PSO is a
global optimization technique that enables efficient
exploration of the parameter space.!” The hybrid
WSSR values ranged from 3.3 x 10' to 3.8 x 10°,
with a median value of 4.1 x 10>. However, in the
second step, all of the parameter sets obtained using
PSO, regardless of their hybrid WSSR value, were
tailored to better quantitatively fit the data using the
MATLAB Isgnonlin function (MathWorks Inc., Nat-
ick, MA). Specifically, the parameter sets from PSO
were used as starting points to minimize an objective
function that calculates the WSSR between the
experimental data and the model predictions. Each of
the 1000 PSO parameter sets was tailored twice,
resulting in 2000 parameter sets. The frequency dis-
tributions of the quantitative WSSR values are shown
in Fig. 2a, ranging from 6.3 x 10° to 1.1 x 10°.

We used three criteria to determine the optimal
parameter sets used for model simulations. Due to the
large bounds, the majority of the 2000 parameter sets
represented local minima that did not properly capture
the data. Therefore, we first considered the parameter
sets that were close to a global minimum, with respect
to the training data, using the cumulative density
function (CDF) of the WSSR. Secondly, we wanted to
ensure that the parameter sets chosen were able to
predict data not used in the fitting, termed validation
data. Therefore, we used the CDF of the WSSR with
respect to the validation data to find parameter sets
that were able to predict the validation data well.
Thirdly, we selected parameter sets that matched a
molecularly detailed aspect of the Hui et al. data: in the
high LCK experimental conditions, nearly 100% of the
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LCK is doubly phosphorylated by 90 min. To do this,
we removed the parameter sets in which less than 90%
of the LCK, in the high LCK condition, was doubly
phosphorylated by 90 min.

Figures 2a and 2b shows CDF plots for the distri-
butions of the quantitative WSSR values, which are
used to find the parameter sets with good fits and
predictions, respectively. The general trend is a sig-
moidal function, with a tail at the beginning containing
the parameter sets that all have low WSSR values. We
started with the CDF plot for the training data set, and
chose the end of the first step in the function as the
cutoff for good fitting parameter sets (Fig. 2a, purple
region, WSSR < 7.1). Then, taking only those
parameter sets in the purple region, we calculated the
WSSR values for the predicted data, which had a
WSSR ranging from 2.3 to 8.9. Figure 2b shows the
CDF function of these values. A similar cutoff point
was chosen for parameter sets that had a good fit to the
validation data (WSSR < 3.3), indicated by the yellow
region.

The model fitting and parameter selection proce-
dures described above resulted in 33 optimal param-
eter sets. However, these parameter sets showed high
variability, and the median parameter values were not
able to reproduce the data. Therefore, we clustered
these parameter sets into three groups using the
MATLAB kmeans function (Fig. 2c). The three
clusters’ predictions of the validation data are shown
in Supplemental Fig. 1, with median quantitative
WSSR values of 6.8, 7.0, and 6.9 for the green, blue,
and red clusters, respectively. These three groups
provided different hypotheses for the kinetics of LCK
phosphorylation. Although the green cluster had the
lowest WSSR, it contained highly variable parameter
sets without a significant difference between any of
the catalytic rates (data not shown). Without statis-
tical significance, no clear parameter values or
mechanistic trends can be observed. The blue and red
clusters did show significant differences between the
parameters for different LCK species, indicating that
specific LCK species interact with different kinetics
(Supplemental Fig. 2). The primary difference
between the blue and red clusters was the kinetics for
the interactions of enzyme P;94Usos with Y505 on
Usz94Usgs and enzyme Pso4Psos with Y505 on
P394Usgs. These differences effectively switched the
contribution of these two reactions to the phospho-
rylation of Y505 in the training data simulations.
Significantly, the red cluster had a lower WSSR value,
indicating that it was able to match the training data
and predict the validation data better than the blue
cluster; therefore, the 20 parameter sets within the red
cluster were determined to be optimal and were used
in subsequent simulations.
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Model Fitting

Using the 20 optimal parameter sets, the model is
able to accurately match the experimental data from
Hui and Vale (Fig. 3). In Figs. 3a-3c, LCK Y39%4 is
phosphorylated faster than Y505, and there is more
phospho-Y394 in the system than phospho-YS505 at
each time point. Conversely, in Fig. 3d, these rates are
reversed, and there is more Y505 in the system. The
model is able to capture this switch in the rates of Y505
and Y394 phosphorylation. In the high LCK data
without or with CSK (Figs. 3a, 3b, respectively), there
is a very sharp increase in Y394 phosphorylation
within the first 15 s, followed by a much slower in-
crease in phosphorylation. The model is able to cap-
ture this biphasic nature as well. Additionally, the
model can refine the sharp response in the low
LCK + CSK condition, compared to the high LCK
conditions (Fig. 3d, blue line).

There are clear statistical differences between many
of the estimated kinetic rates, despite high variability in
their fitted values (Fig. 4). The majority of the esti-
mated parameter values vary over a wide range,
sometimes over 10 orders of magnitude or more.
However, all of the sets are able to reproduce the data

(a) (b)
High LCK High LCK + CSK
© 100 y -
G
o 7
> . ¢
[ <
2 50 50/
[oX
7]
o]
.C
o
* 00T 0 oo TR TRT
' ' . pY394
(c) (d)  owickscsk °PY505
o 100
— 3§
[
3 4
g 4
s Lo
2 50 /
Q.
a 4
o o o
N * 4
o
R 0 0
01 1 10 100 01 1 10 100

Time (min) Time (min)

FIGURE 3. Model fit to experimental data. The model is able
to fit experimental data from Hui and Vale.'® To mimic the
experimental conditions, the model included initial conditions
of (a) 500 molecules of LCK/ym?, (b) 500 molecules of LCK/
um? + 500 molecules of CSK/um?, (c) 50 molecules of LCK/
um?, or (d) 50 molecules of LCK/um? + 500 molecules of CSK/
um?, Each graph shows the experimental data (dots) and
median model fit (dark lines) with the 50% and 90% confi-
dence intervals (dark and light shaded regions, respectively).
The data shows the total amount of phospho-Y394 (blue) and
phospho-Y505 (red) over time based on quantitative western
blots. The experimental data is normalized by the western blot
band intensity at 90 min, and the simulations are normalized
by the concentration of LCK at the end of the 90 min simula-
tion.
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used in parameter fitting. Comparing the rates of dif-
ferent enzymes catalyzing the phosphorylation of a
single substrate is of particular interest (Figs. 4a and
4c), as these comparisons enable a Dbetter
understanding of the catalytic activity of individual
LCK species. In general, the catalytic rates between
enzyme species on a single substrate vary more than
the dissociation rates for that substrate. Most of the
dissociation rates are relatively high compared to the
rate of association, with the exception of the dissoci-
ation rate of P3g4P505 enzyme with P394Usos substrate,
which is consistently lower than the rate of association.
This indicates that the P394Ps505-P394Usps dimer can
remain bound for a longer period than most others.
The catalytic rate of Usg4Ps0s is always statistically
lower than the catalytic rate of all other species.
Interestingly, both the LCK and CSK association
rates, which are shared between the dimer pairs, are
highly conserved, with only one parameter set falling
outside of a tight range of less than two-fold (Fig. 4b).

Model Validation

In addition to fitting the training data and esti-
mating the optimal parameter values, the model with
the optimal parameter sets is able to match validation
data not used in the fitting. Hui and Vale quantified the
amount of phospho-Y394 and -Y 505 when 50% of the
LCK in the system (250 molecules LCK/um?) was
made catalytically inactive by a point mutation in the
ATP binding site. To simulate this condition, we in-
cluded a separate LCK species that can be phospho-
rylated at Y394 and Y505, but cannot act as an enzyme
to catalyze the phosphorylation of other molecules.
This model assumes that the catalytically inactive LCK
interacts with the same kinetic parameters as active
LCK. Figure 5 shows that the optimal parameter sets
from the model fitting also provide a good match to
the experimental validation data not used in the fitting,
capturing the sharp early increase in phospho-Y394,
the variable slope of phospho-Y505 levels, and the
finding that the rate of Y394 is higher than that of
Y505. This lends confidence to the predictive ability of
the optimized model.

Sensitivity Analysis

Despite the large variation in many of the parame-
ters, the model is robust and can withstand a high level
of biological variability. This is evident in the tight
range of model fits and predictions shown in Figs. 3
and 5, respectively (i.e., the small band illustrating the
90% confidence intervals). Additionally, using the
median parameter values from all 20 optimal param-
eter sets, the model is still able to recreate the data

within the 50% confidence interval. This indicates
significant model robustness, even considering a high
level of biological variability.

To further quantify how sensitive the model is to the
parameters, we performed a parameter sensitivity
analysis using the extended Fourier amplitude sensi-
tivity test (eFAST).?” The eFAST analysis is a global
variance based method in which all of the parameters
are varied together at different frequencies. The
Fourier transform of the output can then be analyzed
to determine which frequencies, and thus which
parameters, have the most influence on the model
outputs. This method calculates the first order eFAST
indices (Si), a measurement of the local sensitivity of
each parameter, as well as the total eFAST indices
(STi), which takes into account the effects of higher
order interactions between parameters.

Results from the global sensitivity analysis further
quantify the robustness of the model. We performed
the eFAST analysis to determine the sensitivity of the
total phospho-Y394 and total phospho-Y505 in the
system, at specific time points, with respect to all 38
kinetic parameters. There were no significant differ-
ences between the eFAST results for the high and low
concentrations of LCK. Additionally, the qualitative
results for the LCK specific parameters did not change
with the addition of CSK; therefore, we only show the
indices for the condition of high LCK + CSK
(Fig. 6). The first order indices were slightly lower than
the total indices, but qualitatively the same. The values
of the sensitivity indices show that the levels of phos-
phorylated Y394 and Y505 are most sensitive to the
association rates of the LCK species with each other
and with CSK, the dissociation rate of CSK and
Usz94Usgs, and the catalytic activity of CSK for
Usz94Usgs. These are the same parameters for which the
estimated values obtained from the model fitting have
a narrow distribution. However, the levels of phospho-
Y394 and -YS505 are insensitive to most of the
parameters, justifying the large deviation in the dis-
tributions of the parameters’ estimated values (Fig. 4).

Predicted Mechanism of LCK Activation

The molecular detail of our model allows us to
make predictions regarding the mechanisms of LCK
autophosphorylation and phosphorylation by CSK.
Specifically, we can compare the median value of the
estimated catalytic rates for each of the LCK enzyme
species, P304Usos, U3zo4Ps0s, U3zgaUsps, and P3ggPsos, as
shown in Figs. 7a, 7b, 7c, and 7d, respectively, with a
summary of the pairwise interactions shown in Fig. 7e.
The parameter estimation reveals that P394Usgs has the
highest overall catalytic activity (i.e., this enzyme spe-
cies only has red or purple arrows pointing to the
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phosphorylation reactions, Fig. 7a). Conversely,
Uszo4P505 has the lowest activity (Fig. 7b). These results
are in agreement with what has been shown in the
literature for the catalytic rates of these enzymes on
other substrates, such as the CD3z chain ITAMs.”!®
The catalytic activity of the Usz94U505 and P394P505
species varies depending on the substrate. UsgqUsgs
preferentially phosphorylates itself and catalyzes
phosphorylation at Y394 and Y505 with approxi-
mately the same rate. In comparison, P394P505 shows a
strong preference for site Y394 of UszgqUsgs. CSK is
estimated to have higher catalytic activity against
P394Usps than UszgqUsgs, predicting that CSK will
phosphorylate P394Us0s more readily than Us;g4Uss,
which has been validated experimentally.>*!

The estimated catalytic activities identify specific
molecular interactions that produce a negative feed-
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FIGURE 5. Model validation. The model is able to reproduce
data not used in the parameter fitting. This data, taken from
Hui and Vale,'® uses a reconstituted in vitro membrane sys-
tem of LCK phosphorylation with a high LCK concentration in
which 50% of the LCK (250 molecules LCK/um?) is catalytically
inactive due to a point mutation at the ATP binding site and
50% is normally active. The model fit (lines) compared to the
data (dots) are shown with 50% and 90% confidence intervals
(dark and light shaded areas, respectively), for phospho-Y394
(blue) and phospho-Y505 (red). The experimental data is
normalized by the western blot band intensity at 90 min, and
the simulations are normalized by the concentration of LCK at
the end of the 90 min simulation.

back loop in LCK activation. The P394Usq5 species, the
most catalytically active form of the LCK, preferen-
tially phosphorylates Y505, compared to Y394, with a
difference of over three orders of magnitude (Fig. 7a,
red arrows). This is significant because Y505 is thought
to be the inhibitory site, generally, and its phospho-
rylation reduces the catalytic activity of LCK, thus
providing a possible form of negative feedback. Dou-
bly phosphorylated LCK, P394P50s, on the other hand,
preferentially phosphorylates UsgsUsgs to P3g4Uss,
increasing the overall catalytic activity of the pool of
LCK. It has been shown that other intermolecular
feedback mechanisms do play an important role in
controlling and tailoring the T cell response*’; how-
ever, these specific autoregulatory feedback mecha-
nisms have not been identified before. Thus the model
predicts, for the first time, that competing
intramolecular feedback loops could help stabilize and
control the overall activity of LCK. It will be impor-
tant to see if these effects are still significant when more
complex interactions between phosphatases and other
substrates are taken into account.

The model also predicts the relative amounts of each
LCK species in the system over time. In general, LCK
starts in a completely unphosphorylated form and
transitions through a singly phosphorylated interme-
diate to end with all of the LCK doubly phosphory-
lated (Fig. 8). The results are shown for both high and
low LCK concentrations with and without CSK.

The predicted levels of the LCK species are directly
influenced by the binding kinetics. The model predicts
that a significant amount of P394Us0s and P394P505 can
remain bound together when they are both present in
the system (Figs. 8i and 8k). This is due to the low
dissociation rate for enzyme Pz94Ps05 bound to sub-
strate P394U505 (Flg 43) U394P505 and U394U505 are
also able to bind together, but this association is not as
strong as that of P394P505 and P394Uso5 and seems to be
primarily a result of the low catalytic activity for all
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FIGURE 6. Sensitivity indices of model parameters. The eFAST analysis was used to calculate the first order (Si) and total (STi)
parameter sensitivity indices for two model outputs: total phospho-Y394 (Y394) and total phospho-Y505 (Y505). Red indicates the
parameters to which Y394 and Y505 are very sensitive, and white represents parameters that do not significantly influence Y394
and Y505. The dissociation and catalytic rate parameters are labeled by the enzyme-substrate pair involved in the reaction.
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binding conformations of these pairs. A similar, but
even smaller, binding interaction is present between
Us94P50s and P394Usps. When CSK is added to the
system, it serves as a sink for LCK, binding to it and
keeping it in the system for longer. Significantly, much
more U394U505 is bound to CSK than P394U505, as
shown by the sharp increase in bound Uj94Usps when
CSK is present (comparing Figs. 81 to 8k, blue lines),
compared to the more modest increase in P;o4Usqs
(comparing Figs. 81 to 8k, green lines).

The model allows us to explore the detailed mech-
anisms that govern previously unexplained features of
the data. The presence of CSK significantly influences
the levels of the LCK species. Adding CSK to the
system greatly reduces the total amount of P394Uss,
leaving almost none of this highly active form free to
interact with other species (comparing Figs. 8h to 8g,
red lines). In the low LCK conditions, CSK also
increases the amount of Usg4P50s, greatly reducing the
overall catalytic activity of the total pool of LCK in
this experimental condition (comparing Figs. 8d to 8c,
green lines). In comparison, in the high LCK + CSK
experimental simulation, the total amount of U3g4Psos
does not significantly change compared to the high
LCK condition (comparing Figs. 8b to 8a, green lines),
while the amount of P394Usqs is still greatly reduced
(Figs. 8b to 8a, red lines). The model predicts that this
difference in the change of intermediate Us;g4Ps50s5 1S

(a) (b)
Y394
(activating)
Y505
(inhibitory)

()

responsible for the shift in the curves of phospho-Y394
and phospho-Y505 in Fig. 3d of the model training
data sets.

DISCUSSION AND CONCLUSION

We have constructed a model of LCK activation via
autophosphorylation and phosphorylation by the ki-
nase CSK based on data from an in vitro two-dimen-
sional membrane system.'> LCK is an important
regulator of T cell activation, and quantifying the
kinetics that govern its activity will allow us to better
understand and engineer T cells for therapeutic pur-
poses. The kinetics of LCK phosphorylation in this
in vitro membrane system are very different from those
that occur in more commonly used solution systems. It
is believed that this two-dimensional system more
accurately reflects what occurs in vivo, as much of the
LCK in T cells is bound to the inside of the mem-
brane.*® Most prior biological computational signaling
models have relied on enzyme solution kinetic
parameters for initial estimates. However, we believe
that by focusing on two-dimensional kinetics that are
more representative of what occurs in vivo, we can
create models that are more predictive.

Our model is able to fit the data of membrane
bound LCK phosphorylation well, both quantitatively
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FIGURE 7. Schematic of predicted LCK kinase activity. The schematics show the catalytic rates for LCK enzymes (a) P394Us0s, (b)
Us94Ps505, (€) UzgqUs0s, and (d) P3gsPsos catalyzing each of the four possible LCK phosphorylation reactions. In each panel, dotted
arrows represent a phosphorylation reaction that can be catalyzed (clockwise from top left, UsgqUs05 — P394Us0s,
P394Us05 — P394Ps055 U3g4Ps05 — P394Psos; UzgaUsos — UzeaPsos). The enzyme catalyzing the reactions in each panel is shown in
green with phosphorylated sites shown in red circles. The color of the solid arrows denotes the median value of the catalytic rate
for the indicated reaction for the 20 best parameter sets. The reactions catalyzed by CSK are also shown in each panel, with the
color of CSK denoting the median value of the CSK catalytic rate. (e) Pairwise heatmap of the LCK enzyme catalytic reactions.
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FIGURE 8. Model predictions of intermediate LCK species. The graphs represent the model simulations for total (a-d), free (e-h),
and bound (i-l) LCK species over time. From left to right, the columns represent data from conditions of 500 molecules of LCK/um*,
500 molecules of LCK/um? + 500 molecules of CSK/ym?, 50 molecules of LCK/ym?, and 50 molecules of LCK/pm? + 500 molecules
of CSK/umZ. The results are shown as a percentage of the total LCK in the system, with the 50% and 90% confidence intervals (dark

and light shaded regions, respectively).

and qualitatively. Additionally, we are able to identify
the specific kinetic parameters that most significantly
control LCK phosphorylation. One limitation of the
model is its inability to match early time point exper-
imental measurements of the phospho-Y505 curve in
the low LCK + CSK experimental condition
(Fig. 3d). However, there are no error bars for the
experimental data, and it is possible that these data
may have some experimental error. The recombinant
LCK protein used in this system is autophosphorylated
as it is expressed, so it must first be dephosphorylated
before the start of the experiment. Hui et al. used mass
spectrometry to measure the efficiency of this
dephosphorylation and found that a small amount of
Y505 is still phosphorylated at the start of the experi-
ment (~1.5%); however, many graphs show that the
initial phosphorylation of Y505 is much higher than
that, up to ~20%. This large variability in the starting
concentration of phospho-Y505 could lead to an
overestimation of the initial rate of Y505 phosphory-
lation in the low LCK + CSK condition. Addition-
ally, the data are derived from quantitative western
blotting, and there may be error in the band intensity
readings, particularly for early time points where the
band intensity is very close to background. For these
reasons, it is possible that the initial increase in phos-
pho-Y 505 in the low LCK + CSK condition does not
truly reflect LCK kinetics.

We applied an unbiased approach to fit the parame-
ters, generating a set of optimal parameter values that
are able to reproduce the data. Despite high variability

in the fitted parameters, there are statistically significant
differences between the estimated dissociation rates of
the LCK dimers and catalytic activities of the LCK en-
zymes. The statistical analysis along with the global
sensitivity analysis indicate that the proposed mecha-
nism of LCK activation implemented in the model is
robust and predictive. The model predictions reveal that
the levels of individual LCK species can remain within a
tight range, even with high variability in the parameter
rates. This model robustness is biologically relevant,
since it has been shown that the local microenvironment
around a pool of LCK in the cell changes dramatically
depending on the state of the cell and the proximity of
other molecules.'*!'%1-3

The model brings many new insights into the
autoregulatory mechanisms of LCK with respect to the
binding of LCK dimers. For example, the model pre-
dicts that P394Usps and P3g4Ps595 are able to form a
relatively strong dimer compared to P394Us05-U394P505
or UsgyUsgs5-Us94P505. Additionally, there are pairs
that do not significantly dimerize at all. A crystal
structure of the LCK SH2 and SH3 domains show that
these domains can homodimerize, and that this bind-
ing may be stabilized by the addition of the phospho-
rylated Y505 tail.'"” However, it does not provide any
information about how interactions from other do-
mains, particularly the domain containing Y394, con-
trol the extent of this dimerization. The model
parameters specify which dimers are able to bind more
strongly, and from that, we can infer the role that these
other domains play in LCK binding. Since the
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P394U505-P394P505 dimer is Stronger than P394U505-
Uszo4P505, we can hypothesize that the phospho-Y505
tail of P394P505 may be more amenable to stabilizing
the P394Us505-P394P50s dimer interaction than that of
Ujz94P505. This may be because the phospho-Y394 in
P394P505 keeps the molecule in a partially open con-
formation while the tail of Usg4Ps0s is held in a closed
conformation through ¢is binding.® Also, since
Us94Us9s and P394Usps do not dimerize with them-
selves or each other, we can conclude that the stabi-
lization from the phospho-Y505 tail is important in the
LCK intermolecular interactions.

The model also predicts that CSK plays a very strong
role in controlling the distribution of LCK species in the
model, which could be important for controlling LCK
activity in vivo. Figure 8 shows that CSK is able to bind
to LCK and increase the amount of UsguUsps and
Uszo4Ps05 in the system while reducing the amount of
P394Usgs and P394P50s. It is known that clusters of T cell
signaling molecules reside close to each other on lipid
rafts inside the T cell membrane.'*'” The composition of
these clusters changes as the T cell becomes activated
and the immunological synapse begins to form.'°
Keeping LCK clustered with CSK before synapse for-
mation could act as a control mechanism to reduce
aberrant LCK signaling in unstimulated cells. Once the
synapse forms and CSK is sequestered outside of the
synapse region, enough LCK can accumulate to lead to
high levels of active P394Usgs. More studies need to be
done to better understand how the possible LCK
autoregulatory feedback mechanisms and CSK function
in vivo when there are more substrates and phosphatases
in the system.

The model also predicts new binding relationships
between CSK and LCK that have not been identified
experimentally. The model indicates that CSK is able
to bind more strongly to Uszg4Usps than to P3g4Usps
(Fig. 81). Conversely, studies of LCK binding to CSK
in solution have shown that CSK is able to bind to
P394Usos, but not UszoqUsps.” Combined, these results
suggests that CSK binding to Usg4Usgs could be an
effect of the two-dimensional membrane system, indi-
cating a significant difference between the mechanisms
that occur in solution and those that are able to take
place in a more physiologically relevant membrane
bound arrangement.

Comparing the model simulations to data from LCK
phosphorylation in solution continues to shed light on
the differences between studying molecular kinetics in
solution and in the native two-dimensional distribution.
Hui et al. compared their experimental membrane sys-
tem to a traditional solution system. The authors found
that the rates at which the two LCK sites were phos-
phorylated were significantly different, and that the
measured kinetics for levels of phospho-Y394 and - Y505
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did not change proportionately. In the membrane sys-
tem, for high LCK, Y394 is rapidly phosphorylated
while Y505 slowly increases in a more steady manner
(Fig. 3a). In solution, however, Y394 and Y505 phos-
phorylation both remain at their starting levels for about
10 min and then both increase very rapidly.

The model indicates that distinct mechanistic
interactions can potentially contribute to differences in
the LCK phosphorylation kinetics that occur in two-
dimensions compared to solution. Our model and
estimated parameter sets were obtained by fitting LCK
phosphorylation data from the in vitro reconstituted
membrane system developed by Hui and Vale.'> We
also attempted to fit data for LCK phosphorylation
measure in solution. Since a key distinction between
the two-dimensional and solution-based systems is that
the species’ amounts are given in units of density rather
than concentration, we attempted to fit the in solution
data by only adjusting the association rates. The
association rates are the only parameters that depend
on the amount of a species (i.e., K,, has units of
pm?/molecules's), whereas the dissociation and cat-
alytic rates do not depend on concentration. We fol-
lowed the same parameter fitting procedure described
above using each of the membrane bound optimal
parameter sets described in the paper as starting values
to minimize the quantitative WSSR equation with the
MATLAB lIsqnonlin function; however, we were un-
able to fit the solution data. We then expanded our
fitting of the solution data to include the association
and dissociation rates, or the association, dissociation,
and catalytic rates. The data still could not be fit with
the mechanism used in the model. Although more
experiments need to be done to properly compare the
differences between LCK in solution and on the two-
dimensional membrane surface, we believe this could
point to a difference not only in the parameter values
but also in the mechanism of LCK phosphorylation
between the two settings.

Excitingly, the fitted model generates testable hy-
potheses, and the experimental in vitro two-dimensional
membrane system can be used to explore some of these
model predictions. The estimated parameter values and
model predictions support the presence of both nega-
tive and positive autoregulated feedback on the cat-
alytic activity of LCK, which have not been described
previously. The negative feedback comes from cat-
alytically active P394Usgs preferentially phosphorylat-
ing other LCK molecules at the Y505 inhibitory site.
The positive feedback comes from the moderately ac-
tive P394Ps0s species preferentially pushing doubly
unphosphorylated LCK to the active P;94Usos form
(Figs. 7a and 7d). These new feedback mechanisms,
hypothesized by the model predictions, can be tested
with targeted experiments that focus specifically on the
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catalytic activities of individual phospho-LCK species.
We can do this by mixing LCK that is either doubly
phosphorylated or specifically phosphorylated only at
Y394 with other, catalytically inactive, LCK species. It
is also possible to test model hypotheses about the
significance of bound dimers, like CSK and Us3g4U5ps,
by inserting domain deficient mutants, such as LCK
lacking the SH2 or SH3 domains, into the two-dimen-
sional membrane system. Thus, a systems biology
approach of using an optimized and validated compu-
tational model in combination with quantitative
experimental approaches can provide new and relevant
biological insight into LCK activation.

It is possible to improve and strengthen the model
by adding new proteins into this same in vitro mem-
brane reconstituted system and performing model
parameter estimation, as we have done here. This will
allow us to better understand how individual proteins
combine to produce the functions of the system as a
whole. For example to better understand the mecha-
nisms of LCK activation, we can incorporate
dephosphorylating events, through proteins like
CD45 and PTPN22, into the model to see how that
action impacts the overall levels of individual LCK
species.”® Having more data to fit the model will also
help to more specifically identify the LCK kinetic
parameters, many of which are still highly variable in
the current model. We can also study more specific
mechanisms of LCK by adding its substrates, CD3(,
ZAP-70, and SHP-1 into the system. The model also
serves as a starting point for studying the order and
kinetics of LCK-mediated phosphorylation of the six
CD3({ ITAM tyrosine phosphorylation sites.**'** We
believe that the model provides a quantitative
framework for studying many different protein
interactions relevant to T cell signaling, particularly
those involving LCK.

In summary, the model is a predictive tool that can be
used to examine the dynamics of LCK autoregulation.
As we continue to expand the model, we can use it to
make new predictions about the larger systems that
govern T cell activation and explore key biological
hypotheses, like those described above. Many of the
mechanistic questions described in this paper have
proven difficult to investigate experimentally; however,
using the computational framework described here, we
will be able to explore these issues on a more quantitative
level, providing insights and new testable hypotheses.
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