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In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Auditory nerve fibers reflect
this tonotopy and encode temporal properties of acoustic stimuli by “locking” discharges to a particular stimulus phase. However,
physiological constraints on phase-locking depend on stimulus frequency. Interestingly, low characteristic frequency (LCF) neurons in
the cochlear nucleus improve phase-locking precision relative to their auditory nerve inputs. This is proposed to arise through synaptic
integration, but the postsynaptic membrane’s selectivity for varying levels of synaptic convergence is poorly understood. The chick
cochlear nucleus, nucleus magnocellularis (NM), exhibits tonotopic distribution of both input and membrane properties. LCF neurons
receive many small inputs and have low input thresholds, whereas high characteristic frequency (HCF) neurons receive few, large
synapses and require larger currents to spike. NM therefore presents an opportunity to study how small membrane variations interact
with a systematic topographic gradient of synaptic inputs. We investigated membrane input selectivity and observed that HCF neurons
preferentially select faster input than their LCF counterparts, and that this preference is tolerant of changes to membrane voltage. We
then used computational models to probe which properties are crucial to phase-locking. The model predicted that the optimal arrange-
ment of synaptic and membrane properties for phase-locking is specific to stimulus frequency and that the tonotopic distribution of input
number and membrane excitability in NM closely tracks a stimulus-defined optimum. These findings were then confirmed physiologi-
cally with dynamic-clamp simulations of inputs to NM neurons.
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Introduction
Sensory neurons compute and represent features of stimuli with
meaningful patterns of action potentials. Information is repre-

sented in firing rates, temporal patterns, or both. Neuronal out-
put is determined by both synaptic connectivity and intrinsic
properties of the neurons themselves. In many regards, parsing
the relative contributions of each can be difficult due to stimulus
ambiguity or circuit complexity. Here we investigated cochlear
nucleus neurons in the chicken, where synaptic inputs are limited
in number and whose activity patterns are highly predictable
from the stimulus waveform.

Auditory stimuli are processed in parallel frequency-tuned
circuits, beginning in the cochlea (Galambos and Davis, 1943;
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Significance Statement

One way that neurons represent temporal information is by phase-locking, which is discharging in response to a particular phase
of the stimulus waveform. In the auditory system, central neurons are optimized to retain or improve phase-locking precision
compared with input from the auditory nerve. However, the difficulty of this computation varies systematically with stimulus
frequency. We examined properties that contribute to temporal processing both physiologically and in a computational model.
Neurons processing low-frequency input benefit from integration of many weak inputs, whereas those processing higher frequen-
cies progressively lose precision by integration of multiple inputs. Here, we reveal general features of input-output optimization
that apply to all neurons that process time varying input.
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Rose et al., 1959), where frequency is represented topographi-
cally. At low frequencies, auditory nerve (nVIII) fibers spike at a
particular phase of the stimulus period, a response property
known as phase-locking, which encodes temporal features of the
stimulus (Gerstein and Kiang, 1960; Rose et al., 1967; Sachs et al.,
1974). Chicken hearing ranges from 10 to 5000 Hz (Gray and
Rubel, 1985; Warchol and Dallos, 1989; Saunders and Salvi,
1993), and phase-locking is observed at frequencies �3200 Hz,
despite stimulus periods as brief as �300 �s (Salvi et al., 1992;
Fukui et al., 2006). Frequency tuned nVIII fibers then impart
“tonotopic” organization onto the cochlear nucleus magnocellu-
laris (NM) (Rubel and Parks, 1975; Parks and Rubel, 1978;
Jackson et al., 1982).

NM expresses many adaptations enabling phase-locking
across a broad frequency range and at high firing rates. Large
axosomatic synapses drive high firing rates and resist short-term
synaptic depression (Parks, 1981; Raman and Trussell, 1992;
Zhang and Trussell, 1994a, b; Oline and Burger, 2014). Addition-
ally, short membrane time constants arise from prominent ex-
pression of low voltage-activated potassium channels (KLVA).
These channels activate with mild depolarization and provide a
shunting conductance that limits summation of asynchronous
inputs while lowering input resistance (Reyes et al., 1994;
Rathouz and Trussell, 1998; Fukui and Ohmori, 2004; Lu et al.,
2004; Slee et al., 2005; Kuznetsova et al., 2008; Howard and Rubel,
2010). Furthermore, NM receives depolarizing inhibition, which
accommodates spike threshold both by recruiting KLVA and by
inactivating sodium channels (Lu and Trussell, 2001; Monsivais
and Rubel, 2001; Howard et al., 2007; Fukui et al., 2010). This
combination of factors allows NM neurons to function as mon-
aural coincidence detectors, responding maximally to synchro-
nous nVIII inputs while rejecting poorly timed input.

Interestingly, many of these adaptations are tonotopically dis-
tributed. Low characteristic frequency (LCF, �500 Hz) neurons
have slower membrane kinetics, have high-density Na� channels
in the axon initial segment, require smaller currents to spike, and
receive many small nVIII inputs, which depress more readily. In
contrast, high characteristic frequency (HCF, �2500 Hz) neu-
rons have more rapid membrane kinetics, require much larger
currents to spike, and receive only 1 or 2 large, depression-
resistant endbulb synapses (Fukui and Ohmori, 2004; Kuba and
Ohmori, 2009; Oline and Burger, 2014). The relative and com-
bined contributions of each tonotopically distributed feature to
computational output remain unclear.

We approached this broad question first by investigating the
influence of single synapses on spike timing across the tonotopic
axis in NM. Stimulation of unitary inputs to NM demonstrated
that LCF neurons responded with larger latency and jitter than
HCF neurons during high stimulation rates. We then assessed
NM neurons’ subthreshold and superthreshold membrane selec-
tivity for input characteristics. We found that neurons across the
tonotopy required different rates of depolarization to evoke re-
sponses and that, in HCF neurons, this selectivity shifted dynam-
ically with steady-state voltage. Computational models of LCF,
MCF, and HCF neurons assessed how tonotopic selectivity dif-
ferences affect synaptic integration of phase-locked inputs. All
models performed similarly with low-frequency stimuli by inte-
grating multiple subthreshold inputs. However, the HCF model
vastly outperformed MCF and LCF models for high-frequency
stimuli with fewer inputs. These data reveal mechanistic insights
into computational principles that apply broadly to neurons that
process temporal information.

Materials and Methods
We recorded 92 NM neurons from 17 white leghorn chicks (Gallus gallus
domesticus) age E19-P1 of either sex. Fertilized eggs were obtained from a
commercial poultry supplier (Moyer’s Chicks) and raised at Lehigh Uni-
versity’s central animal facility. All procedures were approved by the
Lehigh University Institutional Animal Care and Use Committee and
were performed in compliance with the Public Health Service Policy on
Human Care and Use of Laboratory Animals.

In vitro brain slice preparation
Acute brain slices were prepared as described by Oline and Burger
(2014). Before surgery, embryos were brought to room temperature, and
posthatch chicks were anesthetized with isoflurane (MINRAD). Chicks
were rapidly decapitated, and the brainstem containing auditory nuclei
was removed, blocked, and submerged in oxygenated aCSF containing
the following (in mM): 130 NaCl, 3 KCl, 10 glucose, 1.25 NaH2PO4, 26
NaHCO3, 3 CaCl2, and 1 MgCl2 at 22°C. The brainstem was placed
rostral surface down on the stage of a vibrating microtome (Microm
International) to collect 180 –200 �m coronal slices, 4 – 6 of which typi-
cally contained the NM. Slices were maintained in topographic order in
an incubation chamber of continuously oxygenated aCSF and incubated
at 37°C for 45 min, and then maintained at room temperature. The
tonotopic position of NM neurons within these coronal slices was esti-
mated according to position along the known rostromedial (high CF) to
caudolateral (low CF) axis (Rubel and Parks, 1975; Fukui and Ohmori,
2004). Using the topographic position scheme of the Ohmori group, NM
neurons were assigned to 1 of 3 topographically ordered CF subsections
(Fukui and Ohmori, 2004). LCF neurons were defined as those within
the first (most caudal) slice that contained NM and the lateral third of the
second slice. HCF neurons were defined as those within the last slice
containing NM and the medial third of the second-to-last slice. All other
neurons were defined as middle CF (MCF).

Recording arrangement
Brainstem slices were placed in a custom recording chamber on a retract-
able chamber shuttle system (Siskiyou), and neurons were visualized
with a Nikon FN-1 Physiostation microscope using infrared differential
interference contrast optics. Video images were captured using a CCD
camera (Hamamatsu) coupled to a video monitor. The recording cham-
ber was continuously superfused with aCSF at a rate of 1.5 ml/min. An
inline feedback temperature controller and heated stage were used to
maintain chamber temperature at 35 � 0.50°C (Warner Instruments).
Principal NM neurons were identified based on their characteristic
round morphology.

Patch pipettes were pulled from thick-walled borosilicate glass capil-
lary tubes (WPI) to a resistance of 3–7 M� using a two stage puller
(Narishige) and back-filled. We used a potassium-based solution for
current-clamp experiments containing the following (in mM): 145
K-gluconate, 5 KCl, 1 MgCl2, 10 HEPES, and 5 EGTA, pH adjusted to 7.2
with KOH. The signal was digitized with a Digidata 1440 data acquisition
board and recorded using Clampex software (Molecular Devices). Mem-
brane voltage was recorded using a Multiclamp 700B amplifier. Junction
potentials were measured at 10 mV and adjusted for data analysis. To
eliminate responses to spontaneous inhibitory input from the superior
olivary nucleus, aCSF included the following: 20 �M SR-95531 hydrobro-
mide, a GABAA receptor antagonist, and 500 nM strychnine hydrochlo-
ride, a glycine receptor antagonist.

Synaptic responses were evoked by electrical stimulation of single au-
ditory nerve inputs, using methods described previously (Dobrunz and
Stevens, 1997; Oline and Burger, 2014). Briefly, we positioned a bipolar
tungsten stimulating electrode over the tissue surface with a microma-
nipulator (Siskiyou), in a dorsolateral position proximal to the cell of
interest. Single-fiber, “unitary” evoked EPSCs were isolated using a min-
imum stimulation protocol, such that EPSCs were considered unitary
provided that EPSC amplitude was independent of stimulus amplitude
(range 5–90 V), EPSC latency and kinetics were consistent, and a reduc-
tion in the stimulus amplitude led to a complete loss of the EPSC. Syn-
aptic inputs that did not meet these criteria were discarded.
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Current-clamp protocols
Spike threshold in response to a square current (rheobase) was deter-
mined as the minimum square current amplitude required to elicit a
spike in at least 50% of trials. We then injected current ramps of increas-
ing maximum amplitude. To determine voltage slope threshold, we mea-
sured the final trace that evoked a successful spike from each of five trials.
We measured the time point of spiking, required to calculate voltage
slope threshold, as the point at which voltage slope changed most rapidly,
as measured by the peak of the second derivative. Voltage slope threshold
was then measured as the average slope of the middle 20%– 80% range
between ramp onset and spiking.

Chirp stimulus protocols, which are sine waves that increase in fre-
quency linearly from 0 to 250 Hz over 5 s, were generated in MATLAB
(The MathWorks) and imported into Clampex 10.2 (Molecular De-
vices). Current amplitude was adjusted with the gain function to main-
tain maximal voltage responses near 5 mV. Fourier transforms of both
injected current and voltage responses were performed in MATLAB fol-
lowing application of a Hanning window. Impedance was calculated as
the quotient of these two values.

Dynamic-clamp protocols
To model the excitatory postsynaptic conductances (EPSGs) of multiple
auditory nerve synaptic inputs onto NM neurons, we accessed neurons using
whole-cell patch clamp, and then acquired dynamic-clamp recordings
(Kullmann et al., 2004) with the G-clamp 2.1.1 software package (Paul H.M.
Kullmann and John P. Horn, Department of Neurobiology and Center for
the Neural Basis of Cognition, University of Pittsburgh School of Medicine).
We performed these experiments in current-clamp mode at 12 kHz with
LabView 8.2 software, a PXI-1031 chassis, and a BNC-2110 connector block
(National Instruments). Simulated EPSGs had a reversal potential of 0 mV,
and kinetics were fit to the shape of empirically observed unitary EPSCs from
previous observations (Oline and Burger, 2014), with input conductance
( gEPSG) set to the following equation with time constants �rise and �fall set to
0.20 and 0.33 ms, respectively, a normalization factor k (�5.4855), and a
maximum conductance (Gmax) as follows:

gEPSG � Gmax � k ��e�t/�rise � e�t/�fall�
We measured spike threshold in response to simulated EPSGs (hence-
forth referred to as conductance threshold) as the Gmax required to ini-
tiate spiking in at least 50% of 15 trials. We then evaluated the temporal
dynamics of threshold accommodation by pairing a subthreshold input
(EPSG1, Gmax set to 70% of conductance threshold) with a second con-
ductance after time t ranging from 0.2 to 5.0 ms (EPSG2, Gmax increased
until spikes occurred in at least 50% of trials). In a second experiment, we
tested predictions made by our computational model. We simulated
multiple synaptic inputs that were phase-locked to a range of stimulus
frequencies using the dynamic clamp to inject the same EPSG waveforms
that were used in our computational model, described below in Compu-
tational modeling: AN input model. Briefly, this 85 s stimulus waveform
was the sum of the EPSGs from all modeled auditory nerve synaptic
inputs, and an excerpt is represented in Figure 6A, C (synaptic input). To
quantify the phase-locked output of spikes from the patched NM neuron
resulting from these stimuli, we identified spike times as the peaks of
recorded voltage traces after applying a spline interpolation at 120 kHz.

Computational modeling
NM neuron model. To explore how specialized membrane properties
contribute to temporal coding of NM neurons, we constructed a model
of NM neurons that receives phase-locked inputs from AN fibers. Table
1 summarizes the model equations, and Table 2 lists CF-dependent pa-
rameter values. Our NM model is a single-compartment conductance-
based model with leak, KLVA, and KHVA conductances. The KLVA

conductance was necessary to reproduce the nonlinear subthreshold dy-
namics of NM neurons, such as impedance, whereas the KHVA conduc-
tance was adopted to ensure rapid repolarization after spikes. Other
active currents, such as Ih (Yamada et al., 2005), are included as constant
leak. Slice recording data of our own and others (Fukui and Ohmori,
2004) were used for determining these conductances (Table 2). Kinetics

for KLVA and KHVA (Table 1) were based on slice recording results by
Rathouz and Trussell (1998), after revising the curves to better reproduce
our impedance, slope threshold, and dynamic-clamp data.

Similarly to previous modeling work on owl auditory brainstem
neurons (Ashida et al., 2015), we introduced a threshold-crossing detec-
tor to simulate spiking activity of NM cells. When the membrane poten-
tial reaches the threshold 	 at time T	, a spike current Ispike(t � T	) is
initiated. We used two exponential functions to simulate the spike shapes
of NM neurons (Table 1). Once the threshold is crossed, the threshold-
crossing detector is in an absolute refractory period of length TR, thus no
spikes are generated for T	 � t � T	 � TR.

To simulate effects of voltage gated sodium channel (Nav) inactivation
on spike initiation, we introduced an adaptive threshold to the model

Table 1. NM model equations: equations used to simulate NM membrane
responses to auditory nerve fiber synaptic input

Variable Equation

Membrane potential V C
dV

dt
� IL � IKLVA � IKHVA � Ispike � Isyn

Leak current IL � gL
EL � V�
KLVA current IKLVA � g�KLVAd
V, t�
EK � V�
KHVA current IKHVA � g�KHVAn
V, t�
EK � V�
Spike current Ispike
t� � A1e
�t/�1� � A2e
�t/�2�

Synaptic current Isyn
t� � gsyn
t�
Esyn � V�

KLVA kinetics �d
V�
d

dt
d
V, t� � d�
V� � d
V, t�

KLVA time constant �d
V� � Q10

T�23�/10/
�d
V� � 	d
V��

KLVA steady-state function d�
V� � �n
V�/
�n
V� � 	n
V��
KLVA activation function �d
V� � 0.20 e

V�70�/ 21.8�

KLVA deactivation function 	d
V� � 0.17 e
�
V�70�/14.0�

KHVA kinetics �n
V�
d

dt
n
V, t� � n�
V� � n
V, t�

KHVA time constant �n
V� � Q10

T�23�/10/
�d
V� � 	d
V��

KHVA steady-state function n�
V� � �n
V�/
�n
V� � 	n
V��
KHVA activation function �n
V� � 0.11 e

V�29�/9.1�

KHVA deactivation function 	n
V� � 0.103 e
�
V�29�/ 20.0�

Threshold equation �	

d

dt
	
V, t� � 	�
V� � 	
V, t�

Target threshold 	� 
V� � 	0 � K	 log h�
V�
Na inactivation function h�
V� � 1/
1 � e
V�65�/7.0�
Unitary synaptic input gsyn
t� � gunit � kg � 
e�t/�R � e�t/�F�

Table 2. NM model parameters representing LCF, MCF, and HCF neurons

Parameter LCF model MCF model HCF model

Membrane capacitancea C 30 pF 30 pF 30 pF
Leak reversal potentiala EL �59 mV �59 mV �59 mV
K reversal potential EK �83 mV �84 mV �85 mV
Synaptic input reversal potentiala Esyn 0 mV 0 mV 0 mV
Leak conductance gL 4 nS 6 nS 8 nS
KLVA conductance g�KLVA 4 nS 21 nS 32 nS
KHVA conductance g�KHVA 32 nS 84 nS 128 nS
Temperature factora Q10 2.0 2.0 2.0
Temperature (in vitro)a T 35°C 35°C 35°C
Temperature (in vivo)a T 40°C 40°C 40°C
Baseline thresholda 	0 �62 mV �62 mV �62 mV
Adaptation factor K	 9 mV 10 mV 11 mV
Adaptation time constanta t	 0.9 ms 0.9 ms 0.9 ms
Refractory perioda TR 2.0 ms 2.0 ms 2.0 ms
Spike current amplitude A1 55 nA 85 nA 135 nA
Spike current amplitude A2 35 nA 63 nA 110 nA
Spike current time constant �1 0.12 ms 0.12 ms 0.11 ms
Spike current time constant �2 0.20 ms 0.17 ms 0.14 ms
Synaptic time constanta �R 0.20 ms 0.20 ms 0.20 ms
Synaptic time constanta �F 0.33 ms 0.33 ms 0.33 ms
Normalization constanta kg �5.4855 �5.4855 �5.4855
aCommon to all three CF models.
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(Benda et al., 2010; Platkiewicz and Brette, 2010). Leaky integrate-and-
fire models with adaptive thresholds have been used for simulating mam-
malian (Fontaine et al., 2013) and avian (Fontaine et al., 2014) auditory
brainstem neurons. Our threshold equations are summarized in Table 1.
In short, the adaptive spike threshold 	(V,t) approaches the steady-state
threshold of 	�( V) with a time constant �	. Parameters for the thresh-
old adaptation were assumed to be different among LCF, MCF, and HCF
neurons and were determined to reproduce results of our dynamic-
clamp experiments.

AN input model. Phase-locked synaptic inputs from AN fibers are
modeled as an inhomogeneous Poisson process with a periodic intensity
function as follows: 

t� � 2�
� pk
2� ft�), where t is time, 
� is the
average intensity, pk is a 2�-periodic function, and f is the stimulus sound
frequency. We used the von Mises distribution function (Fisher, 1993)
for the periodic function as follows: pk
x� � exp
k cos
x��/
2� I0
k��
with In being the modified Bessel function of order n. The degree of
phase-locking, measured as vector strength (VS) (Goldberg and Brown,
1969), is related to the concentration parameter k as follows: VS 

I1(k)/I0(k) (for more detail, see Ashida et al., 2013). We selected concen-
tration parameters so that the VS of simulated AN spikes match previous
experimental results (Fukui et al., 2006). We assumed that spiking of all
AN fibers were locked to the same phase.

To simulate refractory periods of AN fibers (Avissar et al., 2013), gen-
erated spikes that are closer to the preceding spike by Tref 
 1.5 ms were
discarded. Because of the refractoriness, simulated spike rates of AN
fibers were generally lower than the intensity 
� . As we are primarily
interested in low-intensity stimulation, where inhibitory feedback does
not play a major role, we chose values of the input intensity so that
simulated AN fibers spike at 180 –210 spikes/s. Table 3 summarizes the
AN input parameters used for our simulations.

As in dynamic-clamp experiments, excitatory synaptic inputs from
AN to NM were generated using a double exponential function (Table 1).
The time constants of this model synaptic input were based on previous
slice recordings (Oline and Burger, 2014). In our series of simulations, we
varied the number of AN fibers converging onto one model NM neuron
from 1 to 16, to compare differences between “a small number of large
inputs” and “a large number of small inputs.” Hence, we assumed that
the total synaptic input amplitude gtot is unchanged with the number of
inputs. In other words, the unitary synaptic input gunit was obtained by
normalizing the total input gtot by the number Nin of converging AN
fibers as follows: gunit 
 gtot/Nin.

Output measures
To test the plausibility of our NM model, we performed numerical sim-
ulations with the same inputs and procedures as we used for our slice
recordings. In particular, we calculated impedance properties, integra-
tion periods, slope thresholds, and dynamic thresholds. Next, we calcu-
lated membrane responses of LCF, MCF, and HCF models using
simulated AN inputs. We varied the sound stimulus frequency f, the
number of AN inputs Nin, and the total synaptic conductance gtot to
examine how these parameters affect model NM responses.

The output of model NM neurons was examined using the spike rate,
the degree of synchrony (in VS), and the average K � current. In all
panels, data points with output spike rates of �100 spikes/s are shown.
Because the input VS depended on the sound frequency, we normalized
output VS by the input VS to obtain a “synchronization gain” (SG). A
gain exceeding 1.0 indicates that the NM output has better synchrony
than input AN fibers. The average K � current (in pA) was obtained by
integrating the KLVA and KHVA currents and dividing this total by the
simulated time length.

Custom-written MATLAB (The MathWorks) scripts were used for
our numerical simulations. With each parameter set, model responses
for 40 s (typically with 5000 –10,000 spikes) were calculated with a time
increment of 5 �s.

Statistics
All data in Results are expressed as percentage of control � SD. Error
bars in figures indicate SE. One-way between groups comparisons
were performed using the Kruskal–Wallis H test, one-way repeated
measures comparisons were performed using the Friedman test, and
two-way between groups comparisons with repeated measures were
performed using ANOVA. Effect size of significant results was re-
ported with partial � 2. When necessary, violations of sphericity were
adjusted using the Greenhouse-Geisser correction. Finally, paired-
sample between-group comparisons were performed with the Wil-
coxon signed-rank test. Data analysis and plotting were performed in
MATLAB (The MathWorks), Adobe Illustrator CC (Adobe Systems),
and Clampfit (Molecular Devices), and comparisons were calculated
in SPSS Statistics (IBM).

Results
Efficacy of unitary synaptic input varies systematically along
the tonotopy
A principal feature of NM response properties is the observed
improvement or preservation of phase-locked auditory nerve
input (Fukui et al., 2006). Phase-locked NM output is crucial
for the binaural neurons in nucleus laminaris, NM’s sole post-
synaptic target, to compute stimulus position in azimuth
(Grothe et al., 2010; Ashida and Carr, 2011). We previously
showed that unitary synaptic inputs, which ideally represent
single nVIII fibers, are more effective at driving spiking and
show less pronounced short-term depression in HCF NM
neurons (Oline and Burger, 2014). Here, we extend these find-
ings to evaluate temporal features of the postsynaptic re-
sponses using a minimum stimulation paradigm to evoke
discharges from unitary inputs in current clamp. Figure 1A–C
shows NM neuron responses from three topographically de-
fined regions designated as LCF, MCF, and HCF (see Materials
and Methods). Evoked responses from unitary inputs in LCF
neurons had larger spike jitter, measured as the SD of spike
time in milliseconds, than MCF and HCF neurons, and are
consistent with previous observations of responses to stimuli
that recruited multiple auditory nerve inputs simultaneously
(Fukui and Ohmori, 2004). We additionally observed that NM
spike latency and jitter increased systematically in response to
repetitive stimulation at 100 Hz, which more closely repre-
sents phase-locked synaptic activity during an auditory stim-
ulus. Average latency and spike jitter increased with successive
pulses (Fig. 1 E, F ) (latency, 

4�

2 
 68.971, n 
 19, p 

0.000001; jitter, 

4�

2 
 34.653, n 
 19, p 
 0.000001, Friedman
tests), and jitter within pulses was different between popula-
tions (Pulse 5, 

2�

2 
 6.777, p 
 0.034, Kruskal–Wallis H Test).
However, due to the rapidly depressing EPSC amplitude of
unitary inputs to LCF neurons, far fewer pulses evoke spikes.
Superthreshold inputs presumably represent a subset of stron-
ger EPSCs within the broader distribution of all EPSCs. A
consequence of this phenomenon is that, although EPSC am-
plitude depresses more rapidly in LCF neurons, we did not
observe LCF changes in spike latency and jitter to be statisti-
cally distinct from MCF or HCF cells (latency, F(2.78,22.20) 

1.13, n 
 19, p 
 0.36; jitter, F(3.95,31.58) 
 1.77, n 
 19, p 

0.16, 3 � 5 mixed repeated-measures ANOVAs). Although the
tonotopic distribution of short-term synaptic depression may
account for a portion of these effects in spike timing (Oline
and Burger, 2014), tonotopic differences in postsynaptic

Table 3. Frequency-dependent auditory nerve model input parametersa

Sound frequency Hz 200 Hz 400 Hz 800 Hz 1600 Hz 3200 Hz

Input intensity 
� (spikes/s) 400 300 300 300 300
Simulatedspikerates(spikes/s) �185 �210 �195 �205 �205
Concentration parameter k 2.8713 2.8713 2.8713 1.1593 0.4083
Simulated vector strength �0.77 �0.80 �0.80 �0.50 �0.20
aParameters used for auditory nerve input to model NM neurons with a range of tested stimulus frequencies.
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membrane excitability may also affect spike timing. We there-
fore investigated the postsynaptic membrane’s possible con-
tribution to synaptic integration and, importantly, phase-
locking precision.

Membrane impedance in NM neurons is dependent on both
CF and steady-state potential
The magnitude and kinetics of a neuron’s response to synaptic
input are dependent on membrane impedance, whereby low
impedance speeds voltage responses but attenuates response
magnitude. To explore the membrane’s filter properties in the
subthreshold domain and to assess input selectivity at rest, we
used a chirp protocol (also known as a ZAP) in current-clamp
mode. Chirp stimuli efficiently probe membrane responses
over a broad range of frequencies through injection of
frequency-modulated sinusoidal current sweeps from 0 to 250
Hz (Hudspeth, 1985; Hutcheon and Yarom, 2000). We ad-
justed chirp amplitude so that the maximum membrane
voltage response was 5 mV peak to peak. Peak impedance
frequency ( fR) was then measured as the frequency of current
injection that resulted in the largest voltage deflection.

Passive neural membranes, which can be electrically mod-
eled with a resistor and capacitor in parallel, have predictable
low pass responses to broadband input. Chirp stimulus cur-
rent injections into NM neurons indeed evoked voltage re-
sponses that resemble low pass filter properties, whereby

slowly fluctuating inputs result in large voltage deflections,
and higher-frequency inputs are attenuated. For an ideal pas-
sive neuron membrane model, impedance would be maximal
at zero frequency. However, in real neurons, slow depolariza-
tion evoked by low-frequency input rapidly recruits active
voltage-gated conductances, such as those mediating low-
threshold potassium current (KLVA). This outward conduc-
tance has been shown to activate in NM between �75 and �65
mV (Reyes et al., 1994; Rathouz and Trussell, 1998; Fukui and
Ohmori, 2004). Therefore, we predicted that HCF and MCF
neurons, which have large KLVA, would preferentially attenu-
ate responses to low-frequency input compared with LCF
neurons. Rather, we observed that fR and maximum imped-
ance for resting neurons were not different across the tono-
topy (LCF: 11.1 � 7.19 Hz, n 
 14; MCF: 19.1 � 18.91 Hz, n 

16; HCF: 25.16 � 62.28 Hz, n 
 15; 

2�

2 
 1.280, p 
 0.527;
LCF: 166.4 � 40.4 M�; MCF: 148.1 � 147.8 M�; HCF:
138.3 � 91.4 M�; 

2�

2 
 3.926; p 
 0.140, Kruskal–Wallis H
Tests). This was true despite a tonotopic distribution of rest-
ing membrane potential (LCF: �64.86 � 2.85 mV; MCF:
�70.69 � 3.74 mV; HCF: �72.67 � 4.15 mV, 

2�

2 
 20.007,
p 
 0.000045, Kruskal–Wallis H Test), as observed previously
(Fukui and Ohmori, 2004). Sample traces of LCF (Fig. 2A) and
HCF (Fig. 2B) neurons exhibit similar responses at rest. These
data suggest that, even though KLVA is enriched in HCF neu-

A B C

D E F

Figure 1. Efficacy of unitary synaptic input varies systematically along the tonotopy. A–C, Evoked responses to stimulation of unitary auditory nerve fibers at 100 Hz for LCF (triangles), MCF
(diamonds), and HCF (squares) neurons. Insets, Comparison of spike timing between Pulse 1 (i) and Pulse 5 (ii) for each neuron. D, Spike probability for 15 pulses at 100 Hz over 10 trials. E, Mean
change in latency relative to Pulse 1 for Pulses 1–5. F, Mean spike time jitter for Pulses 1–5.
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rons, hyperpolarization of the resting
membrane potential driven by high
KLVA expression maintains this conduc-
tance at minimal activation near rest.
The contribution of tonotopically dis-
tributed KLVA to spike timing may
therefore only arise when the membrane
is depolarized.

We manipulated KLVA activation by
setting membrane voltage to specific val-
ues using a steady current injection to
achieve 5 mV increments over a 15 mV
range from �80 to �65 mV, encompass-
ing most of the KLVA activation range (Fig.
2C,D). Then we presented chirp protocols
at these varied “resting” voltages. At a
holding voltage (VH) of �80 mV, all neu-
rons exhibited low-pass characteristics,
with fR near 0 Hz (arrows), similar to the
results at Vrest. However, as we adjusted
VH to more positive potentials, voltage
output to the slowest part of the chip
stimulus was significantly attenuated (Fig.
2E,F) (LCF: 

3�

2 
 29.400, p 
 0.000002;
MCF: 

3�

2 
 48.000, p 
 0.000001; HCF:


3�

2 
 45.000, p 
 0.000001, Friedman
tests). In MCF and HCF neurons, this
attenuation of responses to slow input was
so prominent that the filter envelope al-
tered from low-pass to all pass (LCF:


3�

2 
 8.818, p 
 0.032; MCF: 

3�
2 
 41.107,

p 
 0.000001; HCF: 

3�
2 
 38.419, p 


0.000001, Friedman tests) (Fig. 2D). Al-
though the response envelope in MCF and
HCF neurons suggests a lack of frequency
selectivity at depolarized values, there was
a measurable and systematic shift in peak
impedance frequency, which is observed
in normalized impedance functions (Fig.
2G,H,J) (F(2.84,59.54) 
 19.42, p 
 0.000001,
�2 
 0.48, 3 � 4 mixed repeated-measures
ANOVA). This shifting phenomenon
indicates that the mechanism underly-
ing the envelope change did not saturate
over the �80 to �65 mV range of resting
voltages (Fig. 2J), consistent with the pu-
tative KLVA activation range. Together,
these data suggest that the response
properties of NM neurons are specific
to tonotopic position. LCF neurons re-
spond maximally to slow, DC-like input,
whereas MCF and HCF neurons dynami-
cally adjust their responses condition-
ally, selecting for faster input when
depolarized. Although these responses
to chirp protocols reflect the membrane’s
adaptive input selectivity, it remains un-
clear whether threshold criteria for
spiking are also adaptive. We therefore
next asked whether tonotopic position af-
fected the integration period preceding a
spike.

A B

C D

E F

G H

I J

Figure 2. Membrane impedance in NM neurons is dependent on both CF and steady-state potential. A, B, Membrane voltage in
response to chirp current injection (insets) for LCF and HCF representative cells. C, D, Membrane voltage of cells in A, B, after
adjusting holding voltage (VH) with slow current in 5 mV steps from �80 to �65 mV. Voltage deflection to slow input and peak
impedance frequency ( fR) is stable for the LCF cell but attenuates and shifts, respectively, for the HCF cell (arrows). E, F, Impedance
profiles for traces in C, D, with fR marked for LCF (triangles) and HCF (squares) samples. G, H, Normalized impedance profiles for C,
D, demonstrating a large shift in HCF selectivity from slow to fast input. I, Impedance near 0 Hz for LCF (triangles), MCF (diamonds),
and HCF (squares) populations at rest (left) and at adjusted VH (right). Depolarizing membrane potentials reduced impedance for
all CF populations, and the magnitude was dependent on population. J, fR for LCF, MCF, and HCF populations at rest (left) and at
adjusted membrane potentials (right). LCF fR remains stable in all conditions, whereas MCF and HCF fR shift with depolarization.
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Integration period and slope threshold of NM neurons are
tonotopically distributed
The long stimulus periods encountered by low CF neurons may
provide sufficient summation time for temporally jittered synap-
tic inputs without disruption of spike generation. In contrast, the
short stimulus period at high frequencies constrains integration
time for HCF neurons. Our observation that a neuron’s CF is
predictive of filtering properties suggests that NM neurons may
prefer synaptic input with characteristics that vary with tonotopic
position. It is important to consider that KLVA and axonal sodium
channels (Nav), which are both tonotopically distributed in NM,
affect response properties in a number of ways (Fukui and
Ohmori, 2004; Kuba and Ohmori, 2009). First, KLVA lowers the
input resistance of a cell, speeding EPSP kinetics and attenuating
amplitude. This property was manifested most obviously by dif-
ferences in action potential threshold to 100 ms square current
injections (LCF: 281.1 � 91.2 pA; MCF: 687.5 � 324.8 pA; HCF:
980.0 � 436.2 pA, 

2�

2 
 22.769, p 
 0.000011, Kruskal–Wallis H
Test), confirming previous observations (Fukui and Ohmori,
2004). Second, the latency in KLVA activation puts a lower limit
on the rate of depolarization that will initiate a spike because any
currents that depolarize the membrane more slowly than that
limit become shunted by KLVA. Third, prolonged depolarization
accommodates spike threshold through Nav inactivation (Mon-
sivais and Rubel, 2001; Svirskis et al., 2004). To test whether HCF
cell membranes require faster depolarization, we used a current
ramp protocol to evoke depolarizing membrane potentials at
varying rates (Ferragamo and Oertel, 2002; McGinley and Oertel,
2006; Kuba and Ohmori, 2009) (Fig. 3A,B, same sample cells as
in Fig. 2). Spike initiation, the point where voltage slope changed
most rapidly, was measured as the peak of the voltage’s second
derivative, and we defined integration period as the latency from
onset to spike initiation (Fig. 3A,B, brackets). We then defined
slope threshold as the voltage slope preceding a spike (middle
20%– 80%). For each of five trials, the sweep with the most shal-
low ramp depolarization slope was defined as “slope threshold.”

We found that both integration period and slope threshold
followed the tonotopic gradient. Integration period was longest
for LCF cells (Fig. 3C) (LCF: 1.82 � 0.46 ms, n 
 14; MCF: 2.62 �
1.14 ms, n 
 16; HCF: 3.94 � 1.40 ms, n 
 15; 

2�

2 
 22.542, p 

0.000013, Kruskal–Wallis H Test) and was positively correlated
with resting potential (r 
 0.49, p 
 0.00069, Pearson correla-
tion). Additionally, LCF cells had the shallowest slope threshold
(Fig. 3E) (LCF: 5.86 � 2.18 mV/ms, n 
 14; MCF: 13.00 � 7.00
mV/ms, n 
 16; HCF: 18.39 � 5.80 mV/ms, n 
 15; 

2�

2 

23.626, p 
 0.000007, Kruskal–Wallis H Test), which was nega-
tively correlated with resting potential (r 
 �0.42, p 
 0.0039,
Pearson correlation). Considering the previous observation that
membrane filter properties depend on membrane voltage, we
found complementary effects on integration period during ramp
stimuli, specifically that integration period decreased with depo-
larized VH for all populations (Fig. 3D) (LCF: 

3�

2 
 23.460, p 

0.000032; MCF: 

3�

2 
 33.150, p 
 0.000001; HCF: 

3�
2 
 25.640,

p 
 0.000011; Friedman tests). This nonsystematic effect can be
observed in Figure 3F (LCF: 

3�

2 
 25.543, p 
 0.00012; MCF:


3�

2 
 8.625, p 
 0.0347; HCF: 

3�
2 
 15.80, p 
 0.00125; Fried-

man tests), with post hoc effects only at the most depolarized
conditions. For clarity, the integration period and slope threshold
of each cell at rest are presented together in Figure 3G, are highly
inversely correlated (R 2 
 0.76), and are well described by the
single exponential fit, y � 47.58 � e�x/1.798. Because this was
performed in the same cells as in Figure 2, we could then ask

whether a cell’s dynamic range of fR across VH predicts either the
cell’s integration period or slope threshold. We calculated fR
range as the difference in values between the �80 and �65 mV
conditions, and found that a broad frequency response range
predicts a narrow integration period and a steep slope threshold
(integration period r 
 �0.57, p 
 0.000051, slope threshold r 

0.44, p 
 0.0024, Pearson correlations). T, responses to chirp,
and ramp protocols suggest that neurons in NM have filter func-
tions that depend on tonotopic position and are strong predictors
of integration properties for spike timing. If these inherent mem-
brane properties do modulate input-output functions, it is im-
portant to test this hypothesis with naturalistic synaptic-like
inputs. We therefore used dynamic clamp to probe integration
during subthreshold input.

Dynamic input threshold is more selective for HCF
NM neurons
NM membrane responses to both chirp and ramp current injec-
tions demonstrate that HCF neurons reject slow input more
strongly than LCF neurons. The voltage dependence of this prop-
erty suggests that this selectivity is primarily regulated by the
known, tonotopically distributed KLVA gradient. Although artifi-
cial inputs, such as chirps and ramps, reveal differences in mem-
brane filter properties, they do not provide clear predictions for
how the membrane would integrate temporally distributed syn-
aptic input. It is important to consider that KLVA activation
would follow depolarization from subthreshold synaptic input,
creating a limited window of time when a second input could
initiate spiking. Indeed, strong spike threshold accommodation
has been observed in NM neurons following subthreshold input
(Howard and Rubel, 2010). In this way, NM neurons are thought
to function as monaural coincidence detectors by spiking only in
response to closely timed synaptic events. To assess temporal and
threshold constraints on realistic synaptic inputs, we injected
synaptic-like conductances in dynamic clamp (Robinson and
Kawai, 1993; Sharp et al., 1993) and evaluated shifts in spike
threshold in each CF domain. EPSGs were modeled as double
exponential waveforms and were fit to EPSC records from previ-
ously published voltage-clamp data (Oline and Burger, 2014).
We defined conductance threshold as the amplitude of the mod-
eled EPSG required to generate a spike in �50% of trials. As
expected, unitary conductance threshold, the conductance mag-
nitude required to trigger a spike, was larger for HCF neurons
(LCF: 14.86 � 2.98 nS, n 
 9; MCF: 16.91 � 2.23 nS, n 
 4; HCF:
24.18 � 3.63 nS, n 
 11, 

2�

2 
 15.849, p 
 0.000362, Kruskal–
Wallis H Test). We then investigated the temporal dynamics of
spike threshold accommodation with a protocol adapted from
Howard and Rubel (2010). First, we injected a subthreshold input
set at 70% of unitary conductance threshold (EPSG1). At “synap-
tic input” intervals ranging from 0.2 to 5 ms, we applied a second,
variable amplitude conductance (EPSG2) until threshold magni-
tude was reached. This second input magnitude was then defined
as the conductance threshold (Fig. 4A). In the absence of KLVA

activation and Nav inactivation, we would expect EPSG2 thresh-
old at t 
 0 to sum with EPSG1 (fixed at 70% unitary threshold)
to be 30% of unitary threshold, and to asymptote to 100% over
longer intervals as EPSG1 decays. However, depolarization from
EPSG1 activates KLVA in a way that lags membrane depolariza-
tion, such that subsequent inward currents are shunted and
EPSG1 � EPSG2 must sum to greater than unitary conductance
threshold to drive a spike. Second, the initial subthreshold EPSG1

event also confers Nav inactivation, which also contributes to
increased threshold. Put simply, EPSG1 causes EPSG2 threshold
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C D
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G

Figure 3. Integration period and slope threshold of NM neurons are tonotopically distributed. A, B, Membrane voltage in response to ramp current injection (insets) for LCF and HCF representative
cells. Brackets represent duration of integration period. C, Resting membrane potential versus integration period for LCF (triangles), MCF (diamonds), and HCF (squares) cells. Data are fitted with a
least-squares regression. White-filled centroids represent means for each population. Gray circles represent cells in A, B. D, Integration period data of cells at rest in (Figure legend continues.)
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to overshoot unitary conductance threshold; and for this period
of time, the neuron is refractory. Considering the known gradient
in KLVA and Nav along the tonotopic axis of NM, we predicted
that HCF neurons would exhibit more accommodation and that
its peak would occur with shorter latency. Indeed, HCF neurons
had a more dynamic spike threshold (Fig. 4B) (3 � 14 mixed
repeated-measures ANOVA, F(3.77,32.02) 
 3.91, p 
 0.012, � 2 

0.32) with a larger and earlier peak than MCF or LCF neurons.

We then asked how depolarization constrained temporal in-
tegration by adjusting holding voltage for each cell to �65 mV
and �80 mV, and observed VH-dependent-changes in spike

threshold accommodation for both LCF (Fig. 4C) and HCF (Fig.
4D) populations (LCF: F(2.30,23.04) 
 4.45, n 
 6, p 
 0.019, �2 

0.0302; MCF: F(1.47,5.88) 
 0.78, n 
 3, p 
 0.46; HCF: F(2.06,20.55) 

5.99, n 
 6, p 
 0.085, �2 
 0.375, 2 � 14 mixed repeated-measures
ANOVAs), demonstrating that depolarization restricts temporal in-
tegration. Interestingly, unitary conductance threshold was only dif-
ferent between VH conditions for LCF neurons (LCF: 14.28 � 2.56
nS at �65 mV and 20.57 � 3.86 nS at �80 mV, n 
 6, Z 
 �2.201,
p 
 0.028; MCF: 15.52 � 2.16 nS at �65 mV and 19.10 � 7.77 nS at
�80 mV, n 
 3, Z 
 �1.069, p 
 0.285; HCF: 24.21 � 2.52 nS at
�65 mV, 27.46 � 6.01 nS at �80 mV, n 
 6, Z 
 �1.153, p 
 0.25,
Wilcoxon signed-rank tests), suggesting that while depolarization
may bring all neurons closer to voltage threshold, the conductance
requirements to initiate a spike remain unchanged for HCF and
MCF neurons.

Computational modeling demonstrates distinct
integration strategies
To understand whether these tonotopic membrane response
properties of NM neurons confer specific strategies for synaptic
integration, we next devised computational models of LCF, MCF,

4

(Figure legend continued.) C (left) and at adjusted VH (right). Integration period was shortest
for HCF cells and narrowed with depolarized VH for all populations. E, Resting membrane po-
tential versus voltage slope threshold for LCF, MCF, and HCF cells. Data are fitted with a least-
squares regression. White-filled centroids represent means for each population. Gray circles
represent cells in A, B. F, Slope threshold data of cells at rest in E (left), and at adjusted VH (right).
Slope threshold was steepest for HCF cells, and VH-dependent changes were minimal and not
systematic. G, Integration period versus slope threshold for data in C, E, fit with a single expo-
nential curve. Gray circles represent cells in A, B.

A B

C D

Figure 4. Dynamic input threshold is more selective for HCF NM neurons. A, Membrane voltage in response to conductance clamp injection (insets) for LCF and HCF representative cells. Threshold
(gray line) was measured for a unitary synaptic conductance based on empirical recordings of synaptic input and delivered in dynamic clamp. Dynamic input threshold was measured by injecting an
input at 70% threshold (Input 1, gray trace), then injecting a second input (Input 2, black trace) following a delay of �t, and increasing the magnitude of Input 2 until spiking occurred in �50% of
trials. Threshold Input 2 magnitude is depicted for several delays. B, Dynamic input threshold for LCF (triangles), MCF (diamonds), and HCF (squares) cells. Value at time 0 is mathematically
determined to be 30%, and threshold was measured for Input 2 at �t from 0.2 to 5.0 ms. Insets, Conductance waveform that elicited a spike at various �t. C, D, Dynamic input threshold for LCF and
HCF cells, respectively; VH at of �80 (red/blue) and �65 (gray) mV. Depolarized VH induces a more selective dynamic threshold for both populations.
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and HCF neurons. These single-compartment models contained
leak, KLVA, and KHVA conductances, and a spike current with an
adaptive threshold (Table 1). Parameters were adjusted for mod-
els (Table 2) so that model response properties reflected those

from our slice physiology recordings (Fig. 5). Injection of chirp
currents to the models resulted in membrane potentials that, like
our observed recordings, shifted from low-pass to all-pass de-
pending on VH, with tonotopically dependent dynamic ranges

A B C

D E F

G H I

J K

Figure 5. Responses of computational models to input. A, B, LCF and HCF model responses to chirp current injection (0 –250 Hz) with changing VH. C, Peak impedance ( fR) for LCF (triangles), MCF
(diamonds), and HCF (squares) models to chirp current injection. D, E, LCF and HCF model responses to ramp current injection. F, Integration period for LCF (triangles), MCF (diamonds), and HCF
(squares) models to chirp current injection. G, H, LCF and HCF model responses to paired, asynchronous conductances. I, Dynamic spike threshold for LCF (triangles), MCF (diamonds), and HCF
(squares) models to paired, asynchronous conductances. Inset, Unitary conductance thresholds. J, K, LCF and HCF model dynamic spike threshold at VH of �65 mV and �80 mV demonstrates a
dependence on membrane potential that is similar to physiological data (Fig. 4C, D).
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(Fig. 5A–C). The model neurons also responded similarly to
ramp current injection, whereby the integration period was more
prolonged for the LCF model (Fig. 5D–F). Finally, when we pro-
vided asynchronous synaptic-like inputs to the models, EPSG2

threshold increased rapidly and then returned to baseline. The
peak of the dynamic threshold occurred earliest and strongest for
the HCF model (Fig. 5G–I). VH-dependent shifts in conductance
threshold were also consistent with the physiological results
shown in Figure 4C, D for LCF and HCF neurons, respectively
(Fig. 5 J,K).

To investigate how the number and size of converging synap-
tic inputs interact with membrane response properties to adjust
phase-locking, we then provided simulated synaptic inputs to
these models (Fig. 6). We varied the number of model auditory
nerve inputs from 1 to 16 while keeping total conductance fixed
(Fig. 6B), so that we tested a range from many small inputs to a
few large inputs. In a separate simulation (data not shown), we
fixed unitary input amplitude and allowed total conductance to
change. Results with these input characteristics were not qualita-
tively different; therefore, we did not further pursue this para-
digm. Representative conditions are presented, including 200 Hz
and 3200 Hz stimuli evoking inputs to both LCF and HCF models
(Fig. 6A,C). Spike rate and jitter of phase-locked inputs were
based on responses to pure tones from in vivo auditory nerve
recordings (Fukui et al., 2006). We used our recordings from
unitary synaptic responses in NM to model input kinetics (Oline

and Burger, 2014). These inputs evoked phase-locked output
spikes in the model neurons, which we compared with the tem-
poral precision present in input spike trains using period histo-
grams (Fig. 6D,E). We measured phase-locking using vector
strength, where a value of 0 represents no relationship between
stimulus phase and spike timing and a value of 1 represents per-
fect phasic synchrony (Goldberg and Brown, 1969). We then
quantified the NM neuron’s effect on phase-locking using SG, the
ratio of output vector strength and input vector strength. Syn-
chronization gain values �1 represent improvement in vector
strength, whereas values �1 represent a degradation of phase-
locking. Six inputs enhanced vector strength for a 200 Hz stimu-
lus by �20% (SG 
 1.20 –1.22), whereas 3 inputs eliminated
almost all phase information for a 3200 Hz stimulus (SG 
 0.18 –
0.28) for both LCF and HCF models.

We then measured synchronization gain for a range of input
number and stimulus frequency combinations (Fig. 7). All mod-
els showed synchronization gain improvements for 200 Hz stim-
uli with an increasing input number, but with diminishing return
per input above 8 inputs (Fig. 7A–C, white symbols). Addition-
ally, the stimulus frequency where the optimal number of inputs
switched from many inputs to few was near 800 Hz, where syn-
chronization gain was essentially flat regardless of input number.
Synchronization gain for stimulus frequencies �1600 Hz in all
models was �1 and best for just a single input, suggesting that
stimulus periods were too short for the model neuron to benefit

A B C

D E

Figure 6. Model responses to multiple phase-locked inputs. A, C, Model responses to input driven by 200 Hz and 3200 Hz stimuli, respectively. Vertical bars represent timings of inputs
phase-locked to the above waveform. Synaptic input to the model is a single conductance, resulting from the summed conductances of many inputs. Responses to identical input by both LCF and
HCF models are shown. Spike times are similar for both models responding to 200 Hz input, but that for 3200 Hz input, the HCF model output is less susceptible to summation of input across successive
periods. B, Diagram of model synaptic input arrangement. NL, Nucleus laminaris. D, E, Period histograms of spike timing for AN inputs, LCF model, and HCF model after being driven for 40 s. SG is
marked for NM model output. The HCF model improves SG to 3200 Hz input relative to the LCF model.
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from temporal summation of multiple inputs, as implied by the
dynamic-clamp data in Figure 4.

To assess the postsynaptic membrane’s contribution to phase-
locking, we then compared the responses of each model to 200,
800, and 3200 Hz stimuli (Fig. 7D–F). When driven by a 200 Hz
stimulus, all model cells responded with remarkably similar
synchronization gain, meaning that no advantage is conferred by
response characteristics that are specific to CF (Fig. 7D).
However, higher stimulus frequencies quickly revealed mem-
brane-dependent differences in phase-locking. The LCF model
performed substantially worse than the MCF and HCF models in
response to the 800 Hz stimulus (Fig. 7E), and the apparent re-
covery of SG for LCF neurons at 6 – 8 inputs is accompanied by a
steep fall in response rate (data not shown). Finally, in the 3200
Hz stimulus condition, responses were temporally dispersed rel-
ative to auditory nerve inputs in all models, but the HCF model
output preserved the most phase information (Fig. 7F). Potas-
sium current was also measured during activity and was largest in
the HCF model (Fig. 7D,F, insets). In summary, the models pre-
dict that the ideal arrangement of synaptic convergence and
membrane properties is specific to stimulus frequency and that a
fast membrane time constant is most beneficial when represent-
ing high-frequency stimuli with a single input.

Synchronization gain of real NM neurons to a range of
stimulus parameters
We then sought to test the predictions derived from our compu-
tational model in vitro using identical input timing and conduc-
tance waveforms. We simulated 1– 8 synaptic inputs to NM
neurons in each CF area with dynamic clamp (Fig. 8). Neurons
were driven for 80 s with inputs phase-locked to 200, 800, and
3200 Hz stimuli, yielding several thousand spikes per trial. The
empirically observed synchronization gain patterns were very
similar to model predictions. Neurons responded best to 200 Hz
stimuli with increasing input number (

2�

2 
 40.0, n 
 20, p 

0.000001, Friedman test), and best to 3200 Hz stimuli with only a
single large input (

2�

2 
 22.3, n 
 20, p 
 0.000014, Friedman
test). In contrast, input number affected synchronization gain of
responses to 800 Hz in a nonmonotonic manner (

2�

2 
 20.8, n 

20, p 
 0.000030, Friedman test). Between populations, HCF and
MCF cells responded with statistically higher synchronization
gain than LCF cells for 3200 Hz stimuli (F(3.83,32.51) 
 6.91, n 

20, p 
 0.00045, � 2 
 0.45, mixed repeated-measures ANOVA).
While LCF neurons appeared to have a lower synchronization
gain at 200 Hz with 8 inputs than MCF and HCF neurons, the
difference was not significant (F(2.10,17.84) 
 1.899, n 
 20, p 

0.13, 3 � 3 mixed repeated-measures ANOVA). The difference

A B C

D E F

Figure 7. Synchronization gain of computational models to a range of stimulus parameters. A–C, Responses of the LCF (triangles), MCF (diamonds), and HCF (squares) models to simulated
phase-locked auditory nerve input across a range of stimulus frequencies and input number. All neuron models responded best to low stimulus frequencies with many inputs, and to high stimulus
frequencies with a single input. D–F, Responses from A–C separated by stimulus frequency, expanded ordinate. D, Responses to 200 Hz input showed benefits with many inputs, but little difference
between computational models. Inset, Average K � current for 16 inputs. E, Responses to 800 Hz input showed relatively invariant SG with input number, with SG increases occurring only at very
large input numbers, and with MCF and HCF models. F, Responses to 3200 Hz input showed highest SG for only a single input, and SG increases in the MCF and HCF models. Inset, Average K � current
for 1 input. A–F, Data points with output spike rates of �100 spikes/s are shown, to reflect only responses above the criterion-predicted spontaneous rate established by previous physiological
studies (Warchol and Dallos, 1990; Fukui et al., 2006).
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between model predictions and this trend may be because the
model operates at a higher temperature (40°C compared with
slice recordings at 35°C) or because it has no noise sources,
whereas real neurons have a variety of stochastic processes, such
as channel noise. Overall, the outcomes of our computational
model and in vitro recordings reveal computational advantages
for fewer inputs and a more selective postsynaptic membrane as
stimulus frequency increases.

Discussion
In this report, we observed that unitary auditory nerve fibers
drive responses in NM with systematic increases of spike latency
and jitter under repetitive stimulation at physiological rates. We
then demonstrated that the membrane contributes to these re-
sponse patterns in several important ways. First, we showed that
membrane selectivity for input features is tonotopically distrib-
uted. LCF neurons have stable, low-pass response properties with
long integration periods, whereas HCF neurons strongly attenu-
ate slow inputs when depolarized, resulting in a very short inte-
gration period. Using naturalistic EPSGs with dynamic clamp, we
empirically defined the physiological constraints on temporal in-
tegration, showing that, following a subthreshold input, a depo-
larized HCF neuron rejects a second, asynchronous input more
strongly than MCF or LCF neurons. Together, these data suggest
that along NM’s tonotopic gradient, asynchronous input can
readily sum to threshold in LCF neurons but is progressively
more strongly rejected by MCF and HCF neurons. We then
probed the effect of input number on synaptic integration in each

tonotopically defined category using computational models,
which made two key predictions: (1) the optimal input number
depends on stimulus frequency alone; and (2) the benefits ac-
crued to the HCF model by a short integration period and
enhanced spike threshold adaptation only provided a computa-
tional advantage when inputs were driven at high frequencies.
Finally, dynamic-clamp recordings confirmed that tonotopically
distributed membrane properties in NM confer advantages for
synaptic integration that are specific to stimulus frequency. These
data suggest that a low input resistance and an accommodating
voltage threshold improve phase-locking by preventing summa-
tion of synaptic inputs across multiple stimulus periods for rep-
resentation of high-frequency stimuli.

Neurons responding to converging phase-locked synaptic in-
puts must perform two tasks: integrate stimulus-driven inputs to
improve phase-locked output, and simultaneously prevent sum-
mation across stimulus periods (Rothman et al., 1993). At low
stimulus frequencies, the synaptic integration window is rela-
tively unconstrained by period length, and phase-locking is im-
proved through summation of converging, subthreshold inputs.
At high stimulus frequencies, however, the brief stimulus period
encroaches upon the integration window, imposing a strict cutoff
between the computational benefit of summation and the costs of
responding to jittered inputs. We showed that MCF and HCF
neurons are competent to dynamically adapt their integration
window in response to input, whereby depolarization shifted
membrane selectivity toward faster depolarization and more co-

A B C

D E F

Figure 8. Synchronization gain of real NM neurons to a range of stimulus parameters. A–C, Responses of LCF, MCF, and HCF neurons to simulated auditory nerve input responding to a range of
stimulus frequencies and input number. All neurons responded best to low stimulus frequencies with many inputs, and to high stimulus frequencies with a single input. D–F, Responses from A–C
separated by stimulus frequency, expanded ordinate. D, Responses to 200 Hz input showed benefits with many inputs, but little difference between neurons from different tonotopic positions.
E, Responses to 800 Hz input showed relatively invariant SG with increasing input number, and increased SG for MCF and HCF neurons. F, Responses to 3200 Hz input showed highest SG for only a
single input, and increased SG for MCF and HCF neurons.
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incident input (Figs. 2– 4). At the very highest stimulus frequen-
cies, where stimulus period is shorter than the integration
window in even the lowest impedance HCF neurons (3200 Hz,
0.31 ms), distinguishing between inputs that are responding to
sequential periods becomes impossible. Indeed, even when neu-
rons received large numbers of inputs, the probability that a high-
frequency stimulus would evoke two or more inputs within a
single period was small. Instead, inputs dispersed over multiple
periods, resulting in a depolarization block and response failure
(Fig. 5C). For these reasons, the temporal characteristics of high-
frequency stimuli are best maintained with fewer but stronger
inputs, a classic “relay-like” arrangement.

Anatomical and physiological observations of the chick audi-
tory brainstem directly support the conclusions that optimal syn-
aptic convergence for phase-locking is dependent on stimulus
frequency and that a selective postsynaptic membrane confers a
stronger computational advantage only for higher stimulus fre-
quencies. In the chicken, LCF neurons receive �8 subthreshold
inputs and have relatively low input thresholds, whereas HCF
neurons receive few (�1–2) superthreshold endbulb synapses
and are less excitable (Fukui and Ohmori, 2004). The previous
observation that inputs to LCF neurons show pronounced short-
term synaptic depression would magnify this optimal tonotopic
gradient in input magnitude (Oline and Burger, 2014). Addition-
ally, in vivo recordings in NM have shown that LCF neurons
phase-lock more precisely than their auditory nerve inputs up to
stimulus frequencies of �800 Hz, whereas HCF neurons actually
show less temporally precise output than their inputs (Fukui et
al., 2006).

In the context of functional homogeneity within NM, where
all neurons provide phase-locked discharges to binaural coinci-
dence detectors, we demonstrate that their computational strat-
egy ranges from an integrate-and-fire summation to a simple
relay in accordance with constraints imposed by stimulus fre-
quency. For example, the very fast time constant of HCF cells
obviates dendrites in the HCF region, even if a dendrite could
otherwise average the arrival time of many inputs phase-locked to
a high-frequency stimulus. This may explain why dendrites have
only been observed for NM neurons in the LCF region, akin to the
frequency-dependent dendrite length gradient in NL (Smith and
Rubel, 1979; Deitch and Rubel, 1989; Agmon-Snir et al., 1998).
Additionally, the large KLVA conductances necessary for the dy-
namic membrane properties also incur metabolic costs because
approximately half of the energy consumption of a neuron is
associated with Na�/K�-pump activity (Ames, 2000; Laughlin,
2001). The cumulative cost of maintaining temporal precision
with high K� conductances may explain why MCF neurons have
higher input resistance than their HCF counterparts, even
though our experiments show increased synchronization gain for
HCF cells when responding to mid-range 800 Hz stimuli.

At higher stimulus frequencies, integration of converging
subthreshold inputs would only be beneficial if the integration
window is shorter than the stimulus period. Therefore, our ob-
servation that depolarization shortened integration periods and
required more synchronous subthreshold input led us to predict
that, under certain input conditions, neurons would switch from
relaying a single input to integrating multiple subthreshold in-
puts. When we presented neurons with phase-locked inputs, we
saw little evidence of such a “mode switch.” Rather, high-
frequency stimuli were always best represented with a single in-
put. This may be because the rise in the membrane’s dynamic
threshold was coupled to a narrowing of the integration window
for shorter stimulus periods, rendering coincident input even less

likely. Alternatively, it is possible that a switch does occur, but in
conditions that we did not evaluate. One such condition is during
high stimulus intensities, where elevated auditory nerve spike
rates would increase the probability of coincident input within a
stimulus period while simultaneously subjecting each unitary in-
put to pronounced short-term synaptic depression. NM neurons
also receive depolarizing GABAergic inhibition from the SON
during intense stimulation (Fukui et al., 2010), which would act
to narrow the integration period at the same time that NM neu-
rons would be receiving a greater number of depressed inputs per
period. Indeed, Fukui et al. (2010) demonstrated that GABA
block degraded phase-locking precision in NM. Together, synap-
tic depression and recruitment of inhibition could dynamically
adjust the optimal integration strategy from relay to integrate and
fire.

The cochlear nucleus has been observed to improve phase-
locking precision to low-frequency sounds in other species as
well, including barn owls at frequencies �1000 Hz (Sullivan and
Konishi, 1984; Köppl, 1997) and mammals; cats �700 Hz (Joris
et al., 1994), chinchillas �600 Hz (Recio-Spinoso, 2012), and rats
�1000 Hz (Paolini et al., 2001). In spherical bushy cells of the
mammalian cochlear nucleus, analogs of NM neurons, conver-
gence of multiple subthreshold inputs, and a fast membrane time
constant have been previously proposed as mechanisms for im-
proving phase-locking to low-frequency stimuli, whereas a single
input would provide stronger phase-locking to higher stimulus
frequencies (Rothman et al., 1993; Joris et al., 1994; Burkitt and
Clark, 1999; Xu-Friedman and Regehr, 2005a). Recruitment of
inhibitory input to bushy cells attenuates spike rates (Caspary et
al., 1994; Paolini and Clark, 1998; Kopp-Scheinpflug et al., 2002;
Kuenzel et al., 2015) and has been shown to improve phase-
locking precision (Englitz et al., 2009; Keine and Rübsamen,
2015). Finally, whole-cell recordings in mouse spherical bushy
cells demonstrated that inhibition can mediate a mode switch
from relay of single superthreshold enbulb inputs to integration
of two subthreshold inputs through both presynaptic and post-
synaptic mechanisms, potentially improving spike timing in the
process (Xu-Friedman and Regehr, 2005b; Chanda and Xu-
Friedman, 2010). Inhibition’s influence on mammalian spherical
bushy cells, together with the in vivo results from the chick NM
described by Fukui et al. (2010), strongly suggest that inhibition
may provide a similar computational function in NM. Biophys-
ical evidence from whole-cell recordings to test this prediction in
NM will require further investigation.

In conclusion, we engaged the chicken’s tonotopic map in the
cochlear nucleus to systematically investigate optimal input-
output characteristics of neurons across the frequency domain.
We demonstrated that the gradients of progressively lower input
resistances and higher spike thresholds across the tonotopy un-
derlie two differential computational processes across the tono-
topic axis. Our modeling and empirical data showed that the
optimum input number is specified by stimulus frequency, such
that phase-locking to low-stimulus frequencies was always im-
proved by integration of many inputs, whereas high frequencies
were always best represented with a single input. Postsynapti-
cally, expression of KLVA does not confer added precision to LCF
processing but primarily allows MCF and HCF neurons to reject
poorly timed inputs that occur across stimulus periods. These
data, together, identify specific synaptic and postsynaptic charac-
teristics that allow auditory neurons to compute with temporal
precision. Although our findings benefit from the experimentally
advantageous tonotopic arrangement in the chick cochlear nu-
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cleus, these principles are likely to apply to all neurons that com-
pute with temporal precision across a similar frequency range.
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