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ABSTRACT With recent advances in DNA sequencing technologies, it has become increasingly easy to use
whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across
the genome. One type of analysis that is commonly performed is to estimate local recombination rates and
identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots,
LDhot, has been used in a handful of species to further our understanding of the basic biology of
recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is
unknown. In this study, we run extensive simulations to compare the effectiveness of three different imple-
mentations of LDhot. We find large differences in the power and false positive rates of these different
approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to
more accurate estimation of hotspot locations). We also compared our LDhot simulation results with com-
parable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots.
Surprisingly, we found that the latter computationally intensive approach had substantially lower power over
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the parameter values considered in our simulations.

Homologous recombination is a fundamental biological process. In
most organisms, it is necessary for the proper alignment and segregation
of chromosomes during meiosis, influences the efficacy of natural
selection, and is the primary determinant of the strength of allelic
associations (i.e., linkage disequilibrium, or LD) across the genome. It
is now well established that recombination rates vary tremendously
across the genome, and that many species have recombination
‘hotspots’, narrow regions (<<2 kb) where the recombination rate is
much higher than the rate in the surrounding sequence (Petes 2001;
Buard and de Massy 2007). In humans, for example, sperm typing
studies have experimentally identified dozens of hotspots (e.g., Jeffreys
et al. 2001, 2005; Sarbajna et al. 2012), and pedigree-based stud-
ies have identified broad-scale variation in recombination rates
(Broman et al. 1998; Kong et al. 2002, 2010). In most eukaryotic
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species direct estimates of recombination are time-consuming,
and not easily scaled up to studies of fine-scale recombination
rate variation across the whole genome (but see Mancera et al.
2008; Comeron et al. 2012).

An appealing alternative is to estimate local changes in recombination
rate using patterns of LD at single nucleotide polymorphisms (SNPs)
(Crawford et al. 2004; McVean et al. 2004; Chan et al. 2012). These
methods have been used to construct fine-scale recombination maps
in humans (Myers et al. 2005; 1000 Genomes Project Consortium
2010), great apes (Auton et al. 2012; Stevison et al. 2016), Drosophila
melanogaster (Chan et al. 2012), Arabidopsis thaliana (Horton et al.
2012), Medicago truncatula (Paape et al. 2012), house mouse
(Brunschwig et al. 2012), and dogs (Axelsson et al. 2012; Auton et al.
2013). While these recombination maps can suggest the locations of
many potential recombination hotspots, separate methodology (e.g., a
hypothesis test) is needed to statistically test whether any particular re-
gion is actually a hotspot. Otherwise, a local increase in estimated rate
could reflect chance variation in the genealogical process, rather than
point to a real hotspot. While several methods for statistically identifying
hotspots have been proposed (Crawford et al. 2004; McVean et al. 2004;
Fearnhead 2006; Li et al. 2006; Wang and Rannala 2009), almost all are
computationally expensive enough to limit their use to candidate regions
(Crawford et al. 2004; Tsai et al. 2010; Chan et al. 2012) or to sparse
genotype data (Axelsson et al. 2012). In most whole-genome applications
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Table 1 Key differences between three implementations of LDhot

Method Auton et al. 2012 Auton et al. 2014 mlehot
Window size 200 kb 100 kb 20 kb
P-value cutoff 0.01 0.001 0.01
Max. size 5 kb None None
LDhat Peak must be =5/kb - Intersection with 1 kb regions with p = 5
Simulations Region-specific Region-specific Lookup table

to date, one method, LDhot (McVean et al. 2004), has been used to
identify recombination hotspots in humans, chimpanzees, dogs, and A.
thaliana. The accuracy of this method for identifying true recombination
hotspots though is unknown.

The use of population genetic methods to computationally predict
hotspot locations has led to several major insights into the evolution of
fine-scale recombination rates. Notably, computational analyses identi-
fied a degenerate 13 bp motif (CCNCCNTNNCCNC) that is overrep-
resented in predicted human hotspots relative to matched coldspots
(Myers et al. 2008), and subsequent work has shown that this motif
matches the predicted binding domain for the PRDM9 gene (Baudat
et al. 2010; Myers et al. 2010; Brick et al. 2012). PRDM9 trimethylates
lysine 4 of histone H3 (H3K4me3) (Hayashi et al. 2005), and H3K4me3
marks are associated with double strand breaks and recombination in
both yeast and mice (Borde et al. 2009; Buard et al. 2009). Variation in
PRDMO is associated with differences in fine-scale recombination rates
and hotspot usage across the genome (Baudat et al. 2010). Thus, the use
of these computational methods has identified a new and key player
in mammalian recombination. In addition, a comparison of fine-scale
recombination maps in humans and chimpanzees found that chimpan-
zees have recombination hotspots as well, but at different locations than
human hotspots (Auton et al. 2012; but see Wang and Rannala 2014).
This confirmed the results of previous analyses of much smaller data
sets (Wall et al. 2003; Ptak et al. 2004; Winckler et al. 2005) and is in line
with the theoretical expectations of biased gene conversion (Boulton
et al. 1997; Coop and Myers 2007). PRDM9 evolves rapidly in meta-
zoans (Oliver et al. 2009; Schwartz et al. 2014), and the different
predicted PRDM9 binding motifs for humans and chimpanzees may
explain why there is no (or little) overlap in hotspots between the two
species. Thus, the discovery of this gene may also explain why hotspots
have evolved so rapidly in apes.

The initial computational analyses failed to identify any particular
sequence motif that is associated with predicted chimpanzee hotspots,
which was ascribed to the high allelic diversity at PRDM9 in chimpanzees
and the complex relationship between PRDM9 sequence and targeted
binding sites (Auton et al. 2012; Billings et al. 2013). Moreover, though
PRDMO appears to be absent in plants and canids (Oliver et al. 2009),
studies of SNP data in A. thaliana, M. truncatula, and Canis lupus
familiaris found strong evidence for thousands of recombination
hotspots in these three species (Axelsson et al. 2012; Horton et al.
2012; Paape et al. 2012; Auton et al. 2013). However, a similar study of
recombination rate variation in flies identified fewer than 10 hotspots
in different populations of D. melanogaster (Chan et al. 2012). Thus,
computational methods have further highlighted intriguing similar-
ities and differences among taxa.

There have been at least three separate implementations of LDhot
(Myers et al. 2005; Auton et al. 2012, 2014), each with different criteria
for calling hotspots. Until recently (Auton et al. 2014) no version of the
program was publicly available. This has hampered our understanding
of the extent to which published results reflect the true biological re-
ality vs. limitations of the hotspot calling methodology. In this study,
we implement our own version of LDhot (available from github at
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https://github.com/jdwall02/mlehot), and test the power of LDhot to
detect true recombination hotspots over a range of model parameters
appropriate for large mammals such as humans and great apes. We
find that some previous implementations of LDhot have extremely
low power, which might explain the results of Johnston and Cutler
(2012). If many true hotspots have gone undetected, then an actual
correlation between hotspot sequences and a sequence motif may
have been missed, and the degree of sharing of hotspot locations
across species (e.g., Auton et al. 2012) may have been underestimated.
We explore this possibility in greater detail below. We also com-
pare the power and false positive rate of LDhot with a maximum-
likelihood approach for estimating recombination rates and calling
recombination hotspots (Wang and Rannala 2009).

MATERIALS AND METHODS

LDhot uses a composite likelihood framework based on the work of
Hudson (2001) and McVean et al. (2002) and similar to the approach of
HotspotFisher (Li et al. 2006). The Auton et al. (2012) implementation
tests every 2 kb region (with a 1 kb increment) as a potential hotspot by
analyzing the 200 kb region centered around the region of interest.
Suppose the SNPs in the 200 kb region are S = {s;... s,}. A (composite)
LRT statistic is calculated as

n—1 n

sup H H lik (Sivsj‘pmpl)
PoPL =1 j=i
e T it
wp TT IT 1k Gsoslo)
P i=T =it

where lik (s;, s; | p) is the two-site likelihood described before (Hudson
2001; McVean et al. 2002), po is the background recombination rate,
and p; is the recombination rate in the central 2 kb region. Critical
values for R are estimated from null simulations that assume a constant
recombination rate across the region (i.e., po = p1). Auton ef al. (2012)
used ‘fixed S methodology for these simulations (Hudson 1993; Wall
and Hudson 2001), with SNP locations fixed to be where SNPs appear in
the actual data and p chosen to be equal to its estimated value (from
LDhat). They tested each possible 2 kb region and identified those where
the estimated P-value for R was <0.01. Then, overlapping regions were
merged to form a list of candidate hotspot regions. These regions were
filtered to reduce the false positive rate by eliminating ones >5 kb in size
or with peak p estimate <5 /kb (estimated using LDhat).

We also studied two other approaches for calling hotspots using
LDhot. Auton et al. (2014) used a smaller window size (100 kb) but the
same basic approach for identifying candidate regions. Instead of a size
or peak p estimate filter though, they required each hotspot region to
contain at least one 2 kb window where the estimated P-value for R
was <0.001. Our new approach here is to generate the same list of
candidate regions as Auton et al. (2012), partition each region into
nonoverlapping 1 kb windows, and keep only those windows for which
the average p estimate (using LDhat) is =5/kb. A brief summary of the
differences between LDhot implementations is summarized in Table 1.
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Figure 1 (A) Power to detect a hotspot as a function of the window
size (x-axis) and the strength of the hotspot using the protocol of
Auton et al. (2012). Background p is 0.5/kb. See text for further details.
(B) False positive rate for estimated hotspots, defined as the propor-
tion of estimated hotspot sequence that was not actually a simulated
hotspot. (C) Estimated hotspot locations without the length limitation
for a 100 kb window and a 50-fold hotspot. Dashed vertical lines show
location of actual hotspot. Results are similar for other parameter com-
binations.

For all three hotspot calling protocols, we found that the publicly
available version of LDhot (Auton et al. 2014) was too slow for running
power calculations, since the null distribution for R is estimated sepa-
rately for each test window. We implemented our own version, similar
to the method of Myers et al. (2005) — we run null simulations in
advance, store the results in a large lookup table, and use these to
repeatedly estimate the significance values for observed values of R
across the genome. Specifically, for a window size of X kb we run
coalescent simulations (cf. Hudson 2002) of X kb regions across a broad
range of mutation and recombination rates (assuming the recombina-
tion rate is constant per base pair). For each simulation, we tabulated R,
the number of segregating sites S, and the estimate of p (¢f. Hudson
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Figure 2 (A) Power to detect a hotspot as a function of the window
size and strength of the hotspot using the protocol of Auton et al.
(2014). Results are directly comparable to those of Figure 1A and
Figure 3A. (B) False positive rate for estimated hotspots, defined as
the proportion of estimated hotspot sequence that was not actually a
simulated hotspot.

2001). Then, when analyzing an actual X kb region, we calculate S and
p, then use simulations with S and p near the actual values for
determining the null distribution for R. So, while the Auton et al.
(2012) approach uses ‘fixed S’ simulations and parametric bootstrap-
ping (for p), we use standard coalescent simulations and condition
(in the standard statistical sense) on the observed value of S and the
observed estimate of p (with an implicitly flat prior for 6 and p). Our
simulations took X = 20, 50, 100, or 200 kb, and we ran ~5 x 10°
simulations for each value of X. Source code and executables for
running all three implementations of LDhot are available at http://
github.com/jdwall02/mlehot

To estimate the power of the different hotspot calling protocols, we
assumed a sample size of n = 30 haploid sequences, a scaled mutation rate
of @ = 1/kb, and a scaled background recombination rate of p = 0.5/kb. We
simulated 100 different 1 Mb regions, each containing eight different 2 kb
hotspots with scaled recombination rates of 5, 10, 25, or 50/kb. We defined
the power as the proportion of actual hotspot sequence that was identified
as a hotspot using LDhot. Similarly, the false positive rate was calculated as
the proportion of actual nonhotspot sequence that was called as a hotspot
using LDhot, and the false discovery rate was defined as the proportion
of called hotspot sequence that was not actually contained in a
recombination hotspot. (Note that these definitions differ from those
of some previous studies.) Additional simulations considered a wider
range of sample sizes (n = 16-42 haploid sequences) or other scaled
background recombination rates (p = 0.1, 0.2, 1, or 2.5 per kb). These
latter simulations had actual hotspot recombination rates that were
10, 20, 50, or 100 times the background rate and a new hotspot calling
criteria of p = 10 times the background rate (estimated from LDhat).
One final set of simulations had n = 30, a scaled mutation rate of 6 =
5/kb, and a scaled background recombination rate of p = 0.5-5/kb.

We also used Inferrho, a Bayesian full-likelihood method for calling
recombination hotspots developed by Wang and Rannala (2009). We
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Figure 3 (A) Power to detect a hotspot as a function of the window
size and strength of the hotspot using our new protocol. Results are
directly comparable to those of Figure 1A and Figure 2A. (B) False
positive rate for estimated hotspots, defined as the proportion of es-
timated hotspot sequence that was not actually a simulated hotspot.

used both the current version of the program (IRvl) as well as the
originally published version (INFERrho, obtained from Y. Wang).
Inferrho estimates a posterior probability that any particular genomic
location is contained in a recombination hotspot. We used the same
hotspot calling criteria as Wang and Rannala (i.e., HT; = 5, HT, = 2.5)
on 20 simulated 1 Mb regions with recombination hotspots (back-
ground p = 0.5/kb; other parameters are described in the previous
paragraph). For computational tractability, we broke each simulated
region into overlapping 7 kb subregions (each overlap being 2 kb), and
analyzed each subregion separately after trimming off 1 kb from each
end. We also only analyzed a subset of the nonhotspot regions to
estimate the false positive and false discovery rates. Finally, we
reanalyzed the original 100 simulations described in Table 1 of
Wang and Rannala (2009), using their original implementation, sim-
ulation parameters (burnin = 10* steps, MCMC chain = 10° steps),
and criteria for calling hotspots. We also reran half of these simula-
tions with a burnin of 2 x 10° steps and an MCMC chain of 10° steps
and found our results to be unchanged (results not shown).

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS
To assess the power and false positive rate of LDhot, we implemented
our own version that is fast enough to allow for power calculations on
simulated data. We then estimated LDhot’s power under a range of
window sizes and recombination hotspot intensities, using the same
basic protocol as Auton ef al. (2012). Unlike previous simulation studies
(Wang and Rannala 2009; Auton et al. 2014), ours uses a background
recombination rate that is more appropriate for human or great ape data.
The power results are shown in Figure 1A while the false positive
rates and false discovery rates (FDR) are shown in Figure 1B. Two
trends are easily apparent. First, the power increases as the window
size decreases, with an ~fivefold increase in power for a 20 kb window
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Figure 4 Power to detect hotspots using our new protocol over (A)
different haploid sample sizes, (B) different background recombination
rates, and (C) higher mutation and (background) recombination rates.

size compared with a 200 kb window size. Second, stronger hotspots are
not always easier to detect, and the power to detect recombination
hotspots under any scenario is quite modest, topping out at 63% for
a 20 kb window size and a 50-fold increase in the recombination rate
and with a low of 3% power for a 200 kb window size and a 10-fold
increase in the recombination rate. The FDR is relatively high at
55-63%. This, plus the lower power, suggests that existing methods
might have substantial room for improvement.

The general trends described above are a consequence of the com-
posite likelihood approach used by LDhot, and the protocol used to
manage the false positive rate. Since all pairs of sites within a window are
used in the likelihood calculations, most of the pairs in large (e.g., =100
kb) windows will be uninformative about the precise location of a
hotspot. So, if a hotspot is called for a region, it tends to be large
(i.e., >5kbinlength), and these large regions are subsequently excluded.
Similarly, when the recombination hotspot is strong (50-fold or 100-fold
increase), LDhot has more trouble with hotspot localization, leading to
large hotspot regions that are also excluded. To illustrate this, Figure 1C
shows the estimated hotspot locations relative to the true hotspot
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Table 2 Comparison between our implementation of LDhot and
Inferrho over 20 different 1 Mb regions

Power (%) LDhot Inferrho
10-fold hotspot 17.5 0.9
20-fold hotspot 48.8 2.8
50-fold hotspot 87.5 15.0
100-fold hotspot 95.0 26.5
False positive rate (%) 1.59 <0.2
False discovery rate (%) 55.6 =41

Due to computational limitations, we could not calculate exact values of the
false positive and false discovery rates for Inferrho.

location for a 100 kb window size and a 50-fold hotspot. While 85% of
the simulated hotspots were identified using a P < 0.01 cutoff, the vast
majority of these were excluded from Figure 1A due to their size. This
leads to decreasing power for increasing window size.

If we drop the 5 kb length restriction, then the power (and false positive
rate) increase substantially. Figure 2 shows the power and false positive
rates if we use the Auton et al. (2014) criteria for calling hotspots instead.
This approach adopts a stricter P < 0.001 cutoff for identifying a can-
didate region as a hotspot, but does not have any length restriction on the
size of the region identified (see Materials and Methods for a more pre-
cise description). While the power increases substantially when compar-
ing Figure 1A to Figure 2A, this is achieved at a cost of having a false
positive rate that ranges from 1.7 to 5.8% and a FDR of 66-92% (Figure
2B). For these simulations, the average size of the identified hotspot
regions varies from 5.1 kb (20 kb window size) to 23.3 kb (200 kb
window size). Clearly, a 20 kb “hotspot region” is not very informative,
even if it does contain a true recombination hotspot.

We also tried another approach for hotspot calling, by analyzing each
1 kb region separately, and requiring both P < 0.01 (using LDhot) and
p = 5/kb (using LDhat) for a region to be called a hotspot. Under this
protocol, the power to detect hotspots is much higher than for the
previously proposed methods (Figure 3A). For a 20 kb window size,
the power ranges from 21% for a 10-fold hotspot to 94% for a 100-fold
hotspot, compared with 17% and 40% for the Auton et al. (2012)
approach and 7% and 78% for the Auton et al. (2014) approach. The
false positive rate (Figure 3B) is intermediate between the results of
Figure 1B and Figure 2B, while the FDR ranges from 52 to 54%, lower
than for the previous methods used for calling recombination hotspots.
We conclude that our new method for calling hotspots using LDhot is
better than the previous approaches, and that smaller window sizes (e.g.,
20 kb) should be used when analyzing dense SNP or resequencing data.

To explore how sensitive these results are to the particular parameter
values used, we also estimated the power to detect recombination hotspots
for a range of haploid sample sizes and different background recombi-
nation rates. In almost all simulations, our new hotspot calling protocol
has substantially higher power and lower false discovery rate than the
previously described protocols (Auton et al. 2012, 2014), even when we
use the same window size for each. For brevity, we include only the
results of the new hotspot calling protocol on 20 kb windows. As
expected, power increases with increasing sample size (Figure 4A), with
some leveling off once n > 30. Additionally, we find that hotspots are
easier to detect when the background recombination rate is intermediate
(p = 0.2-1/kb, ¢f. Figure 4B), presumably because for low background
rates the levels of LD are high even in recombination hotspots and for
high background rates the levels of LD are somewhat low even for
background regions. Additional simulations suggest that power is
also increased (and FDR decreased) when the baseline levels of
genetic variation (e.g., 6 = 4 Nj) are higher. Figure 4C shows simulation
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Table 3 Comparison between the results published in Wang and
Rannala (2009, Table 1) and our computations of Inferrho using the
same data sets

Wang and Rannal (2009)? IRv1  INFERrho
Power (%) -a 19.0 28.3
False positive (%)° 4 0 0
Overlap (%)° 74 33 39

False positive refers to the Wang and Rannala (2009) definition - called hotspots
that do not overlap at all with true hotspots.
Cannot be determined from the original study.
his refers to the Wang and Rannala (2009) definition - called hotspots that do
not overlap with all true hotspots.
“This is Wang and Rannala’s (2009) definition of power - the proportion of true
hotspots that overlap by at least 1 bp with a called hotspot.

results with a fivefold higher amount of polymorphism (6 = 5/kb). The
increased information content with the higher density of SNPs leads to
the increase in power, though this breaks down at the highest recombi-
nation rates (presumably due to the low levels of LD even in nonhotspot
regions). These results suggest that the ease with which recombination
hotspots can be identified in a given species from patterns of LD depends
strongly on the values of fundamental biological parameters such as the
effective population size, mutation rate, and recombination rate.

Finally, to see whether the composite likelihood approach of LDhot
reduces power compared with computationally intensive full-likelihood
approaches, we compared a subset of the results shown in Figure 3 with
comparable results obtained from Inferrho (Wang and Rannala 2009).
The results, shown in Table 2, are striking. Compared with LDhot,
Inferrho has much smaller power, false positive rate, and false discovery
rate. Inferrho essentially never finds weak hotspots (e.g., 10- or 20-fold
increase in recombination rate) and is very conservative even for the
strongest simulated hotspots. On the other hand, when Inferrho does
call a region a hotspot, there is a very high likelihood that it really is one
(FDR ~4%). If we use a more liberal definition of power, where any
overlap between a called hotspot and an actual hotspot is counted as
a hit, Inferrho has moderate power ranging from 2.5% for a 10-fold
hotspot to 62.5% for a 100-fold hotspot.

DISCUSSION
Our simulation results suggest that the efficacy of LDhot in detecting
recombination hotspots is quite sensitive to the particular implementation
used in the analyses. Specifically, the larger window sizes used in previous
studies (e.g., 200 kb in Auton et al. 2012) lead to greatly reduced power
and a higher false positive rate when compared to smaller window sizes
(e.g., 20 kb in Figure 1, Figure 2, and Figure 3). Qualitatively, this is because
of the nature of the underlying composite likelihood used by LDhot - all
pairs of sites are used within a window, including ones that are uninfor-
mative due to their distance from the central test region. LDhot’s original
formulation (McVean et al. 2004) was optimized for human SNP data
where the density of markers was relatively low. Now that full resequenc-
ing data are available, much smaller window sizes are needed for accu-
rately estimating background vs. putative hotspot recombination rates.
While our simulations are not exhaustive, they suggest that the optimal
setup is to have the smallest window size that can accurately estimate
background recombination rates. For species with human-like evolution-
ary parameters, this involves a window size of 20 kb (or perhaps slightly
smaller). For species with a much higher level of diversity, a 10 kb or
smaller window size would be appropriate (results not shown).

Our simulations also found that even for a fixed window size, the
protocols used for identifying recombination hotspots have a strong
influence on LDhot’s power and false positive rate. While the new
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protocol proposed here seems superior to previous implementations
(Auton et al. 2012, 2014), we caution that our approach is ad hoc and
that even better protocols are likely available. We also note that using a
suboptimal version of LDhot can have real consequences when analyz-
ing actual data. Auton and colleagues found no evidence of an associ-
ation between predicted PRDMY9 binding sites and recombination
hotspots in chimpanzees (Auton et al. 2012). The low power of their
LDhot implementation led to fewer called hotspots (<<5000), which in
turn limited their power to detect any association between sequence
motifs and hotspots. Our analysis with an improved LDhot identified
twice as many hotspots, and found sequence motifs (corresponding to
predicted PRDM9 binding sites) that are overrepresented in recombi-
nation hotspots across several great ape species, including chimpanzees,
bonobos, and gorillas (Stevison et al. 2016).

Finally, we found that even though LDhot has some serious draw-
backs from a statistical standpoint, the computationally intensive full-
likelihood approach of Wang and Rannala (2009) has much lower
power. These results were unexpected, in part because of the much
higher power (74-92%) reported by the authors (Table 1, Wang and
Rannala 2009). While part of the difference can be ascribed to the
particular parameter values used (e.g., we used a background recombi-
nation rate of p = 0.5/kb while they used p = 0.06/kb), the performance
of Inferrho was still surprising. To examine this further, we obtained the
100 simulated data sets analyzed by the authors (with hotspot p =
10/kb) and reanalyzed them using both the currently distributed ver-
sion of Inferrho (IRv1) and the original version (INFERrho) used in
Wang and Rannala (2009). Using the same simulation parameters and
hotspot calling criteria as their original paper, we were not able to
recreate their results (Table 3). These results were unchanged even
when we increased the burnin and MCMC chain length by an order
of magnitude (see Materials and Methods; results not shown). Consis-
tent with the qualitative results of our previous simulations, we found
both versions of Inferrho to have lower power and lower false positive
rate than what was originally reported.

We conclude that methods for identifying recombination hotspots
should be tested thoroughly on simulated data and compared with each
other across a wide range of parameter values to assess the efficacy of
each and to determine which ones are the best to use. We hope that this
study can be one step toward this goal.
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