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ABSTRACT The identification and mobilization of useful genetic variation from germplasm banks for use in
breeding programs is critical for future genetic gain and protection against crop pests. Plummeting costs of
next-generation sequencing and genotyping is revolutionizing the way in which researchers and breeders
interface with plant germplasm collections. An example of this is the high density genotyping of the entire
USDA Soybean Germplasm Collection. We assessed the usefulness of 50K single nucleotide polymorphism
data collected on 18,480 domesticated soybean (Glycine max) accessions and vast historical phenotypic
data for developing genomic prediction models for protein, oil, and yield. Resulting genomic prediction
models explained an appreciable amount of the variation in accession performance in independent vali-
dation trials, with correlations between predicted and observed reaching up to 0.92 for oil and protein and
0.79 for yield. The optimization of training set design was explored using a series of cross-validation
schemes. It was found that the target population and environment need to be well represented in the
training set. Second, genomic prediction training sets appear to be robust to the presence of data from
diverse geographical locations and genetic clusters. This finding, however, depends on the influence of
shattering and lodging, and may be specific to soybean with its presence of maturity groups. The distri-
bution of 7608 nonphenotyped accessions was examined through the application of genomic prediction
models. The distribution of predictions of phenotyped accessions was representative of the distribution of
predictions for nonphenotyped accessions, with no nonphenotyped accessions being predicted to fall far
outside the range of predictions of phenotyped accessions.
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The foundation of plant breeding is genetic diversity, yet the success of
modern scientific plant breeding is leading to an erosion of the very
genetic diversity it relies upon as farmers discard landraces in favor of
genetically improved and uniform cultivars derived from a limited

ancestralbase.This genetic erosion increases vulnerability toagricultural
insect and disease epidemics, as well as diminishes gains from breeding
and selection. Germplasm collections serve as an important source of
variation for germplasmenhancement; that variation sustains long-term
genetic gain in breeding programs. A stunning number of accessions—
7.4 million—is being maintained ex situ by plant germplasm collec-
tions worldwide, also referred to as gene banks (FAO 2010). The largest
number of accessions belongs to wheat, with�856,000 accessions held,
followed by rice with nearly 774,000 accessions (FAO 2010). The US-
DA National Plant Germplasm System (NPGS) alone holds. 574,000
accessions for 14,965 species as of June 2015, ranging from 53,525
accessions for rice to 165 accession for quinoa (https://npgsweb.ars-
grin.gov/gringlobal/query/accessionsbysite.aspx).

The identification andmobilization of useful genetic variation from
germplasmbanks for use in breeding programs is clearly a necessity, not
only for sustaining current rates, but also for increasing future rates of
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crop genetic improvement (Sehgal et al. 2015). Nevertheless, there is
evidence that these collections are woefully underutilized. In 2004,
Carter and coworkers estimated that among �45,000 unique soybean
accessions maintained in germplasm collections worldwide, only
1000 have been used in applied breeding programs (Carter et al.
2004). Beneficial alleles for traits like yield have beenmined from exotic
and wild germplasm (Tanksley et al. 1996; Fox et al. 2015), and
breeders accept that landraces and exotic germplasm likely contain
alleles that could enhance their germplasm, even for intensely selected
traits, such as yield. However, efficiently mining such large germplasm
collections with little knowledge on accession breeding values and the
distribution of favorable alleles for complex traits like yield is a huge
challenge, yet selecting exotic parents for yield improvement is just as
critical as selecting elite parents.

Plummeting costs of next-generation sequencing (NGS) is revolu-
tionizing the way in which researchers and breeders interface with plant
germplasm collections. It is possible that all accessions held worldwide
will be densely genotyped using NGS technologies. Some present
examples of wide-scale genotypic characterization of the germplasm
collections include the genotypingby sequencingof theCIMMYTmaize
collection (Hearne et al. 2015) and the sequencing of 3000 rice genomes
(Li et al. 2014). This information will greatly benefit the selection of
accessions for breeding and genetics research. Using genomic data,
accessions could be selected that contain specific alleles of desired effect
(McCouch et al. 2012), or all accessions representing all allelic varia-
tions at particular loci (such as maturity) could be selected. An allele-
focused approach could be replaced or augmented by a genomic
prediction approach to predict the breeding value of each accession
held in the collection (Meuwissen et al. 2001; Habier et al. 2007;
VanRaden 2008). Such predictions on breeding value, especially when
compared to some well-known adapted checks, would greatly increase
the value of germplasm collections by giving breeders a means to

identify those accessions (of the thousands that are available) meriting
their attention (Longin and Reif 2014).

The USDA Soybean Collection dates back to 1895, with record
keeping formally starting in 1898. A large share of the accessions
(�5000) was collected as part of the expedition of P. H. Dorsett and
W. J. Morse in Asia between 1924 and 1932 (Nelson 2011). The USDA
Soybean GermplasmCollection (hereafter referred to as the Collection)
is one of the most intensely used germplasm collections in the world,
and the most intensely used in the NPGS (Nelson 2011). Remarkably,
the entire collection has been genotyped with 50K single nucleotide
polymorphisms (SNPs; Song et al. 2015), creating a tremendous re-
source for understanding the distribution of genomic variation in the
Collection and how it relates to phenotypic variation.

We assessed the usefulness of the genomic and phenotypic data
collected on 9171 records from the Collection for developing genomic
prediction models to evaluate the genetic value of accessions held in the
collection for the complex, yet economically important, traits of protein,
oil, and yield. Moreover, we investigated factors affecting prediction
accuracy such as training set composition, both in terms of subpopu-
lationmembership and trial locations. Our results are the first report on
using comprehensive, extensive data gathered over time by the curators
of a germplasm collection formaking genomic predictions thatwill help
breeders select accessions in a more rational manner.

MATERIALS AND METHODS

Phenotypic and genotypic data
The USDA Soybean Germplasm Collection contains �18,500 acces-
sions of G. max. The phenotypic data used in this study was obtained
from the USDA Soybean GermplasmCollection evaluations conducted
periodically to characterize newly acquired accessions for basic mor-
phological, agronomic (including yield), and seed quality traits. Data

n Table 1 List of trials including accessions from the USDA Soybean Germplasm Collection

Trial Location Year(s)
Trial

Entries
Trial
MGs

No. per MG per Trial

0 I II III IV V VI VII VIII IX

SOYBEAN.EVALUATION.1MN63 St. Paul, MN 1963 170 1 170
SOYBEAN.EVALUATION.2MN81 St. Paul, MN 1980–1981 260 1 260
SOYBEAN.EVALUATION.3MN83.1 St. Paul, MN 1982–1983 136 1 136
SOYBEAN.EVALUATION.4MN87 St. Paul, MN 1986–1987 63 2 61 2
SOYBEAN.EVALUATION.5MN90 St. Paul, MN 1989–1990 31 1 31
SOYBEAN.EVALUATION.MN945 St. Paul, MN 1994–1995 257 3 136 109 12
SOYBEAN.EVALUATION.MN0102 St. Paul, MN 2001–2002 422 3 176 241 5
SOYBEAN.EVALUATION.1IL64 Urbana, IL 1964 125 3 1 76 48
SOYBEAN.EVALUATION.1IL66 Urbana, IL 1965–1966 248 3 1 88 159
SOYBEAN.EVALUATION.2IL81.1 Urbana, IL 1980–1981 570 4 9 175 174 212 0
SOYBEAN.EVALUATION.2IL81.2 Urbana, IL 1980–1981 519 2 24 495
SOYBEAN.EVALUATION.3IL83.1 Urbana, IL 1982–1983 433 2 1 432
SOYBEAN.EVALUATION.3IL83.2 Urbana, IL 1982–1983 153 3 2 86 65
SOYBEAN.EVALUATION.3IL84 Urbana, IL 1983–1984 44 2 38 6 0
SOYBEAN.EVALUATION.4IL87 Urbana, IL 1986–1987 367 5 1 65 91 59 151
SOYBEAN.EVALUATION.5IL90 Urbana, IL 1989–1990 379 5 2 12 51 89 225
SOYBEAN.EVALUATION.IL945 Urbana, IL 1994–1995 811 5 2 86 149 186 388
SOYBEAN.EVALUATION.IL0102 Urbana, IL 2001–2002 398 6 7 204 22 36 122 7
SOYBEAN.EVALUATION.MS923 Stoneville, MS 1992–1993 598 3 4 587 7
SOYBEAN.EVALUATION.MS945 Stoneville, MS 1994–1995 653 5 1 5 318 328 1
SOYBEAN.EVALUATION.MS967 Stoneville, MS 1996–1997 974 6 45 233 243 208 236 9
SOYBEAN.EVALUATION.MS989 Stoneville, MS 1998–1999 307 6 9 102 80 69 46 1
SOYBEAN.EVALUATION.MS2000_02 Stoneville, MS 2000, 2002 564 3 485 76 3
SOYBEAN.EVALUATION.MS2001_03 Stoneville, MS 2001, 2003 162 5 10 22 47 28 55
SOYBEAN.EVALUATION.2KY81 Lexington, KY 1980–1981 527 1 527
Total 9171 993 1402 593 786 2196 854 1038 633 665 11
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from 25 trials were analyzed (Table 1). Dates of the data sets range from
1963 to 2003 and locations includeUrbana, IL; St. Paul,MN; Lexington,
KY; and Stoneville, MS. The majority (5731) of accessions was evalu-
ated in just one trial, 2976 accessions were evaluated in two trials,
50 accessions were evaluated in three trials, 11 accessions were evalu-
ated in four trials, and three accessions in five trials. Accessions orig-
inally classified as maturity group 0 were evaluated mostly in St. Paul,
with a small number evaluated in Urbana. Classification of these ac-
cessions has now been refined to include 00 and 000 classification.
Maturity groups (MG) I–III were evaluated predominantly in Urbana,
with someMG I and II evaluated in St. Paul. MG IVwere evaluated in
Lexington, Urbana and, to a small extent, Stoneville. Accessions be-
longing to MGs V–IX were evaluated in Stoneville, with the exception
of seven MG V accessions being evaluated in Urbana in 2001–2002
(Table 1). All trials were blocked by MG. The 1MN63 and 1IL64 trials
included two replications planted within the same year. All other trials
also included two replicates, but replicates were planted in two separate
years. Field plots comprising the trials conducted between 1963 and
1966 were two rows per entry, 2.4 m long and 1 m apart, except for
1MN63 in which row spacing was 0.90 cm. Starting in 1980, trials
consisted of four-row plots tominimize competition effects. Rows were
3 m long and 0.75 m apart at planting and end-trimmed to 2.4 m
long. The only exceptions were the 1989–1990 trials in St. Paul and
Urbana, where rows were planted to be 4.7 m long but later trimmed to
3.2 m. Data were collected only on the center two rows.

Proteinandoilwere alsomeasuredusingseedsofaccessions stored in
cold room of the Urbana maintained Collection. This dataset is named
SOYBEAN.CHEMICAL.NB.2009 and consists of 2721 samples. Soy-
bean samples were sent from the Collection to St. Paul, MN where they
were ground and scanned by NIR (Foss 6500) at the University of
Minnesota. All accessions included in this set were also grown and
phenotyped as part of other trials.

The traits analyzed for this studywere seedyield,oil, protein, lodging,
andearly shattering. Seedyieldwasmeasuredas themachineharvestable
seed weight per plot adjusted to 13% seed moisture and expressed as
Mg ha–1. From 1963 to 1966, protein concentration was determined
using the Kjeldahl method, and oil concentration was determined using
the Butt extraction method. From 1981 and beyond, oil and protein
concentrations were determined using near-infrared reflectance on
ground samples. Lodging is rated on a scale of 1–5, with 1 given to
plots with 100% erect plants, and 5 given to plots with prostrate plants.
Early shattering is scored at harvest on a 1–5 scale, where 1 = no
shattering, 2 = 1–10% shattering, 3 = 10–25% shattering, 4 = 25–50%

shattering, and 5 = greater than 50% shattering. More detailed trait de-
scriptions and information on methods of measurement can be found
at https://npgsweb.ars-grin.gov/gringlobal/descriptors.aspx, then
choose “Soybean” from the dropdown menu.

In addition to the phenotypic data routinely collected by the USDA
and collaborators on the collection, an independent data set on MGs
I–V PIs was obtained to serve as an additional validation set. These data
were collected by J. E. S. at theUniversity of Nebraska in 2003 and 2004.
Briefly, 101 accessions were selected from a larger set of �1500 acces-
sions on the basis of acceptable lodging, seed shattering, disease re-
sistance, and overall appearance.Most of these 101 accessions belong to
MGs II and III. They were evaluated in field trials under two water
regimes, dryland and full irrigation, at Lincoln, NE. Plots were arranged
in a randomized complete block design with four replications per water
regime. Replications receiving the same water treatment were blocked
together in the field. Plots consisted of two rows 0.76 m apart and
2.90 m long. Plots weremachine harvested, and seed yieldwas adjusted
to 13% seed moisture. Protein and oil concentration were measured
using near-infrared reflectance spectroscopy. For use here, the data
were divided into four water-regime–year combinations. A linear
model was fit to each dataset separately to calculate estimates of
broad-sense heritability on an entry-mean basis. The linear model in-
cluded rep (fixed) and accession (random).

The original genotype data set consisted of 52,041 SNPs scored using
the Illumina Infinium SoySNP50KBeadChip as described by Song et al.
(2013). The SNP data are publicly available at http://www.soybase.org/
dlpages/index.php. SNPs with greater than 80% missing scores and
minor-allele frequencies, 0.01 were removed from the data set, leav-
ing 38,452 SNPs for analysis and genomic prediction model training.

Subpopulation assignment
The effect of predicting across and within subpopulations was investi-
gated. Previous research found that country of origin and MG explain
only a small proportion of the subpopulation structure (Bandillo et al.
2015). Accessions were clustered using ADMIXTURE (Alexander et al.
2009) to objectively assign accessions to more genetically differentiated
subpopulations. ADMIXTURE provides model-based estimations of
ancestry based on multi-locus genotype data. A number of subpopu-
lations, K, is defined by the user. Each individual is assigned a member-
ship probability to each subpopulation. For this study, the conversion
frommembership probabilities to discrete subpopulationmemberships
was accomplished by assigning each accession to the subpopulation
that it had the highest probability of belonging to. Determining the

Figure 1 A diagram of the four cross-validation
schemes used to validate genomic predictions. Each
of the colors represents a different group. Groups
are comprised of trials, states, or genetic clusters
(see Materials and Methods). Arrows point from the
training set to the validation set.
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value of K was accomplished using the differences from the estimated
10-fold cross-validation (CV) errors obtained from ADMIXTURE for
successive K-values (DCV). Although the election of an optimal num-
ber of subpopulations is not a critical objective of this research, the K
value at which DCV plateaued was chosen.

Models
The Bayesianmodels here presented include genetic and nongenetic (or
structural) covariates. The nongenetic covariates were included to
remove, as much possible, the phenotypic variance generated by envi-
ronmental and population structural factors such as location and
maturity group. Since all models have the same linear predictor form,
at this point, only the general structure is shown and further specifica-
tions will be given to stress differences among models.

The linear predictor can be written as

yijk ¼ mþ ej þmkðjÞ þ gi þ eijk (1)

where m is the overall mean common to all phenotypes, ej is the effect
of the jth trial (for j = 1,..,26); mkðjÞ is the effect of the kth maturity
group nested in the jth trial; gi is the additive genetic effect of the ith
accession modeled using whole-genome markers; and eijk is the re-
sidual. Residuals are assumed to be independent and identically dis-
tributed (IID) following a normal distribution with mean zero and
variance s2

e . Since the effects of the maturity group are expected to

change in accordance with the latitude of the trial locations, these
effects were considered as nested within trials. Flat priors were given
to the trial and maturity group effects to approximate fixed effects in
maximum likelihood estimation.

The additive genetic effect of the ith accession is modeled as a linear

combination of random marker effects represented by gi ¼
Xp
l¼1

xilbil,

where p is the number of markers, xil is indicator variable for the lth
marker scored on the ith accession, with bil being themarker effect. The
election of the prior distribution of the random terms enables themodel
to perform different actions with respect to the treatment of these
marker effects as described below. A comprehensive review of the five
popular models used for genomic selection (GS) can be found in de los
Campos et al. (2013), but a very brief description follows:.

Genomic best linear unbiased prediction (G-BLUP):Aconvenient repara-
meterization to reduce the computational burden is given by considering
g ¼ Xb with g ¼ fgig. From the properties of the multivariate normal
distribution (MVN) g � MVNð0; X9Xs2

bÞ ¼ MVNð0; Gs2
gÞ where

G ¼ fGii’g an n · n symmetric matrix whose entries are given by

Gii9 ¼ p21
Pp

l¼1
ðxil 2 2ulÞðxi9l 2 2ulÞ

2ulð12 ulÞ and ul is the estimated allele fre-

quency at the lthmarker. Thismatrix is known as the genomic relationship
matrix (GRM) whose entries describe genomic similarities among pairs of

Figure 2 Predictive abilities for oil,
protein, and seed yield for each of
the 25 trials. Predictions were made
using the Group/All cross-validation
scheme and three different mod-
els: genomic best linear unbiased
prediction (G-BLUP), Bayes B, and
Bayesian LASSO. The black bars
display the 95% C.I.
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accessions. The posterior mean of g is the best linear unbiased predictor of

g, ĝ ¼ ½I þ lG21�21~y ¼ Xb̂ where l ¼ s2=s2
g is obtained via restricted

maximum likelihood (REML) methods.

Bayesian least absolute angle and selection operator (LASSO): The
structure of this model is very similar to that from the Bayes A model;
however, the marker-specific prior variances are assumed IID expo-
nential, s2

bl
eExpðs2

bl
jl2Þ where l in this case is a regularization param-

eter that controls the shape of the exponential prior distribution. The
marginal prior distribution of the marker effects becomes a double
exponential distribution (DE).

Bayes B: Bayes B is a variable selection model allowing some
proportion (p) of marker effects to be null and the remaining
(1 – p) to be non-null. This is captured with a mixture den-
sity: pðbl jp;s2

bl
Þ ¼ p · ðbl ¼ 0Þ þ ð12pÞ·Nðblj0;s2

bl
Þ with p as

the proportion of markers with null effect. With this consider-
ation, the marker-specific prior distributions of the non-null
marker effects are a scaled inverted chi-squared distribution,
s2
bl
� x22ðs2

bl
jdfbl ; SblÞ. The prior distribution of the marker-specific

variance parameter for the non-null proportion of marker effects is
similar to the one used in Bayes A. To completely specify this model,
a beta prior distribution is assumed for the proportion parameter such
that p � bðp0;p0Þ with p0 . 0 and p0e½0; 1�. All of these assumptions
result in the marker effects having a marginal prior distribution com-
prised of an IID mixture of a point mass at zero, and a scaled-t
distribution.

Hyperparameters for allmodels were set using the rules described in
de los Campos et al. (2013). All models were implemented using the
BGLR package (Pérez and de los Campos 2014).

Cross-validation schemes
A series of CV schemeswas designed to assess the usefulness of genomic
predictions for selecting accessions as well as optimizing the construc-
tion of genomic prediction training sets. To accomplish the latter goal,
several different grouping criteria for splitting the data were used
in order to create variable training-testing relationships. The first
grouping criteria involved splitting the data by trial (i.e., 26 trials for
oil and protein; 25 trials for yield). A second grouping criteria used
genetic criteria to split the entire population of accessions into nine
subpopulations as described above. Finally, the training-testing sets
were grouped by geographical location, which in this case was de-
fined by state in which the evaluation trials were conducted (i.e.,
MN, IL, or MS). The KY data were dropped from this analysis since
only one trial was conducted in KY.

Four CV schemes were applied to each grouping criteria. Each CV
schememimicked theproblemofpredicting accessionswithout data. To
accomplish this, all phenotypic recordsof anyaccession in the validation

set was removed from the training set before model training. Each CV
scheme is described individually.

Leave-one-accession-out within groups (One/Group): within each
group (i.e., trial, subpopulation, state) each accession is pre-
dicted, one at a time, using as the training set the data from the
remaining accessions in the same group. This procedure is re-
peated until all accessions in the group are predicted. To assess

n Table 2 Genomic predictive abilities using the Lincoln, NE, data as validation data, and correlations between the phenotypic data
available in GRIN and the Lincoln, NE, data

Genomic Predictive Ability Correlation: GRIN Data vs. NE Trials

Oil Protein Yield Oil Protein Yield

DRY-2003 0.47 [0.30; 0.63] 0.52 [0.37; 0.65] 0.42 [0.16; 0.64] 0.46 [0.31; 0.60] 0.43 [0.29; 0.56] 0.27 [0.06; 0.41]
DRY-2004 0.62 [0.49; 0.73] 0.63 [0.51; 0.73] 0.50 [0.35; 0.65] 0.46 [0.30; 0.59] 0.45 [0.30; 0.58] 0.49 [0.33; 0.64]
IRR-2003 0.63 [0.50; 0.75] 0.58 [0.47; 0.67] 0.52 [0.38; 0.66] 0.51 [0.38; 0.63] 0.41 [0.23; 0.55] 0.53 [0.38; 0.67]
IRR-2004 0.64 [0.51; 0.74] 0.59 [0.46; 0.71] 0.53 [0.38; 0.70] 0.53 [0.42; 0.64] 0.46 [0.32; 0.58] 0.52 [0.36; 0.65]

Each year two trials were conducted with two water regimes, dryland (DRY) and irrigated (IRR). Results for oil, protein, and yield are displayed. Values displayed in
brackets are the 95% C.I. of the correlation coefficient estimates.

n Table 3 Percentages of accessions among the top 10% of
accessions based on predictions observed to be in the bottom
10% or greater than the mean based on phenotypic data from
each listed trial

Bottom 10% Greater Than Mean

Oil Protein Yield Oil Protein Yield

USDA evaluations
1MN63 0 0 0 100 76.5 94.4
2MN81 0 0 3.8 83.3 92.3 73.1
3MN83.1 0 0 0 93.3 73.7 86.7
4MN87 0 0 0 85.7 100 100
5MN90 0 0 0 75 100 100
MN945 0 0 3.8 85.2 81.5 88.5
MN0102 0 0 0 90.9 93 88.6
1IL64 0 7.7 0 92.3 69.2 84.6
1IL66 0 0 0 96 92 100
2IL81.1 0 0 0 100 82.5 96.5
2IL81.2 1.7 0 3.8 76.7 88.7 79.2
3IL83.1 0 0 2.2 85.4 88.6 68.9
3IL83.2 0 0 0 100 82.4 100
3IL84 0 0 0 100 80 100
4IL87 0 0 0 86.8 75 92.1
5IL90 0 0 0 94.7 78.9 87.2
IL945 2.4 9.9 0 85.4 72.8 96.3
IL0102 0 2.5 5.3 92.5 77.5 94.7
MS923 1.5 0 0 80.6 98.3 77.4
MS945 1.4 1.5 0 88.6 64.2 93.8
MS967 2 2.1 1 83.2 79.4 88.8
MS989 0 6.3 6.3 93.5 59.4 87.5
MS2000_02 0 0 3.4 87.7 75.8 76.3
MS2001_03 0 0 5.9 94.1 52.9 82.4
2KY81 0 4.7 5.6 78.3 64.1 61.1

Mean 0.4 1.4 1.6 89.2 79.9 87.9
Lincoln, NE, trials
2003-DRY 0 0 9.1 72.8 90.9 63.7
2003-IRR 0 0 9.1 91 81.8 72.8
2004-DRY 0 9.1 9.1 81.8 72.8 81.8
2004-IRR 0 0 9.1 81.9 63.7 72.8

Mean 0 2.3 9.1 81.9 77.3 72.8

Data for both the USDA Soybean Germplasm Collection evaluations and J.E.
Specht trials conducted in Lincoln, NE, are presented.
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predictive ability, observations and predictions are compiled and
correlated for each group separately.

Leave-one-accession-out across groups (One/All): this CV is the
same as One/Group except training sets consists of data from
all groups rather than only a single group.

Leave-one-group-out (Group/All): here, each group is predicted using a
training set consisting of data from the other groups only. The training
set does not include data from the group comprising the validation set.

Group-by-group (Group/Group): a whole group is predicted using
the information from another, single group. This procedure is
repeated for all possible combinations.

A schematic of these CV schemes is displayed in Figure 1.
Predictive ability was assessed using Pearson’s product-moment

correlation coefficient on the vectors of genomic predictions and
observed phenotypes adjusted for trial and MG effects. Confidence

intervals were computed using the bootstrap procedure with 10,000
bootstrap replicates.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS
An initial assessment of predictive ability for oil, protein, and yield was
made by performing Group/All CV and evaluating predictive abilities
among the 25–26 trials with the five models described above. Average
predictive abilities were moderate to very high for most trial and trait
combinations (Figure 2, and Supplemental Material, Table S1). For oil,
predictive ability ranged from0.46 to 0.92, with amedian across trials of
0.69. Predictive abilities for protein were lower, especially on the low

Figure 3 Predictive abilities for oil, protein,
and seed yield for each of the 25 trials.
Predictions were made using theOne/Group,
One/All, and Group/All cross-validation
schemes. The black bars display the 95% C.I.
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end, ranging from 0.29 to 0.92 with a median of 0.56. Genomic pre-
diction for accession yield, typically the most difficult trait to predict,
was more successful than expected, yet highly variable, ranging from
0.17 to 0.79. The median predictive ability for yield was 0.64. Predictive
abilities among the three models were compared for each trial and trait
combination. Very little to no difference amongmodels was observably
evident (Figure 2). For this reason, G-BLUP was exclusively used for all
subsequent analyses.

It is important to remember that the validation phenotypes were
adjusted for MG effects, and thus variation explained by the genomic
prediction model is independent of any variation between maturity
groups, and the predictive abilities calculated reflect the ability to predict
within maturity groups. Moreover, reported predictive abilities are
correlations between predictions and phenotypes corrected for MG,
with no adjustment being made for the heritability of the validation
phenotypes. Since the validation phenotypes are imperfect estimates of

true additive genetic values, the reported predictive abilities are likely
downwardly biased estimates of the true prediction accuracies being
defined as the correlation between the predictions and true breeding
values.

Sincemostof theaccessionsanalyzedwereunimproved landraces, an
important consideration is the degree to which variation in lodging and
shattering influence variation in machine harvestable seed yield. Shat-
tering is a genetically simpler trait compared to yield (Funatsuki et al.,
2014), and genomic prediction models trained using data from land-
races might be simply predicting shattering rather than purely seed
yield. An analysis of the phenotypic data did reveal that machine har-
vestable grain yield was negatively correlated with shattering and
lodging, with mean correlation coefficients being –0.27 and –0.21,
respectively (data not shown). In order to eliminate the influence of
shattering and lodging on variation in seed yield, shattering and lodging
scores were fit as fixed covariates both in the G-BLUP model and to

Figure 4 Predictive abilities for oil, protein,
and seed yield for each of the three states.
Predictions were made using theOne/Group,
One/All, and Group/All cross-validation
schemes. The black bars display the 95% C.I.
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calculate adjusted seed yield phenotypes for validation. Predictive abil-
ity was calculated as it was for Figure 2 using the 8517 records with
available shattering and lodging scores. Predictive abilities for yield
were reduced as expected when variation for lodging, shattering, or
bothwas removed through the use of covariates (Table S2). The average
reduction in seed yield predictive ability, expressed as a percentage of
the original predictive ability, was near 10% when either lodging or
shattering were accounted for (Table S2). When both traits were fit as
covariates, the reduction in predictive ability was 23% on average across
trials (Table S2). Predictive ability was not reduced at all, or very little,
in some trials, whereas in others it was reduced by as much as 47%,
indicating shattering and lodging affected seed yield to different degrees
across trials. A similar analysis was performed on maturity date, but
maturity date had a negligible effect on seed yield predictions after
correction for MG effects (results not shown).

The value of training genomic prediction models for prediction of
accession performance was further evaluated by using an independent
set of MG II and III accessions evaluated in multiple environments,

each with four replications, for the measured traits of oil, protein, and
seed yield. Entry-mean heritabilities were high due to the highly repli-
cated design, ranging from 0.83 on average for yield to 0.91 on average
for protein and oil. Genomic predictive abilities, on average, were 0.58–
0.59 for protein and oil, and 0.49 for yield (Table 2). These values are
somewhat lower than the predictive abilities estimated for the GRIN
trials, perhaps because the Nebraska trials included less genetic vari-
ability because accessions were preselected on the basis of agronomic
performance. They were, however, similar to the predictive abilities for
seed yield in the GRIN trials when seed yield values were adjusted for
shattering and lodging. This result indicates that the genomic predic-
tion models can still discriminate among relatively poor and good
performing accessions within sets previously selected for agronomic
performance. A comparison was made between the genomic predictive
ability and correlations between the data available from the GRIN trials,
and the phenotypes collected in the highly replicated Lincoln, NE, trials.
Genomic predictive ability was consistently better than the GRIN phe-
notypes for protein and oil, although the confidence intervals did over-
lap (Table 2). For yield, the two methods were similar for three of the
four Lincoln, NE, trials, and genomic prediction was numerically better
than the phenotypic data in the fourth comparison (DRY–2003; Table
2). This result suggests that the genomic predictions are at least as good
as the phenotypic data in GRIN, and thus may be a useful tool for
choosing among the nonphenotyped accessions held in the Collection
or newly collected accessions.

A key questionwhenusing predictions for accession selection relates
to the enrichment of the selected set. While correlations are a good
indicator of how successful genomic predictions could be used for this
purpose,wedesired to lookdirectlyat this by calculating the frequencyof
“selected” accessions observed to be better than the mean or in the
bottom 10% based on actual field trial data. The top 10% of accessions
were chosen on the basis of their genomic predictions using G-BLUP
and Group/All as described above. Shattering and lodging were not
adjusted for in this analysis, as we assumed breeders would want select
accessions with high machine harvestable seed yield.We found that, on
average, a high percentage of accessions among the top 10% based on
predictions were observed to be better than the trial mean. This value

n Table 4 Predictive abilities for oil, protein, and yield estimated
using state as the grouping factor

MN IL MS

Oil
MN 0.80 0.71 0.53
IL 0.56 0.68 0.52
MS 0.43 0.51 0.62

Protein
MN 0.70 0.43 0.42
IL 0.31 0.55 0.39
MS 0.21 0.37 0.52

Yield
MN 0.69 0.59 0.44
IL 0.51 0.68 0.43
MS 0.40 0.45 0.66

One/Group estimates are on the diagonal and Group/Group estimates are on
the off-diagonal. Columns display the states that were used as the calibration set
to perform predictions of those states that appear in rows.

Figure 5 A three-dimensional plot of accession
values for principal components one, two, and
three. The centroid of each cluster is indicated by
an empty sphere. The spheres containing numbers
label each centroid by its corresponding cluster
designation.
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was 89% for oil, 80% for protein, and 88% for yield (Table 3). In the case
of yield, 100% of the selected accessions were observed to be better than
the population mean in five trials. Another key outcome would be the

avoidance of poorly performing accessions. The top 10% based on
predictions very rarely included accessions observed to be in the bottom
10%. The average observed frequency across trials was only 0–2%

Figure 6 Predictive abilities for oil, protein, and seed yield for each of the nine genetic clusters (CL). Predictions were made using theOne/Group,
One/All, and Group/All cross-validation schemes. The black bars display the 95% C.I.
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depending on the trait (Table 3). A frequency of 0%was observed for
more than half the trials. This result indicates that predictions can
very effectively eliminate the worst- performing accessions.

Trials
The effect of combining vs. separating trial data was evaluated by
performing within-trial CV (One/Group), between-trial CV (Group/-
All), and combining data across all trials (One/All) (Figure 1).

Within-trial predictive abilitiesweremoderate tohigh for all traits,
being greater than 0.60 in most cases for oil and yield (Figure 3 and
Table S1). Predictive abilities were slightly lower for protein. Only a
very subtle improvement was observed when data across all other
trials was added to the training set (One/All), with differences ranging
from 0.04 (protein) to –0.01 (yield) (Table S1). While, on average,
there was very little difference, the range across trials was consider-
able, and it appeared that there were benefits to including all data in
the extreme cases. In the case of the 3IL84 trial, for example, it was
observed that predictive ability could be increased from 0.31 to 0.81
for oil and 0.44 to 0.75 for protein when data were combined across
all trials compared to a within-trial training set only. On the negative
side, we observed that predictive ability was decreased by 0.05 for oil
and 0.06 for protein, in the case of IL66 and IL945 trials, respectively.
It appeared that, for protein and oil, benefits to combining across
trials were much more dramatic compared to any reductions in pre-
dictive ability (Figure 3 and Table S1). The differences between
One/Group and One/All were more uniformly distributed in the case
of yield, with a reduction of 0.06 for MN945 and a gain of 0.14 for
2KY81.

Using data from the same trial(s) in both training and validation
sets creates the unrealistic advantage of including the trial-specific
G · E effects contained in the validation data. Because the exact
same environmental conditions specific to individual trials would not
be observed again, a better assessment of the usefulness of these
GRIN training sets for predicting future trial performance would
be attained using the Group/All CV. The Group/All CV correlations
were very close, on average, to the One/Group and One/All CV cor-
relations (Figure 3 and Table S1), indicating that the sheer volume of
data can overcome any lack of shared G · E effects.

A trial-by-trial CV (Group/Group) results in highly variable pre-
dictive abilities. In many cases, the predictive abilities between trials
was zero, but, in some cases, the predictive ability reached as high as
0.90 (e.g., oil, 2MN81 predict 5MN90) (Table S3). The average pre-
dictive ability for the Group/Group CV was 0.49 for oil, 0.30 for
protein, and 0.45 for yield, which is far less than the predictive
abilities observed using Group/All CV. This illustrates the expected
advantage of combining data across many trials to form a training
set.

By ordering the trials by state, it is apparent that the northern
locations of MN and IL predicted one another relatively well as
compared to be predictive ability between MS and the northern
locations. This pattern was more prominent for yield (Table S3).

States
Given the pattern observedwhen predicting between trials conducted
indifferent states,wedesired to lookat thismore closelyby settingupa
CV based on trial geographical location. The distribution of data
points across states is as follows: 4047 records from 11 IL trials;
1339 records from seven MN trials; 3258 records from six MS trials
(Table 1). The MN trials consisted of only MG 0–II accessions with
the majority (72%) belonging to MG 0. The IL trials were predom-
inantly comprised of accessions from MGs I–IV, with , 1% beingn

Ta
b
le

5
G
en

o
m
ic

p
re
d
ic
ti
ve

ab
ili
ti
es

us
in
g
th
e
O
ne

/G
ro
up

,G
ro
up

/A
ll,

an
d
O
ne

/A
ll
cr
o
ss
-v
al
id
at
io
n
sc
he

m
es

fo
r
o
il,

p
ro
te
in
,a

nd
se

ed
yi
el
d
.D

at
a
w
as

g
ro
up

ed
b
y
g
en

et
ic

cl
us

te
r.

O
il

Pr
ot
ei
n

Yi
el
d

O
ne

/G
ro
up

G
ro
up

/A
ll

O
ne

/A
ll

O
ne

/G
ro
up

G
ro
up

/A
ll

O
ne

/A
ll

O
ne

/G
ro
up

G
ro
up

/A
ll

O
ne

/A
ll

C
lu
st
er

Es
t.

95
%

C
.I.

a
Es
t.

95
%

C
.I.

a
Es
t.

95
%

C
.I.

a
Es
t.

95
%

C
.I.

a
Es
t.

95
%

C
.I.

a
Es
t.

95
%

C
.I.

a
Es
t.

95
%

C
.I.

a
Es
t.

95
%

C
.I.

a
Es
t.

95
%

C
.I.

a

1
0.
34

[0
.2
5;

0.
42

]
0.
48

[0
.4
0;

0.
56

]
0.
52

[0
.4
4;

0.
58

]
0.
40

[0
.3
2;

0.
48

]
0.
51

[0
.4
4;

0.
57

]
0.
55

[0
.4
9;

0.
61

]
0.
35

[0
.2
5;

0.
46

]
0.
43

[0
.3
0;

0.
54

]
0.
47

[0
.3
6;

0.
57

]
2

0.
54

[0
.5
1;

0.
56

]
0.
44

[0
.4
1;

0.
47

]
0.
54

[0
.5
1;

0.
57

]
0.
50

[0
.4
7;

0.
53

]
0.
36

[0
.3
2;

0.
40

]
0.
50

[0
.4
7;

0.
53

]
0.
57

[0
.5
3;

0.
60

]
0.
50

[0
.4
5;

0.
55

]
0.
58

[0
.5
4;

0.
62

]
3

0.
13

[0
.0
0;

0.
30

]
0.
32

[0
.1
1;

0.
51

]
0.
35

[0
.1
2;

0.
54

]
0.
32

[0
.1
7;

0.
46

]
0.
28

[0
.1
0;

0.
45

]
0.
27

[0
.0
9;

0.
44

]
0.
18

[0
.0
1;

0.
35

]
0.
27

[0
.1
1;

0.
43

]
0.
25

[0
.0
8;

0.
41

]
4

0.
41

[0
.3
0;

0.
51

]
0.
39

[0
.2
8;

0.
50

]
0.
45

[0
.3
5;

0.
55

]
0.
34

[0
.2
4;

0.
43

]
0.
32

[0
.2
1;

0.
41

]
0.
45

[0
.3
5;

0.
53

]
0.
44

[0
.3
3;

0.
54

]
0.
35

[0
.2
5;

0.
45

]
0.
41

[0
.3
1;

0.
51

]
5

0.
42

[0
.3
7;

0.
47

]
0.
42

[0
.3
7;

0.
46

]
0.
48

[0
.4
3;

0.
52

]
0.
46

[0
.4
0;

0.
52

]
0.
40

[0
.3
5;

0.
44

]
0.
51

[0
.4
6;

0.
55

]
0.
32

[0
.2
6;

0.
39

]
0.
38

[0
.3
1;

0.
45

]
0.
44

[0
.3
7;

0.
50

]
6

0.
52

[0
.4
9;

0.
55

]
0.
38

[0
.3
4;

0.
42

]
0.
53

[0
.4
9;

0.
55

]
0.
48

[0
.4
5;

0.
51

]
0.
30

[0
.2
7;

0.
34

]
0.
50

[0
.4
6;

0.
52

]
0.
44

[0
.4
0;

0.
48

]
0.
35

[0
.3
1;

0.
39

]
0.
45

[0
.4
2;

0.
49

]
7

0.
45

[0
.3
8;

0.
51

]
0.
4

[0
.3
4;

0.
45

]
0.
46

[0
.3
9;

0.
52

]
0.
40

[0
.3
4;

0.
46

]
0.
22

[0
.1
4;

0.
29

]
0.
37

[0
.3
0;

0.
44

]
0.
43

[0
.3
7;

0.
49

]
0.
40

[0
.3
4;

0.
45

]
0.
44

[0
.3
8;

0.
49

]
8

0.
55

[0
.5
0;

0.
59

]
0.
52

[0
.4
8;

0.
57

]
0.
58

[0
.5
3;

0.
62

]
0.
48

[0
.4
4;

0.
52

]
0.
41

[0
.3
8;

0.
45

]
0.
52

[0
.4
8;

0.
55

]
0.
45

[0
.3
9;

0.
51

]
0.
44

[0
.3
8;

0.
49

]
0.
49

[0
.4
3;

0.
54

]
9

0.
52

[0
.4
8;

0.
56

]
0.
38

[0
.3
2;

0.
43

]
0.
53

[0
.4
9;

0.
56

]
0.
44

[0
.4
0;

0.
48

]
0.
24

[0
.1
9;

0.
30

]
0.
46

[0
.4
2;

0.
50

]
0.
34

[0
.2
9;

0.
39

]
0.
22

[0
.1
5;

0.
28

]
0.
34

[0
.2
8;

0.
39

]
M
ea

n
0.
43

0.
42

0.
50

0.
42

0.
34

0.
46

0.
39

0.
37

0.
43

O
ne

/A
ll,

le
av
e-
on

e-
ac
ce

ss
io
n-
ou

t
w
ith

in
g
ro
up

s;
G
ro
up

/A
ll,

le
av
e-
on

e-
g
ro
up

-o
ut
;
O
ne

/A
ll,

le
av
e-
on

e-
ac
ce

ss
io
n-
ou

t
ac
ro
ss

g
ro
up

s;
Es
t,
es
tim

at
ed

;
C
.I.
,
co

nfi
d
en

ce
in
te
rv
al
.

a
O
b
ta
in
ed

b
y
B
oo

ts
tr
ap

p
in
g
10

,0
00

th
e
ad

ju
st
ed

p
he

no
ty
p
es

an
d
p
re
d
ic
te
d
va
lu
es
.

2338 | D. Jarquin, J. Specht, and A. Lorenz

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.031443/-/DC1/TableS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.031443/-/DC1/TableS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.031443/-/DC1/TableS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.031443/-/DC1/TableS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.031443/-/DC1/TableS3.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.031443/-/DC1/TableS3.xlsx


from MGs 0 and V. The MS trials consisted only of accessions from
MGs IV–IX.

As expected, a training set including data from the state being
predicted (One/Group or One/All) performed much better than train-
ing sets not including data from the state being predicted (Group/All)
(Figure 4 and Table 4). A key question we wanted to address with this
analysis was whether training sets should be created by dividing data
among states, or if a universal training set including all data—regardless
of state—would perform just as well or better. Little to no differences
were observed between these two CV schemes for any trait and state
combination (Figure 4 and Table 4). This finding suggests that predictive
abilities are not improved by maximizing training set size by combining
across states, nor are they reduced by including data from environments
as different as MS when predicting relative performance of early MG
accessions in MN. A similar pattern was observed when variation for
lodging and shattering was removed through inclusion of covariates.

Clusters
The ADMIXTURE analysis suggested the presence of nine genetic
clusters within the population of accessions used for this study (Figure
S1). A visual inspection of the principal component analysis plot dis-
played in Figure 5 suggests that the diversity within clusters varies, and
structure among the clusters exists, with some clusters being more
closely related than other clusters. The proximity of clusters to one
another can be partially explained by MG. Clusters four, five and eight
are comprised mainly of early maturity groups (0–II), whereas early
and medium MGs appear in Cluster 1 (Table S4). Clusters 2, 3, 6,
7 and 9 belong to medium and late MGs. Most clusters include good
representation of at least three MGs except for cluster 3, which is
dominated by MG VIII.

In general, predictive abilities were lower for the Group/All scheme
based on cluster compared to the One/Group and One/All schemes

(Figure 6 and Table 5). Without correction for shattering and lodging,
the One/All scheme tended to produce the highest predictive abilities,
although the difference between One/Group and One/All were very
small. Correcting seed yield for shattering and lodging produced a
different outcome where the One/Group scheme was markedly better
for four of the nine clusters (Figure 6 and Table 5). A pattern between
predictive ability and relationship between clusters was not readily
apparent. The only consistent result was the poor predictive ability of
cluster 3, which was expected based on its limited size and variation.
These results combined indicate that within-cluster information is the
most valuable information. We tested whether compiling a training set
by only including related clusters improved predictive abilities. To do
this, clusters 1, 4, 5, and 8 were grouped, and clusters 2, 3, 6, 7, and
9 were grouped. Grouping clusters by genetic similarity did not im-
prove predictions compared to the universal One/All scheme (data not
shown).

Prediction of nonphenotyped accessions
A total of 8771 accessions housed in theCollection has been phenotyped
at least once in the 26 trials (Table S4), but no phenotypic data were
available for 7608 accessions fromGRINwhen this study was designed.
Genomic predictions were calculated for the nonphenotyped acces-
sions using the full training set (i.e., all clusters, all environments) in
order to assess differences in distributions between phenotyped and
nonphenotyped accessions. Phenotyped accessions were predicted with
the One/All cross-validation scheme. More specifically, we wanted to
know if any nonphenotyped accessions would be predicted to be su-
perior to the phenotyped accessions. Substantial differences were not
observed with the predictions of the nonphenotyped accessions falling
within the range of the phenotyped accessions (Figure 7). Nevertheless,
using information in the form of genomic predictionswill help breeders
choose among those accessions that have no accompanying informa-
tion, opting for those that would be expected to be above average for
yield, protein, and oil, and thus avoiding those accessions predicted to
be inferior for these traits. Table S5 and Table S6 contain genomic
predictions for the phenotyped and nonphenotyped accessions.

DISCUSSION
Crop germplasm collections hold valuable genetic diversity to help
protect society against the genetic erosion of agriculturally important
species for which only a limited number of genotypes are actually
cultivated at any given time. It is imperative that these collections exist
as dynamic, utilized sources of variation rather than as “genemorgues”,
as they are sometimes referred to (Hoisington et al. 1999). One obstacle
to utilization is reliable phenotypic characterization of collections, as
phenotyping collections consisting of tens of thousands of accessions
can be difficult and expensive. High density genotyping of entire germ-
plasm collections, however, has become more feasible than thorough
phenotyping, even with the advent of phenomics platforms. This study
demonstrated that historical data on accessions held in collections,
when combined with high density SNP data, can be used to develop
predictive models for important and complex traits of soybean. Geno-
mic prediction models explained an appreciable amount of the varia-
tion in accession performance in independent trials, with correlations
between predictions and observations reaching up to 0.92 for oil and
protein, and 0.79 formachine-harvestable seed yield. Predictive abilities
for seed yield were reduced when variation for lodging and shattering
was accounted for. Nevertheless, estimates of prediction accuracy
calculated using data from a highly replicated, independent trial of
only accessions with previously determined acceptable performance

Figure 7 Scatter plot of genomic predictions for grain yield vs. the
sum of oil and protein. The intercept of each trait included in the
prediction to place values back on the original trait measurement
scale. Phenotyped accessions are represented by the blue density
cloud, and nonphenotyped accessions are represented by the red
circles.
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(i.e., minimal shattering and lodging) also gave an optimistic outcome for
using predictions to assist in the selection of superior accessions. Based
on a comparison of predictions and observed field performance in each
trial, a soybean breeder could select the top 10% of accessions based on
genomic prediction of yield, and expect 88% of the selected accessions
to be better than average for yield. This example demonstrated that
genomic predictions can be used to enrich field trials of accessions with
accessions that perform better than a randomly selected set. Looking at
the extremes, we found that the top 10% for each trait rarely contained
accessions that performed in the bottom 10% according to actual trial
data, indicating that using predictions very effectively eliminates the
accessions that hold little promise, ultimately saving field resources to
evaluate more of those that do hold promise.

Compiling historical data on accession evaluations conducted across
four states going back to 1963 provided us with a very large training
dataset consistingof over 9000accessions. Soybeans adapted todifferent
latitudes belong to different MGs. The trials used as a source of data
ranged from trials conducted on early MGs in Minnesota to late MGs
conducted in MS. We explored the optimal use of such a large and
diverse training set for calibrating genomic prediction models. Our
results can be summarized by two basic findings. First of all, the
population and target environment being predicted should be well
represented in the training set. The poorest predictive abilities were
observed when we attempted to predict between states, or between
genetic clusters. Second, genomic prediction training sets appear to be
very forgiving to thepresenceofdata fromdiversegeographical locations
and genetic clusters. It was surprising to observe that adding data from
very different geographical locations had no effect on predictive ability.
For example, the prediction of performance in MN environments was
not affected by the presence of training data collected inMSonMGVII–
IX accessions. This may partially be an artifact stemming from the
tendency of accessions from similar MGs to genetically cluster, and
the partitioning of MGs across the states used for evaluation. In BLUP,
information from closer relatives is weighted more heavily, while less
weight is given to information from distant relatives (de los Campos
et al. 2013), meaning data fromMS was probably weighted less heavily
in the prediction of early MG accession performance in MN.

Building a training set by adding accessions from different and
diversegenetic clustersdidnot improvenorharmpredictiveabilitywhen
the goal was to predict accession performance within a single cluster.
One exception included the prediction of yield corrected for shattering
and lodgingacrossdiverseclusters.Ourgeneral results arenot consistent
with results from barley that suggested that the addition of unrelated
individuals to a training set can potentially reduce predictive ability
(Lorenz and Smith 2015), but they are consistent with results in maize
where training sets were formed by combining data across heterotic
groups (Technow et al. 2013). The underlying reasons for the neutral
effect of adding genetically distant individuals to the soybean accession
training sets could relate to the flow of information from historical LD
and pedigree relationships to prediction accuracy (Habier et al. 2013).
In the barley case (Lorenz and Smith 2015), where there is substantive
family structure and a high degree of relatedness among lines from the
same breeding program, it is likely that pedigree relationships, captured
by G, are the predominant source of accuracy. The addition of less
related individuals can reduce the accuracy provided by this source
of information (Habier et al. 2013). In the case of the soybean germ-
plasm collection, where many individuals do not share close pedigree
relationships, and where common ancestors likely go back many gen-
erations, the predominant source of accuracy is likely historical LD. The
large training populations and high marker densities may have allowed
the capturing of this information (Habier et al. 2013; Hickey et al.

2014), offsetting any possible detrimental effect on the genetic relation-
ships source of information.

In conclusion, this study demonstrates that historical data collected
as part of plant germplasm collection characterizations can be used to
develop predictive models to help breeders select accessions for intro-
gressing useful genetic variation. We found that, in the case of the
soybean germplasm collection, these models are robust to the inclusion
of diverse sources of data, but training sets should include data from
populations and environments representative of the target populations
and environments. This data has already been collected andmade freely
available, and therefore nothing is preventing the use of thesemodels for
enhancing utilization of this genetic resource. Genomic predictions
might also be used to develop trait-specific “core collections” that could
be used for deeper phenotyping for detailed studies on physiological
mechanisms and high-resolution QTL mapping. It is anticipated that
the genomics revolution will create similar data resources for germ-
plasm collections of other agriculturally important species, and that
genomic prediction will serve as a key tool for making practical use
of the genomic data.
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