Table 3. The extent of saturation for genes that can be mutated to a fertile supersized LD phenotype.
Series | WT | EMS/WT | ENU/WT | WT + Is[mddm]+acs-22 |
---|---|---|---|---|
maoc-1 II | 5 | 3 | 2 | 5 |
dhs-28 X | 15 | 9 | 6 | 15 |
daf-22 II | 23 | 18 | 5 | 23 |
prx-10 III | 2 | |||
drop-1 II | 9 | 5 | 4 | 38 |
drop-2 IV | 10 | 5 | 5 | 22 |
drop-3 IV | 3 | 3 | 5 | |
drop-4 X | 1 | |||
drop-5 X | 1 | 1 | 2 | |
drop-6 X | 2 | 2 | 2 | |
drop-7 | 1 | 1 | 1 | |
drop-8 III | 1 | |||
drop-9 II | 1 | 1 | 1 | |
λ | 7.0 | 5.6 | 3.6 | 9.0 |
P(0)a | 0.0009 | 0.0036 | 0.0281 | 0.0001 |
N(0)b | 0.009 | 0.029 | 0.202 | 0.001 |
Allele numbers are listed for each gene according to isolation origins. λ, mean allele number; P(0), probability of unidentified genes; N(0), number of unidentified genes.
Assume that the allele frequency observes Poisson distribution. The probability of unidentified genes, i.e., the category with 0 allele, follows P(κ) = λκ·e-λ/κ!. When κ = 0, P(0) = e-λ.
N(0) = N·e-λ/(1-e-λ). N, number of identified genes.