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ABSTRACT Seed traits have been targeted by human selection during the domestication of crop species
as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to
early farming societies. The primary seed trait under selection was likely seed size/weight as it is most
directly related to overall grain yield. Additional seed traits involved in seed shape may have also
contributed to larger grain. Maize (Zea mays ssp.mays) kernel weight has increased more than 10-fold in the
9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study
how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-
teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL)
for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several
genomic regions with strong effects during maize domestication were detected, and a genetic framework
for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports
of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects,
enabling future research into the genetic basis of these traits.
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In cereal crops, seeds are the primary products for consumption, and
seedsize is oneof themost important agronomic traits for yield. Seed size
is also a vital component of evolutionary fitness in plants. It is believed
that larger seeds accumulate sufficientnourishment for germination and
have better tolerance to abiotic stresses, while smaller seeds are more
efficient at dispersal and colonization (Westoby et al. 2002; Moles et al.
2005). Seed shape traits often governmarket classes in some crops, such
as long vs. short grain rice (Luo et al. 2004; Huang et al. 2013).

Researchers studying Old World archeological data (Fuller 2007)
believe that larger grain size emerged before the loss of shattering
during domestication, and that increased seed size compared to progen-
itors could be found in nearly every domesticated species. Grain shapewas
involved in a second step of crop improvement and diversification fol-
lowing domestication. Grain shape changes during domestication can also
be dramatic (Abbo et al. 2014), although species would still be considered
domesticated in the absence of grain shape changes, and the changes are
often found in only a subset of domesticates (Gross andOlsen 2010). This
is one possible reason why grain shape does not appear to have been a
major component of the domestication syndrome in wheat (Gegas et al.
2010). Grain size and shape were both under strong selection during rice
(Oryza sativa) domestication (Kovach et al. 2007).

Besides being important in domestication, kernel size and shape are
crucial attributes for determining the market value of rice due to their
close relationship to quality and yield. For example, studies indicated
that larger and more spherical grains could increase the milling yield in
wheat (Evers et al. 1990; Evers 1995) and are associated with cooking
quality in rice (Luo et al. 2004; Huang et al. 2013). Thus, grain size and
shape have attracted significant attention not only in cereal crop breeding
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programs, but also in genetic studies because of their contributions to
yield, quality, and domestication. Understanding the genetic basis of
these traits is crucial from both an evolutionary and applied perspective.

The mechanism by which grain crops determine their seed size and
shape has remained largely unknown at the gene level and beyond. Most
studies on seed size and shape have only identified QTL for grain size
and shape in plants ranging from Arabidopsis to various crop plants
(Liu et al. 2014; Zhang et al. 2015), which indicate that grain size and shape
are quantitative traits. Recently, several genes/QTL controlling seed/fruit
size and shape have been cloned in tomato and rice (Frary et al. 2000; Fan
et al. 2006; Song et al. 2007; Shomura et al. 2008; Weng et al. 2008; Wang
et al. 2012) or identified usingmutant strategies inArabidopsis (Garcia et al.
2005; Zhou et al. 2009). These studies revealed that ubiquitin pathway
(Song et al. 2007; Li et al. 2010a), transcription factors (Garcia et al.
2005), G-protein signaling (Fan et al. 2006; Huang et al. 2009), hormone
signaling (Jiang et al. 2013; Liu et al. 2015), and epigenetics (Song et al.
2015) are involved in controlling seed/fruit size and shape in plants.

Maize (Zea mays ssp. mays) was domesticated from its progenitor
teosinte (Z.mays ssp. parviglumis) about 9000 years ago in southernMexico
(Matsuoka et al. 2002; Piperno et al. 2009). The process of domestication
involved artificial selection that resulted in radically different plant, ear, and
kernel morphologies between teosinte and maize (Beadle 1939; Doebley
and Stec 1993). As is the case for all domesticated crop species, humans had
selected for maize plants that were easier to harvest: reduced number of
harvest units (ears in the case of maize), ears that did not naturally disperse
their seeds by shattering, larger seed size, etc. These attributes collectively are
referred to as the domestication syndrome (Harlan 1971; Hammer 1984).
However, there are surprisingly few reports on the genetic control of kernel
shape in maize (Liu et al. 2014), though QTL mapping has been applied
tomine the genomic regions related to kernel shape in other crop plants. To
date, studies on the genetics of maize kernel traits have focused mostly on
kernel composition, such as oil, protein, and starch content (Goldman et al.
1993; Clark et al. 2006; Flint-Garcia et al. 2009; Cook et al. 2012), and seed
weight (Beavis et al. 1994; Messmer et al. 2009; Liu et al. 2016). Thus, there
is a need to investigate the genetics of kernel shape in maize.

In the current study, we used a population of teosinteNILs (Liu et al.
2016) derived from 10 parviglumis accessions in the B73 background to
investigate the genetic architecture of kernel weight and shape traits.
Grain samples from replicated trials were subjected to image analysis to
estimate kernel shape parameters.We conducted joint linkagemapping
for each trait separately and then on traits derived from a principal
component (PC) analysis.We then focused on pleiotropic relationships
between kernel weight and shape traits.

MATERIALS AND METHODS

Genetic materials and field trials
Ten NIL populations were derived from geographically diverse parvi-
glumis accessions by backcrossing into the B73 background as previously

described (Liu et al. 2016). Briefly, parviglumis pollenwas crossed onto B73
ears, and a single F1 plant was used to derive each population by back-
crossing four times. BC4 plants were self-pollinated two generations prior
to seed increase by sib-mating. One of the BC4 populations (Z031)was also
inbred via doubled haploid technology (AgReliantGenetics,Westfield, IN).

Field trials were conducted at Genetics Farm (two replicates) and
Bradford Farm (one replicate) locations nearColumbia,MO in 2009 and
at Aurora, NY (two replicates) in 2010. The experiments consisted of
694 lines from eight populations in 2009, and 858 lines from all
10 populations in 2010. Plants were planted in single row plots, where
lines were randomized within population and populations were ran-
domizedwithinreplicates.B73wasplantedasacheckentryatarateof5%.

Phenotypic data collection
Ears were harvested at physiological maturity, and dried at 37� for 5 d,
followed by long-term storage at low humidity at 4� for at least 1 yr. The
weight of 50 kernels (Wt50k) was obtained from three ears per plot.

Kernel sizeandshapewereobtainedusingabulkofkernels fromeach
row grown in Columbia in 2009 and Aurora in 2010, and analyzed with
PAX-it (MIS, Inc.)digital imagingsoftware.Specifically,about50kernels
per ear were scanned on anHP Scanjet G4050 Photo Scanner (Hewlett-
Packard). Kernel area, perimeter, length, width, and roundness were
calculatedby the software after imageswere captured.The ratioof length
andwidth (L/W)andthe factor formdensity (FFD)were calculated from
the raw data. FFD describes the differences in grain density and is
calculated as grain weight divided by the product of grain length and
grain width in wheat (Giura and Saulescu 1996). Because we have
accurate kernel area values, we modified the FFD in our study to mean
kernel weight divided by kernel area, based on the differences in size
and shape parameters between maize and wheat.

Genotyping and genetic linkage map
TheNILsweregenotypedviaaGoldenGateassay(Illumina,SanDiego,CA)
with 728 polymorphic SNPs from the NAMmarker set (McMullen et al.
2009), with an average of 553 polymorphic SNPs per NIL population as
previously described (Liu et al. 2016). Because the BC4 population struc-
ture does not permit genetic map construction, we used the NAM genetic
map as a framework for marker order (Supplemental Material, Table S1).

The SNP genotypes were converted to 0, 1, and 2 to represent
homozygousB73, heterozygous, andhomozygous teosinte, respectively.
Missing genotypic data (primarily monomorphic markers in specific
populations) were imputed based on flankingmarker data as previously
described (Liu et al. 2016).

Statistical analysis
Descriptive statistics analysis andnormality tests on the phenotypic data
were performed with SAS software (SAS 9.2, SAS Inc.). Heritability was
calculated according to Holland et al. (2003) in SAS (SAS Institute Inc.,

n Table 1 Descriptive statistics for the traits in this study

Traits Locations (Reps) No. Samples Mean SD Minimum Maximum H2

Wt50k (g) 2 (5) 856 12.65 1.20 6.79 16.52 0.890
Area (mm2) 2 (5) 856 58.13 4.29 44.12 72.76 0.945
Width (mm) 2 (5) 856 6.51 0.29 5.61 7.57 0.876
Length (mm) 2 (5) 856 10.99 0.53 8.72 12.40 0.951
L/W 2 (5) 856 1.69 0.09 1.32 1.95 0.872
Roundness 2 (5) 856 81.14 1.83 76.38 89.56 0.877
Perimeter (mm) 2 (5) 856 32.10 1.37 27.00 36.34 0.956
FFD (mg/mm2) 2 (5) 856 4.35 0.27 2.52 5.45 0.721

Reps, replicates; No., number; Wt50k, weight of 50 kernels; L/W, length/width; FFD, factor form density. SD, standard deviation. H2, Broad-sense heritability.
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Cary, NC). LSMeans across environments were calculated in SAS using
PROC MIXED with entry, environment, environment by entry, and
replicates within environment as random effects. LSMeans are pro-
vided in Table S2. PC analysis (PCA) was performed in SAS using
the PROC PRINCOMP procedure. The correlation matrix-based
method was used for PC extraction, and only PCs with eigenvalues
equal to or greater than 1 were retained (Field 2009).

Joint linkage mapping
LSMeans across environments were used for joint linkage QTL analysis
by employing the PROC GLMSELECT in SAS as previously described
(Buckler et al. 2009; Tian et al. 2011; Liu et al. 2016). Briefly, a stepwise
regression model was used to fit the population term, and markers
nested within population. Where an individual population lacked an
introgression covering the test SNP, no test was conducted for that
population. The significance level for entry in, and exit out, of the
stepwise model was determined by 1000 permutations. PROC GLM
was used to fit an additivemodel, where the allelic effects were considered
fixed effects. Significant alleles were determined by a t-test comparison of
the parental allele vs. the control B73 allele. QTL support intervals were
calculated by adding a single flanking marker for the QTL at a step of 0.1
cM to the full model and testing the significance at the P = 0.05 level.

Pleiotropy between pairs of traits in the joint linkage analysis was
evaluated for QTL with overlapping support intervals in SAS. Corre-
lations between allelic effect estimates were used to detect the significant
pleiotropic QTL. Pearson correlation coefficients were considered to be
significant at raw P = 0.0083 after FDR correction (P = 0.05).

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article and its
supplemental tables, or are available as datasets in Liu et al. 2016.

RESULTS

QTL analysis of kernel weight
Anin-depthQTLanalysisofkernelweighthasbeendescribedpreviously
(Liu et al. 2016), based on the full dataset of eight populations evaluated
in seven replications and an additional two populations evaluated in
four replications. However, because we wanted to compare the genetic
architecture of kernel weight and kernel shape in the same set of ex-
perimental materials, we reanalyzed kernel weights based on a reduced
dataset of 10 populations from only the five replications where we also
collected additional kernel size and shape data.

Using the reduced dataset, we identified fiveWt50kQTL (Table S3),
where three of the QTL were also identified exactly as in the analysis of
the full dataset (Liu et al. 2016) and the other two QTL shifted chro-
mosomal locations only slightly compared to the full dataset. These
differences in QTL detection between the full (Liu et al. 2016) and

current reduced datasets are likely due to the number of populations
analyzed and the number of replications and environmental effects on
the data included in the analysis.

Phenotypic framework of kernel weight, size, and shape
We measured eight kernel-related traits in the ten introgression pop-
ulations in a subset of locations/replicates (Table 1). Kernel size traits
included area, perimeter, length, and width, while kernel shape traits
included roundness and length/width ratio (L/W). We also estimated
kernel density in a term called FFD by dividing Wt50k by kernel area.
Broad-sense heritability for these traits ranged from 0.72 to 0.96, with
length, perimeter, and area showing the highest heritability, and FFD
had the lowest heritability (Table 1). The heritability of Wt50k varied
slightly, from 0.87 (Liu et al. 2016) to 0.89 when analyzing the full and
partial datasets, respectively.

Wt50k was highly positively correlated with all the original kernel
size traits except roundness and L/W (Table 2). Roundness and L/W
thus describe the kernel shape traits, but not seedweight.We found that
roundness and L/W show significant but weak correlations with area, a
critical kernel size trait, which indicates that kernel size and kernel
shape in maize are independent of each other just as in wheat (Gegas
et al. 2010).

In order to simplify the relationships amongkernel traits, PCAwas
performed on the kernel size and shape traits (Figure S1). Three
significant PCs (PC1-3) with eigenvalues greater than 1 were extracted
that together explained 98.9% of the variance (Figure S1, A and B).
The PCs are linear combinations of the original kernel traits that are
independent of each other, and represent different combinations of
the traits based on their variable loadings (Figure 1): PC1 primarily
represented variance in kernel size (area, perimeter, and length); PC2
mainly captured variance in kernel shape (roundness, L/W) and
width; and PC3 was related to variance in kernel density (FFD).
The first two PCs have almost equal (�0.6) loadings for kernel
weight, while the loading for PC3 is approximately 0.4. Because each
of the PCs describes different combinations of kernel shape traits
(e.g., PC1 represents kernel size, PC2 represents roundness, etc.),
each PC loading for kernel weight may reflect different components
of kernel weight.

Kernel trait QTL identified by joint linkage mapping
Weperformed joint linkageQTLanalysis oneachof theoriginal traits, as
well as the PC traits, in order to identify the loci responsible for kernel
trait differences between teosinte and maize. We identified 43 QTL for
kernel size traits, 11 QTL for kernel shape traits, four QTL for FFD, and
five QTL for Wt50k (Figure 2 and Table S3). The 63 QTL were dis-
tributed only on chromosomes 1–8, with no QTL on chromosomes
9 and 10. For the newly defined PC traits, PC1, PC2, and PC3, the total
number of QTL detected were 15, 3, and 5, respectively (Figure 2 and
Table S3). QTL for PCs collectively explained 62.51%, 21.70%, and

n Table 2 Pearson correlation coefficients among kernel weight and shape traits

FFD Area Perimeter Roundness Width Length L/W

Wt50k 0.643�� 0.779�� 0.709�� 0.034 0.674�� 0.588�� 20.027
FFD 0.035 20.003 0.249�� 0.220�� 20.075� 20.231��

Area 0.940�� 20.172�� 0.704�� 0.845�� 0.165��

Perimeter 20.389�� 0.507�� 0.925�� 0.388��

Roundness 0.556�� 20.649�� 20.988��

Width 0.255�� 20.567��

Length 0.649��

� significant at P , 0.05; �� significant at P , 0.001. FFD, factor form density; L/W, length/width; Wt50k, weight of 50 kernels.
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31.98% of the total variance, respectively, and were shared among seven
to 10 populations (Table S4).

Several QTL were found in common between the derived PCs and
kernel size, shape, and weight (Figure 2). For example, QTL for FFD,
Wt50k, area, perimeter, length, and PC1 were identified on chromo-
somes 5 and 8. For the PC QTL, most had overlapping QTL for kernel
size. ForWt50k, four of the five QTL had corresponding QTL for other
kernel size, with the only exception of QTL forWt50k on chromosome
3. These findings are consistent with the phenotypic framework anal-
ysis, where kernel weight was highly correlated with kernel size. Kernel
weight is likely a composite trait controlled by various aspects of kernel
shape, size, and density, and that any of these three aspects can be used
to increase seed weight separately, as well as in combination. While
PCA was able to simplify the relationships among the traits such that
the components of kernel weight were split into the various PCs that are
independent of each other, our data are not conclusive on the exact
relationship between kernel weight and various size and shape traits.

Additive allelic effects were estimated relative to B73 (Figure 3).
While the biological meaning of PCs and their QTL effects may be
difficult to interpret, their trait loadings can be used to represent a
composite of correlated traits in a way that removes the interdepen-
dence among traits. Inherent to PCA, the first PC always captures the
most variance, with subsequent PCs explaining decreasing amounts of
variance. It is then not surprising that when we compared effects be-
tween PC1, PC2, and PC3, we found that PC1 effects had amuchwider
range (28.082 24.82) than PC2 and PC3 (22.222 4.95 and
21.332 1.82, respectively (Figure 3 and Table S4). Allelic series, or
the detection of both negative and positive additive allele effects rel-
ative to the B73 allele, were identified for 60%, 67%, and 40% of the
PC1, PC2, and PC3 QTL, respectively (Figure 3).

Pleiotropic QTL affect kernel traits
Maize-teosinte introgression populations provide substantial power to
detect pleiotropy amongoverlappingQTL formultiple traits. Pleiotropy

was assessed by correlating the allelic effects for overlappingQTL across
the ten populations (Figure 4 and Table S5). If a QTL has large positive
or negative effects for two traits in many of the same populations, the
allelic effects at that locus will be significantly correlated and pleiotropy
will be inferred. Positive pleiotropy was observed between kernel weight
and kernel size traits (area, perimeter, and length) and was observed
among the size traits themselves (Figure 4). Wt50k also had positive
pleiotropy with FFD. In contrast to kernel size traits, the kernel shape
traits (roundness and L/W) show negative pleiotropy with each other.
This was expected as width is in the denominator of this ratio. Weak
pleiotropy was observed between the kernel size and shape trait groups,
which suggests that they have distinct genetic components. In addition,
the PCA traits showed patterns of pleiotropy that were consistent with
their observed phenotypic correlations with the kernel traits (Figure 4).

DISCUSSION

Comparative genetic analysis revealed several
candidate genes underlying maize kernel size and
shape QTL
Seed size and shape are among the most important domestication
syndrome traits for many plants, including rice, wheat, sorghum, and
maize. Synteny and colinearity among land plants, especially among the
grasses, allows us to analyze the genetic architecture of the same traits
across species in a comparative manner. This comparative analysis can
also help identify candidate genes underlying theQTL if candidates have
been identified, cloned, and verified in other species.

In the current study, joint linkage mapping identified more than
60QTL, includingQTL for kernel area and length withmoderate allelic
effects, that colocalize with kernel weight QTL (Figure 2). Another
strategy to map QTL is genome-wide association mapping (GWAS),
which has higher mapping resolution, even to the single-gene level in
species and populations with low linkage disequilibrium (Flint-Garcia
et al. 2009). Unfortunately, the BC4 backcross population structure of
the teosinte NILs is not a suitable platform for GWASdue to the limited
recombination. The GWAS approach has been used in other species
and maize populations to identify candidate genes for the same or
similar traits. Interestingly, GWAS has poor power to identify rare
alleles/variants even if they have a large effect. It was reported recently
that several rare alleles are associated with grain size and yield in rice
(Zhang et al. 2012; Song et al. 2015; Hu et al. 2015), and more are
expected to be identified and verified in further studies. Hence, to date,
linkage mapping has played a very important role in identifying rare
alleles of intermediate to large effect, though GWASmethodologies are
being developed to improve the identification of rare variants. In ad-
dition, transcriptional data are also helpful in the identification of can-
didate genes expressed in the appropriate tissues and time points
(Sekhon et al. 2014). Here, we combine the findings of numerous
studies which use mutant analysis, linkage mapping, GWAS, and tran-
scriptomic analysis to understand and interpret our QTL results.

Using this comparative genetic analysis strategy, several candidate
genes were identified for our kernel size and shape QTL, including
known genes such as ZmSH1 (Lin et al. 2012), gln5 (Martin et al. 2006),
ZmGW2 (Li et al. 2010a), and mn1 (Gupta et al. 2006), and unknown
genes that have not been identified in maize but their orthologs were
reported to relate to grain size and yield in other crop plants. For
example, association analysis in sorghum association identified the
gene Sb04g015420 to be strongly associated with sorghum seed size
(Zhang et al. 2015). The maize ortholog, GRMZM2G00812, has not
been reported to associate with kernel size previously, but is potentially
a candidate for our QTL on chromosome 5 (marker t412; Table S3).

Figure 1 PCA of kernel weight, size, and shape traits. Wt50k variance
is captured by all three PCs. (A) Area, perimeter, and length have large
effects in PC1. (B) Roundness, width, and L/W have large effects in
PC2. (C) PC3 describes variation in FFD. y-axis: component loading.
Variance explained is annotated after each PC. FFD, factor form den-
sity; L/W, length/width; PC, principal component; PCA, PC analysis;
Wt50k, weight of 50 kernels.
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FFD describes differences in grain density and has been defined as
grain weight / (grain length · grain width) in wheat (Giura and
Saulescu 1996). In our study, we modified the FFD trait to mean
kernel weight divided by kernel area, based on differences in seed
size and shape parameters between maize and wheat. The QTL on
chromosome 2 controlling FFD has a strong candidate gene, minia-
ture 1 (mn1) (Gupta et al. 2006), under its peak. The maize genemn1
is the ortholog of GIF1 in rice (Weng et al. 2008). GIF1 encodes a cell
wall invertase required for carbon partitioning during early grain fill.
It is known that grain fill is an important trait that contributes greatly
to grain weight, but the exact mechanism was unknown. Because this
QTL was identified to control only FFD and not any other kernel size
traits, we hypothesize thatmn1-mediated grain filling might contrib-
ute to kernel weight through regulation of kernel density, not size, at
least in maize.

Mapping QTL with PCs identified some QTL that were
not detected by univariate QTL analysis
Tohelpunderstand thegenetic control ofmultiple traits,weusedPCAas
our multivariate analysis method for related kernel traits in the study.
PCA is widely used to decompose correlated variables into a smaller set
of uncorrelated variables. The eigenvectors of the eigenvalues of the
phenotypic covariance matrix, or the PCs, can be considered as new
traits forQTL identification (Gilbert andLeRoy 2003; Topp et al. 2013).
MappingQTLwith PCs can increase the statistical power to detectQTL
by combining information across traits and removing the noise caused
by trait correlations, and is used widely in both animal science (Gilbert

and Le Roy 2003; Musani et al. 2006) and plant science (Choe and
Rocheford 2012; Topp et al. 2013). The first three PCs together
explained 98.9% of the variance in the original dataset (Figure S1, A
and B), of which PC1 captured almost 50% of the variance (Figure 1A).

While PCA results in abstract PC values that have seemingly little
biological meaning, these PCs are composite traits comprised of each of
the original traits, as indicated by their different loadings for each trait
(Figure 1, y-axis represents loadings), and can be used as phenotypes in
QTL analysis (Topp et al. 2013). When comparing the QTL profiles for
the individual kernel traits to PC-derived traits, we found that, in most
cases, the PC-QTL analysis yielded similar results to QTL mapping
with individual traits with patterns predicted by the PC loadings (Fig-
ure 1). However, PC-QTL analysis also identified additional chromo-
somal regions which were not detected by univariate analysis (e.g., the
two QTL on chromosome 3 for PC1; Figure 2 and Table S3). This
identification of novel QTL is likely due to these QTL being associated
with multiple traits.

Genomic regions controlling domestication syndrome
were identified
According to previous studies, a handful of genomic regions were
believed to have strong effects on domestication traits (Doebley
2004). These regions were located on both arms of chromosome 1,
the long arm of chromosome 3, and the short arms of chromosome
2, 4, and 5 (Doebley and Stec 1993; Doebley 2004). Our study not only
identified QTL in these five regions, but also in additional regions
located on chromosomes 2, 6, 7, and 8 (Figure 2 and Table S3). Many

Figure 2 Distribution of QTL for kernel weight, size,
and shape traits on genome. x-axis, the genetic dis-
tance (cM) of whole genome in NILs mapping pop-
ulation, and chromosomes 1–10 were labeled with
different colors. The length of the QTL lines is
proportional to the support interval length. Chr,
chromosome; FFD, factor form density; L/W,
length/width; NIL, introgression line; PC, principal
component; QTL, quantitative trait loci; Wt50k,
weight of 50 kernels.

Figure 3 Heat map of additive effects for PCs
QTL. The top horizontal axis lists the chromo-
some number and genetic map position for
each QTL, while the bottom horizontal axis
displays the QTL peak SNPs marker selected
by linkage analysis. The vertical axis shows
10 NIL populations in order. Allelic affects are
color coded with 2.00 increments for PC1 (A),
and 0.50 increments for PC2 (B) and PC3 (C).
n.d. indicates that allelic effects could not be
determined, as there were no NILs carrying an
introgression at the QTL. NIL, introgression
line; PC, principal component; QTL, quantitative
trait loci; SNP, single nucleotide polymorphism.
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of our kernel phenotypes differed from these early studies, which
included plant and ear morphology traits.

The genomic segment on long arm of chromosome 1 straddles the
cloned domestication gene teosinte branched 1 (tb1) (Doebley et al.
1995), a member of the TCP family of transcriptional regulators
(Cubas et al. 1999). This region affectedmany kernel traits in our study,
including kernel length, perimeter, area, width, andweight, and the new
defined traits PC1 and PC3 (Table S3). The strongest of the kernel
length QTL (marker t88; Table S3) has an alternate candidate gene,
YABBY, under its peak. The YABBY gene is an important transcription
factor involved in plant development and is an excellent candidate gene
for maize kernel size, since it was reported to control the fruit size in
tomato (Cong et al. 2008). In rice, YABBY was positionally cloned and
named OsSh1 (Shattering 1) because of its important role in seed shat-
tering (Fukuta and Yagi 1998). Recently, SbSh1 was map-based cloned
in sorghum and it was revealed that Sh1 genes were under parallel
selection during maize, rice, and sorghum domestication (Lin et al.
2012). The dual role of YABBY in fruit size in tomato and shattering
in grasses suggest that the YABBY gene could play a pleiotropic role in
controlling seed size and shattering simultaneously in maize as well.
While we acknowledge that QTL peaks are quite broad and can en-
compass hundreds of genes, it is nonetheless interesting to speculate
about the possibility of parallel selection across species and multiple
traits. Until this QTL is further characterized for each trait (e.g., by
map-based cloning), the mechanism of action for this transcription
factor remains unknown.

TheQTLonchromosomes5and8arealsovery importantbecauseof
their pleiotropic effects. Both have strong effects on kernel weight, area,
perimeter, and length (Figure 2), and the QTL on chromosome 5 may
also affect KRN (Liu et al. 2016). The most likely reason for the pleio-
tropic effects of the QTL on chromosome 5 is its location near the
centromere, where the low-recombination environment of the pericen-
tromeric region causes clusters of genes to act as a single QTL. One
strong candidate gene for the QTL on chromosome 5 is ZmGW2, one
of the two maize orthologs of GW2 which controls grain size and
weight in rice. A QTL for kernel weight was mapped to the ZmGW2
region, and ZmGW2 was found to associate with kernel weight by
altering kernel size in maize (Li et al. 2010a). The GW2 gene, which
encodes a RING-type E3 ubiquitin ligase, alters grain width and weight
and with very little effect on grain length in rice (Song et al. 2007).
Interestingly, it seems that GW2 affects kernel weight differently in
maize than in rice, as our QTL affects kernel length but not width as
is the case in rice. GS3, a gene that controls grain length and weight in
rice (Fan et al. 2006), was also found to operate differently in maize (Li
et al. 2010b) and wheat (Gegas et al. 2010).

Pleiotropy analysis revealed the potential to improve
yield and kernel composition in maize
One of the greatest challenges in breeding high-quality varieties is the
strong phenotypic correlation among kernel quality traits (Simmonds
1995; Ge et al. 2005). For the crop breeding community, it has been a
long standing problem that they have been able to improve either yield
or quality, but almost never improve both simultaneously. Most im-
provements in quality are usually accompanied by a reduction in yield
because of this close association. Our study showed that this problem
also exists for kernel size and shape as these traits are significantly
correlated both phenotypically and genetically (Figure 4 and Table
2). Because kernel size and shape were believed to relate to kernel yield
and quality, respectively, in rice and wheat. Understanding the genetic
basis of kernel size and shape, as well as any possible genetic constraints
preventing themaximization of both traits, is especially crucial from the

applied perspective. After the initial genetic analysis of kernel size and
shape, we conducted pleiotropy analysis for the same kernel size and
shape traits, and identified some alleles that alter one trait without
affecting the others. For example, no interactions were found between
kernel size traits (area, perimeter, and length) and the kernel shape
traits of L/W and roundness. This suggests that kernel size and shape
are different traits under substantially independent genetic control,
could have evolved independently, and could be manipulated sepa-
rately in breeding programs. This study has shown the close relation-
ship between kernel size and kernel weight in maize. However, it is still
not clear whether there is any relationship between kernel shape and
kernel composition in maize. Meta-analysis to link kernel size and
shape to kernel composition is a potential way to elucidate this relation-
ship in the future. Our analysis of pleiotropy provides insight for breed-
ing and biotechnology strategies to alter maize kernel weight, which
may also have applications in other crop plants.
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Figure 4 Pleiotropy for kernel traits in maize-teosinte NILs popula-
tions. Gray and orange lines between traits indicate negative and
positive correlations between different QTL additive effects, re-
spectively, with line width proportional to the degree of pleiotropy.
FDR = 0.05 (raw P-value = 0.0083) was used as the significance
threshold for effect correlation. FFD, factor form density; L/W,
length/width; NILs carrying an introgression at the QTL. NIL, intro-
gression line; PC, principal component; QTL, quantitative trait loci;
Wt50k, weight of 50 kernels.
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