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Abstract

Summary: We present a practical computational pipeline to readily perform data analyses of pro-

tein–protein interaction networks by using genetic and functional information mapped onto protein

structures. We provide a 3D representation of the available protein structure and its regions (sur-

face, interface, core and disordered) for the selected genetic variants and/or SNPs, and a prediction

of the mutants’ impact on the protein as measured by a range of methods. We have mapped in

total 2587 genetic disorder-related SNPs from OMIM, 587 873 cancer-related variants from

COSMIC, and 1 484 045 SNPs from dbSNP. All result data can be downloaded by the user together

with an R-script to compute the enrichment of SNPs/variants in selected structural regions.

Availability and Implementation: PinSnps is available as open-access service at http://fraternalilab.

kcl.ac.uk/PinSnps/

Contact: franca.fraternali@kcl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput experiments are routinely performed to decipher

genetic, metabolic and protein-protein interaction networks

(PPINs) and bioinformaticians are compelled to develop efficient

and accurate tools to assist decision-making based on available

data from multiple sources (Chung et al., 2015; Fernandes et al.,

2010; Lu et al., 2013). Bioinformatics applications, which merge

available genomic, interaction and structural data, can be broadly

classified into exploratory or predictive tools. The former com-

prises of tools which map and visualize the merged data (Kelley

et al., 2015; Lees et al., 2010; Mosca et al., 2015; Niknafs et al.,

2013; Pappalardo and Wass, 2014; Ryan et al., 2009; Vazquez

et al., 2015), while predictive tools are quantitative estimators of

the potential impact of SNPs/variants and offer an assessment in

terms of scores or pseudo free-energy metrics (Adzhubei et al.,

2010; Betts et al., 2015; Li et al., 2014; Ng and Henikoff, 2003;

Pires et al., 2014a; Pires et al., 2014b; Pires et al., 2016; Yates

et al., 2014).

In this application, we use 3D interactome networks and their

homologs to highlight how human variants and disease-causing mu-

tations may affect protein function and complex stability. Recent

studies have used the structural information of PPINs to understand

the molecular mechanisms of binding partner selection (Fornili

et al., 2013). These reliable methods only consider the interactions

that have a representative 3D structure or a close homolog with a

3D structure to add weight to the existence of the observed protein

interactions (or network links) in a given PPIN (Hooda and Kim,

2012; Kim et al., 2006; Lees et al., 2011; Meyer et al., 2013; Mosca

et al., 2013; Wang et al., 2012). Multiple studies have pointed out

that the interfaces of protein complexes harbours mutations associ-

ated with diseases (Espinosa et al., 2014; Gao et al., 2015;

Kamburov et al., 2015; Nishi et al., 2013; Studer et al., 2013; Wang

et al., 2012; Yates and Sternberg, 2013a,b). The evaluation of the

impact of genomic variation on coding regions can be enhanced by

mapping SNPs to distinct regions of protein structure, i.e. surface,

interface or core. To generate a comprehensive mapping of available
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SNPs onto PPINs, the automatic pipeline PinSnps has been de-

veloped (for details see Supplementary Fig. S2); this extracts struc-

ture-integrated human PPINs, enriched with information from

homologous protein domains with sequence identity higher than

30%. The main strengths and differences to previous approaches lie

in (i) the use of homologous structures of human protein sequences

in the PPINs to map the studied variants, which more than doubles

the available positional 3D information; (ii) the mapping onto pre-

defined protein regions (surface, core, interface) along with the map-

ping of functional sites and Post-Translational Modifications

(PTMs) (obtained from UniProt (UniProt Consortium, 2015)). This

information, together with precompiled predictions of the SNP/vari-

ant’s impact from multiple predictors, can help users to quantita-

tively assess and evaluate the functional implications of their studied

variants. The annotation of both intra- and inter-domain disordered

regions as predicted by DISOPRED2 (Ward et al., 2004) has also

been included in the pipeline, as recent studies imply the importance

of these regions in regulating biological functions (Cline and

Karchin, 2011; Gibbs and Showalter, 2015; Wright and Dyson,

2015); (iii) allowing the users to download the query data in various

file formats (Fig. 1).

2 Implementation and features

The PPIN used in this study has been derived as a non-redundant set

of protein interactions from the list of human PPIs given in

Supplementary Table S1. The current release includes data of 16

603 proteins, of which 4673 have a resolved structure and 4962

have a homologous structure (Supplementary Fig. S3).

PinSnps is, to our knowledge, one of the largest collections of

variants mapped onto 3D coordinates. SNPs from dbSNP (Sherry

et al., 2001), consisting of common and germ-line disease variants

(the later originally from OMIM (Hamosh et al., 2005)), together

with somatic cancer mutations from COSMIC (Forbes et al.,

2015) have been mapped onto cognate 3D structures and, when

not available, to their homologous structures. The use of homolo-

gous structures expands significantly the number of SNPs/variants

mapped onto 3D positions within folded domains. The enrichment

of disease-associated variants in specific regions of proteins can be

quantified using Formula S1 and the R script which is provided on

the PinSnps ‘Downloads’ webpage (see example in Supplementary

Fig. S4).

We present a number of case studies and more detailed instruc-

tions on the web server’s ‘Help’ page and in the Supplementary

Materials.

2.1 Protein sequence annotated profiles
Each protein in the PPIN is transformed into a sequence-anno-

tated string (we refer to this as ‘profile’) that represents the fin-

gerprint of the user-selected information. These profiles were

generated based on information obtained from sequence align-

ments, available structural information, human genetic data

(from dbSNP, OMIM and COSMIC) and UniProt protein func-

tional site and PTM annotations. PSI-BLAST (Altschul et al.,

1997) was used to identify resolved and homologous structures

of human proteins by searching against sequences of the Protein

Data Bank (Berman et al., 2000). Homologous structures with

more than 80% coverage of the human protein domain sequence

and with more than 30% sequence identity were selected. Each

protein was annotated with domain boundaries according to

Pfam (Finn et al., 2014). Alignments between sequences of query

protein domains and available protein structure sequences were

performed using T-Coffee (Notredame et al., 2000). The classifi-

cation of structural regions, i.e. the definition of surface, inter-

face and core regions, was based on the surface area analysis of

POPSCOMP (Kleinjung and Fraternali, 2005).

Fig. 1. PinSnps user interface overview. The complex between Raf1 (P04049, coloured in cyan) and Braf (P15056, coloured in orange) is shown. The protein se-

quence annotated profile of the complex shows the sequence alignment of the query protein sequence and the available PDB structure sequences. A more de-

tailed description of the platform interactive output is given in the Supplementary Figure S1
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