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Abstract

Decision makers often desire both guidance on the most cost-effective interventions given current 

knowledge and also the value of collecting additional information to improve the decisions made 

[i.e., from value of information (VOI) analysis]. Unfortunately, VOI analysis remains underutilized 

due to the conceptual, mathematical and computational challenges of implementing Bayesian 

decision theoretic approaches in models of sufficient complexity for real-world decision making. 

In this study, we propose a novel practical approach for conducting VOI analysis using a 

combination of probabilistic sensitivity analysis, linear regression metamodeling, and unit normal 

loss integral function – a parametric approach to VOI analysis. We adopt a linear approximation 

and leverage a fundamental assumption of VOI analysis which requires that all sources of prior 

uncertainties be accurately specified. We provide examples of the approach and show that the 

assumptions we make do not induce substantial bias but greatly reduce the computational time 

needed to perform VOI analysis. Our approach avoids the need to analytically solve or 

approximate joint Bayesian updating, requires only one set of probabilistic sensitivity analysis 

simulations, and can be applied in models with correlated input parameters.

Introduction

Decision makers often desire both guidance on the most cost-effective interventions given 

current knowledge and also the value of collecting additional information to improve the 

decisions made [i.e., from value of information (VOI) analysis]. VOI analysis has gained 

increased interest in clinical trial design and research prioritization.1–25 However, it remains 

underutilized due to the conceptual, mathematical and computational challenges of 

implementing Bayesian decision theoretic concepts in models of sufficient complexity for 

real-world decision making.26–28 A recent review reports a small number of practical 
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applications of VOI in healthcare settings.29 This study attributes this small number of 

applications to the technical and mathematical challenges involved in computing VOI, and 

highlights the importance of developing leaner approaches to conduct VOI analyses.

The most practical form of VOI analyses involves quantifying the amount of information an 

actual empirical study could generate. While VOI analyses can provide an upper bound on 

the value of conducting additional studies [i.e., expected value of perfect information on all 

parameters (EVPI) or expected value of partial perfect information on a set of parameters 

(EVPPI)], the expected value of sample information for a study of size (n) (EVSI) and its 

analog for sample information on some parameters (EVPSI) are clearly more useful for 

informing actual decisions to collect further information.26

Current methods for performing EVPSI are often challenging for real-world modeling 

problems, necessitating the further methodological development and are yet to be 

incorporated into the standard statistical and mathematical software packages [e.g., TreeAge, 

(TreeAge Software, Inc., Williamstown, MA)]. For example, the two level Monte-Carlo 

simulation30 (2MCS) approach, which can be considered the gold-standard for computing 

EVPSI, consists of an outer and inner expectation. The outer expectation is computed 

through an outer loop to generate a large number of experimental datasets from the prior 

distributions. The inner loop samples from the posterior distribution generated from these 

datasets. However, if a conjugate prior does not exist for the likelihood function, then the 

posterior distribution must be obtained using techniques, such as the Markov chain Monte 

Carlo (MCMC). In addition to the computational demand, the 2MCS approach may require 

Bayesian updating of correlated parameters and calculating joint posterior distributions 

which are extremely difficult except in special cases. Thus, for a single parameter and with a 

sufficient number of model runs, this approach guarantees a precise estimate of EVPSI, 

however, it can be extremely difficult to compute EVPSI, especially for multiple correlated 

parameters.

Several shortcut techniques have been proposed to reduce the computational burden of the 

2MCS approach. Some of these approaches are designed for specific applications. For 

example, Ades et al.26 demonstrate an analytic approach to measure the EVPSI for 

parameter types common in clinical trials, such as rates and odds ratios; Welton et al.31 

compute EVPSI for cluster randomized multi-arm trials with binary outcomes; and Brennan 

and Kharroubi32 illustrate a technique to compute EVPSI for survival data. Other proposed 

approximation techniques include Laplace approximation33 and non-parametric regression34 

approaches to efficiently compute EVPSI. Most of these shortcut techniques offer significant 

reduction of the computation burden of the 2MCS approach by avoiding the inner 

expectation and the need for MCMC analysis. However, these approaches generally require 

additional development efforts, sometimes ignore correlations among various model 

parameters, and are often limited to calculating EVPSI for a single parameter at a time.

We describe a novel framework to compute EVPPI and EVPSI using the unit normal loss 

integral (UNLI) function and linear regression metamodeling (LRM). The UNLI is a 

parametric function for computing VOI from a model’s outcome. This approach was 

originally proposed by Raiffa and Schlaifer35–37 over fifty years ago. Since then many 
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researchers, including Claxton7,38, Willan16,39, Eckerman16, Coyle and Oakley40 have 

adopted this approach to compute EVPI, EVSI and to some extent EVPPI. In this study, we 

extend the UNLI function to compute EVPPI and EVPSI using LRM, which involves 

regressing the model’s outcome on the input parameter values using a probabilistic 

sensitivity analysis (PSA) dataset.41 In addition, we demonstrate the importance of 

correlation among model parameters in VOI analysis, and the flexibility of our approach in 

allowing the model parameters to be correlated. We highlight the assumptions of our 

approach and illustrate why our approach may still be appropriate for most healthcare 

applications despite these assumptions.

Methods

Incremental Net Benefit

Expected utility maximization involves choosing the strategy that has the highest expected 

net benefit. We use incremental net benefit (INB) as our measure of cost-effectiveness 

instead of the cost-effectiveness ratio because it has attractive statistical properties in our 

application.42–14 INB measures the incremental net benefit of adopting the optimal strategy 

(t*) relative to an alternative (t*) based on the current evidence. An intervention’s net benefit 

(B), when expressed in a monetary value, measures the savings from an intervention (t) 
relative to a marginally cost-effective intervention at a specified willingness to pay threshold.

Approximating Measures of VOI

To compute VOI measures, we first obtain the INB distribution via probabilistic sensitivity 

analysis (PSA). We can then apply the UNLI to compute EVPI and EVSI35,36 using the INB 

distribution. Finally, we extend the UNLI approach to calculate EVPPI and EVPSI using 

linear regression metamodeling (LRM).41

1. EVPI—EVPI can be computed from the expected opportunity loss due to choosing t* 

over t* based on the current evidence. This loss (L) can be expressed as

(1)

where f is the density function of INB. The relationship of this opportunity loss to INB’s 

distribution is further illustrated in Appendix A. When f is normally distributed, L can be 

computed from the UNLI function, such as

(2)

where μ and σ2 are the mean and variance of the INB, respectively; and Φ is the cumulative 

density function of the standard normal distribution (for more detail, please refer to35,36).
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Box 1 outlines the steps of computing EVPI using PSA and UNLI. First, obtain INB’s 

distribution using PSA results.45,46 We can think of the resulting distribution as the prior 

distribution of INB because it reflects the combined uncertainty from all the parameters in 

the model prior to conducting new research. EVPI is computed from the mean and variance 

of the INB distribution using the UNLI function (Equation 2). Note, we take the negative of 

the UNLI to express EVPI as a value instead of a loss.

2. EVSI—Box 2 outlines the steps of calculating EVSI using the UNLI approach.35,36 This 

approach is similar to calculating EVPI. However, unlike EVPI which uses the prior 
distribution of INB, EVSI uses the preposterior distribution35,36 of the INB. The 

preposterior distribution defines the distribution of the posterior mean INB which is derived 

from the INB’s prior distribution and additional experimental “data” that are also simulated 

from the prior. Thus, the preposterior distribution defines the prior distribution of the 

posterior mean INB before collecting actual data, hence the name preposterior.

First, we compute the variance of the preposterior distribution of INB. When the prior 

distribution of INB is normally distributed, the preposterior variance of INB can be 

expressed as a fraction of the prior variance, such that , where ν is the variance 

fraction equal to n / (n + n0), n is the additional sample size, and n0 is the prior sample size. 

n0 can be arbitrary35 or estimated from the prior distribution (For example, if a parameter is 

distributed as Beta(α, β), it can be shown47 that n0 = α + β). Thus, if we assume that no 

additional sample to be collected (n = 0), the posterior INB will always be equal to the prior 

INB and the mean posterior INB is certain to be equal to the mean prior INB, which is 

known. Thus, there is no uncertainty about the posterior mean INB ( ), and there is no 

value for conducting additional research (EVSI = 0). However, if we imagine an experiment 

in which we take an infinitely large sample from each value of the prior (n = ∞) then for 

each prior sample, the posterior mean INB is certain to be equal to this sampled value of the 

prior INB. Repeating this exercise many times produces the posterior distribution of the 

mean INB (i.e., preposterior INB distribution) which will exactly follow that of the prior 

INB distribution. As a results,  equals  and EVSI equals EVPI.

3. EVPPI—Boxes 1 and 2 above review how to compute EVPI and EVSI using the UNLI 

function. Next, we focus on the main contribution of the current study which extends the 

UNLI function to computing EVPPI and EVPSI using the LRM approach.

Box 3 summarizes the steps to compute EVPPI, which are very similar to calculating EVPI. 

Unlike EVPI, which reflects prior uncertainties from all parameters in the model, EVPPI 

involves the uncertainty in the prior INB explained by a subset of parameters of interest. We 

denote this subset of parameters by XI, and the mean and variance of the distribution of INB 

| XI by μ̃0 and , respectively. We use the LRM approach to compute μ̃0 and .

LRM involves regressing INB on the model inputs. Thus, LRM is the application of classical 

regression analysis post-simulation analysis, hence the name metamodeling. Metamodeling 

is widely used in engineering and physics, but remains underutilized in healthcare 

applictions.41,48 By treating the INB as the dependent variable and the model input 

Jalal et al. Page 4

Med Decis Making. Author manuscript; available in PMC 2016 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameters of interest (XI) as the independent variables, the resulting regression coefficients 

define the relationship between XI and INB. We use these regression coefficients to compute 

EVPPI and EVPSI.

In EVPPI (and also in the EVPSI calculation described below) we adopt two 

approximations: (1) a normal approximation of XI, and (2) a linear approximation of the 

relationship between XI and INB. It is important to note that unlike EVPI and EVSI, which 

assumes that the INB is normally distributed, when applying LRM, the INB does not need to 

be normally distributed as long as the prior or the preposterior distributions of XI (for EVPPI 

or EVPSI, respectively) are normally distributed and their relationships with INB are 

approximately linear.40 In addition, as we shall discuss later, the normality of XI and the 

reliability of all VOI analyses are closely related per the Central Limit Theorem.

In the algorithm above, we use XI instead of the full set of parameters (X = {XI, XC}) to 

account for the potential correlations between the XI and XC parameters in the model. If 

such correlations exist, any additional information on XI will impact our prior belief about 

XC. Since we are only interested in XI, we want this additional information to be captured by 

the regression coefficients of XI. However, regressing INB on the full set of parameters (X) 

instead of XI results in the regression coefficients of XC capturing this additional effect 

which can bias the EVPPI and EVPSI values since the regression coefficients of XC are not 

of interest and do not enter in the calculation of . As a result,  can be underestimated or 

overestimated depending on the nature of the existing correlation and the direction of the 

regression coefficients. [Please refer to Appendix B for further detail.]

4. EVPSI—Following the logic used to calculate EVSI and EVPPI, EVPSI can be 

computed from the preposterior variance for INB explained by XI (Box 4). We denote this 

variance by . To obtain , we calculate  for XI using LRM. Then we use the variance 

fraction ν to compute the preposterior variance. If the prior evidence (n0) is the same across 

all XI and the new study contributes equal additional samples (n) to these parameters, then 

. However, if the n0 varies among the parameters or if the proposed study adopts a 

heterogeneous design in which different samples contribute different information to the 

model parameters, then the prior variance must be adjusted by decomposing  and applying 

the appropriate variance fractions on the parameter level.

Thus, the computation for the various VOI analyses depend on the mean and variance of the 

INB as summarized in Table 1.

Case-studies—We illustrate our approach using two examples: A standard decision tree 

and a Markov model.

Example 1: Standard decision tree

The first example involves a decision model published by Ades et al. (2004)26 (Appendix 

C). This model compares a new intervention to the standard of care in preventing a 

hypothetical critical condition. The new treatment reduces the risk of the critical event, but it 

may cause side effects. There are eleven parameters in the model, four of which are 
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uncertain and are represented by probabilistic distributions. Correlated parameters may 

represent a limitation of computing EVPSI.26 However, in practical applications, 

uncertainties of model parameters are rarely independent. These correlations may reflect 

subjective uncertainty about joint parameter distributions or may be induced as a result of 

statistical analyses.26,49 We introduce correlation between the treatment’s side effects (pSE) 

and the risk of the critical events (OR) using a previously developed sorting algorithm50. We 

vary the correlation between these parameters from −1 to +1 and examine the resulting 

EVPSI of these two parameters combined for various study sample sizes.

Example 2: Markov model

The second example involves a Markov model which defines a more complex relationship 

between INB and the model parameters compared to the first example. This model involves 

computing the most cost-effective alternative for treating a 50-year old cohort of newly 

diagnosed cancer patients (Appendix D). The treatment choices are either to receive 

chemotherapy or perform a surgical resection of the tumor. There are three Markov health 

states in the model (cancer-free, cancer and dead). If cured the quality of life increases from 

0.8 to 1, but the probability of cure depends on the intervention chosen. If cured, the patients 

are assumed to remain cancer-free for the remainder of their lives. Annual mortality rates are 

calculated from the US life tables and an additional cancer specific mortality which is 

uncertain. In addition, we use a one-year cycle length, a lifetime horizon and a discounting 

rate of 5% annually for the benefits and costs.

Results

Example 1: Standard decision tree

Our implementation of the Ades model produces results and estimates of VOI that are 

similar to the analytical method proposed by Ades et al (2004)26 (Table 2). The EVPI, 

probability of the new treatment not being optimal, and the EVPPI for the listed parameters 

are comparable between both methods. The relative contribution of various parameters to 

decision uncertainty and hence to EVPPI is also preserved. Uncertainty regarding the 

probability of side effects is the most important followed by the odds ratio of the critical 

event, and the quality of life after the critical event. There are slight variations in the 

estimated EVPPI using the LRM compared to the analytic approach, which may be due to a 

combination of violating the normality and linearity assumptions.

Our estimates of EVPSI also compare favorably to the analytic approach. The EVPSI is 

shown for pSE and QE (Figure 1) and the combination of pSE, QE and LOR (Figure 2). Our 

exploration of EVPSI’s asymptotic properties follows the theoretical predictions. Again, our 

approach slightly overestimates the EVPSI for the quality of life after the critical event (QE) 

and underestimates the EVPSI of the odds ratio of the event for the treatment (OR); 

however, the sample sizes are relatively small (n0 = 12). Larger sample sizes may increase 

the normality of the preposterior distribution and the accuracy of our approach.

Next we demonstrate the flexibility of our approach to incorporate correlations among 

model parameters (Figure 3). Varying correlation between the treatment’s probability of 
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causing side effect (pSE) and the odds ratio of the critical event (OR) from −1 to +1 results in 

a 6-fold increase in EVPPI from $2,000 to $12,000, indicating the potential impact of 

correlation between model parameters on their EVPPI and EVPSI.

Example 2: Markov Model

Although the probability of failing chemotherapy (pFailChemo) is expected to have a non-

linear relationship with INB, we found a nearly linear relationship (R2 = 98.3%), indicating 

that linear approximation may be appropriate in this model. We chose to demonstrate the 

VOI analyses and compare the results of our LRM approach to the 2MCS approach. We 

conducted the 2MCS computations using a server with 128 gigabytes of memory and 12 

processing cores that were used simultaneously in parallel to increase the speed of the 

computations. We used a single processing core to conduct LRM.

The EVPPI for the probability of failing chemotherapy is $18,050 and $17,800 using the 

2MCS and the LRM methods, respectively. Figure 4 compares the performance of the LRM 

and the 2MCS approaches.

The LRM computation took only 1.6 milliseconds on a single core compared to more than 

25 minutes for the 2MCS approach using 12 threads in parallel, a 20,000 fold gain in 

computation time compared to the 2MCS approach. It is important to mention that this may 

underestimate the potential gain in the computation time of the LRM approach relative to the 

2MCS because we used a beta prior distribution and a binomial data likelihood function. 

This conjugate prior/likelihood combination has resulted in a significant gain in the 

computation time compared to situations in which a conjugate prior may not exist.

Discussion

We describe a practical and feasible method to estimate the EVPSI, which enables such 

calculations in models whose complexity would have previously rendered methods to 

estimate EVPSI intractable. Our method combines standard tools and concepts including the 

UNLI, developed by Raiffa and Schlaifer for EVPI and EVSI; PSA, which is now performed 

for most models; and linear regression metamodeling, which only requires standard 

statistical software and the outputs of the PSA. LRM allows us to extend Raiffa and 

Shlaifer’s past application to EVPPI and EVPSI. We illustrate our approach with a case 

study of a simple decision tree and a more complex Markov model.

The LRM approach is extremely efficient, flexible and easy to implement. This approach 

consists of a set of simple equations using a single dataset of PSA results. [In Appendix F, 

we provide a sample code to compute EVPSI using Microsoft Excel and R]. This approach 

resulted in more than 20,000 folds decrease in computation time when compared to the 

2MCS approach using a Markov model. Higher performance improvements are expected in 

more complex models and for non-conjugate prior/likelihood combinations which may 

require additional MCMC simulations.

In addition, the LRM approach can be easily extended to calculate the EVPPI and EVPSI for 

a combination of multiple parameters, when correlations exist among the parameters of 
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interest, the complementary set of parameters and between these two sets of parameters. 

Furthermore, this approach can also be used for heterogeneous trial designs that involve 

various sample allocations to the individual parameters.

Our approach has several limitations. First, we adopt a normal approximation of the prior 

and preposterior distributions for the parameters of interest in EVPPI and EVPSI 

computations, respectively. This approximation can bias the results if these parameters are 

“severely” non-normal. However, normal approximation as shown by Raiffa and Schlaifer35 

and Schlaifer37 is an excellent approximation to a large number of real distributions of 

practical importance. If the parameter distribution is based on bootstrapping the sample 

mean or published estimates of a sufficiently large sample size, then a normal approximation 

of the parameter’s estimate is perhaps sufficient per the Central Limit Theorem. In some 

cases, however, the parameter’s estimates may not be normally distributed, especially in the 

case of subjective estimation of uncertainty, limited prior evidence (e.g., n0 ≤ 10), or when 

meta-analyzing treatment effects from heterogeneous and inconsistent data sources.51–57 

Most of these cases are perhaps instances of less accurate specification of the prior 

uncertainties, which may compromise the reliability of all VOI analyses because these 

analyses are inherently dependent on how “accurately” these prior uncertainties are 

specified.

Second, our approach may be limited to models in which the relationship between INB and 

XI are approximately linear. Although some decision models are generally non-linear (e.g., 

Markov models), we illustrated with a Markov model that this relationship can be well 

approximated with a linear relationship. Because we lack empirical evidence that quantifies 

the degree of non-linearity in various model types, the level of linearity should be 

determined on case-to-case bases. In fact, many decision models used in healthcare 

application can be approximated well with an LRM. For example, Coyle and Oakley40 show 

that regressing the INB on the model parameters of a Markov model produces an R2 of 

0.985. In addition, Tappenden et al.58 find a strong linear relationship (R2 = 0.93) between 

the model parameters and the resulting net benefit values in a complex model.

This high degree of linearity can be explained by several factors: (1) INB may be locally 

linear because its functional form is assessed only over a parameter’s uncertainty range 

(Figure 5a), (2) the difference between the individual net benefits functions (INB) of the 

compared interventions may produce a linear benefit function even if the net benefit (NB) of 

these interventions are individually non-linear (Figure 5b), and (3) discounting future 

rewards may also contribute to increased linearity of INB. This is because each benefit 

function is the aggregation of future rewards weighted by the probability of being in a 

Markov state. Although the functional form of these probabilities increase in non-linearity in 

future cycles, they become rapidly less impactful when the future rewards are discounted. In 

all cases, we recommend that a model’s linearity should be assessed visually and with a 

goodness of fit statistics (e.g., R2). Both case-studies in this manuscript reveal high degrees 

of linearity (R2 of 94.7% and 98.3% for case-studies 1 and 2, respectively). Further research 

is needed to assess the performance of our approach on less linear and more complex 

models.
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Higher order polynomials (e.g., x2 and x3) terms can improve the overall fit of the LRM, but 

care must be given when using these higher order terms in LRM with UNLI. For example, if 

a parameter x is normally distributed, then the UNLI function can be applied because y is 

normally distributed in y = β0 + β1x. In contrast, even if y = β0 + β1x + β2x2 provides a 

better fit, it may not increase the overall accuracy of the value of information calculation 

because x2 may not be normally distributed. Further research is needed to extend the LRM 

approach using polynomial regression analysis.

Third, an important limitation of the UNLI function is that it is designed for models that 

involve two strategies only. We propose two alternatives in case of models that involve three 

or more strategies (multiple-action models): (1) The overall INB can be defined as 

, where  refers to the second best alternative. If a density plot, 

for example, reveals this new variable to be approximately normally distributed, then the 

researcher may proceed with the algorithms above using this new definition of INB. It must 

noted, however, that this approach may bias the VOI analysis because the parameter of 

interest may have a stronger correlation with a third strategy that is not captured by this 

definition of the INB. (2) If the calculated INB is not approximately normal, then the UNLI 

method can still be applied for a single parameter, but it requires additional complexity. 

First, INB must be computed for each strategy relative to the optimal strategy, such that INBt 

= B(t*, X) − B(t, X), then the UNLI function can be applied for each INBt over each 

strategy’s (t) dominance region with respect to the parameter of interest. Next, the 

algorithms above are applied for all INBt in each region. The overall value of information is 

computed as the aggregate of the individual opportunity losses in each of these regions 

[Appendix E generalizes the UNLI technique to models that involve three or more strategies. 

Further research is needed to extend this approach to multiple parameters.]

Finally, while multicollinearity is a potential limitation of linear regression analysis it may 

not be as important in metamodeling. Multicollinearity can theoretically increase the 

standard error of the LRM coefficients, thus affecting the stability of these coefficients when 

the model parameters are highly correlated. In practice, multicollinearity are less of an issue 

due to the vast improvement in computational precision. We found no evidence of 

multicollinearity (results are not shown) in LRM except when the parameters were in near 

perfect correlation. Clearly perfect correlation does not apply to decision modeling because 

if two parameters are perfectly correlated, only one of them will be necessary in the model.

Conclusion

EVPSI has many potential applications in healthcare, but it is one of the most challenging 

measures to quantify both methodologically and computationally. We propose an 

approximation technique to conduct VOI analysis. Our approach performs best if (1) the 

preposterior distribution of the model parameters of interest are approximately normally 

distributed, an assumption strongly tied to the reliability of the VOI analysis, and (2) the 

relationship of the parameters of interest and the INB are approximately linear which is 

common in many simulation models in healthcare, including Markov models. Because our 

approach is simple, flexible and extremely efficient, we propose it as an additional tool for 

analysts wishing to conduct VOI analyses.
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Appendices

Appendix A

The figure below illustrates the distribution of the incremental net benefit (INB) of the 

optimal treatment (t*) relative to the alternative strategy (t*) based on the prior evidence. The 

opportunity loss due to choosing t* is represented by the grey area (INB<0). When the INB 

is normally distributed the expected value of this loss can be quantified from the mean and 

variance of the INB distribution using the unit normal loss integral (UNLI) function.
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Appendix A Figure 1: The relationship between the opportunity loss from choosing the 

optimal strategy and the distribution of the incremental net benefit.

Appendix B

For computing EVPPI and EVPSI we regress the incremental net benefit on the parameters 

of interest (XI) instead of the full set of parameters (X = {XI, XC}), where XC is the 

complimentary set of parameters. Excluding XC from the regression ensures that the 

regression coefficients βXI capture both the effect of XI on INB and the partial effect of XC 

on INB (through their correlation with XI). Ignoring this correlation biases the value of 

information analysis. To illustrate this concept further, we assume that x1 ∈ XI, x2 ∈ XC and 

x1 and x2 are correlated. Thus, a regression that includes both parameters will be in the form

Obviously computing the expected value of information as a function of β1 alone is biased 

because, a clinical trial that informs about x1 also adds information regarding x2 which is not 

directly measured in the trial and is not reflected in β1.
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The correct approach is to use only x1. To demonstrate this mathematically, we first define 

x2 as a function of x1, such that:

where α1 ≠ 0 because x1 and x2 are correlated as stated above. By substituting x2 in the first 

equation, we obtain

Rearranging the terms results in:

The new coefficient (β1 + α1β2) correctly captures the effect of x1 on y and the effect of x2 

on y through its correlation with x1. Thus, the equation above can be further simplified to

where γ1 can be obtained from a regression that excludes x2.

Appendix C

Model outline and parameter descriptions adapted from Ades et al (2004)26. This model 

compares the costs and benefits of a new treatment to the standard of care for a hypothetical 

condition. The new treatment is more effective, but associated with an additional risk of 

adverse events. The model consists of eleven parameters, four of which are uncertain in the 

primary analysis.
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Appendix C Figure 1: A diagram representing the decision tree example. Adapted from 

Ades et al (2004).

Appendix D

Example 2: Model description and input parameters Adapted from Jalal et al (2013)41. The 

ovals represent the Markov health states, and the arrows represent the allowed transitions.
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Appendix D Figure 1: A simplified diagram of the Markov model example. Adapted from 

Jalal et al (2013). The ovals represent the mutually exclusive health states and the arrows 

represent the allowed transitions.

Appendix E

In this section we propose a technique to extend the LRM approach to multiple strategies 

(Figure). A parameter’s value (XI) is plotted on the X-axis and the INB is plotted on the Y-

axis. The distribution of XI, and that of two INB variables are shown which represent the 

INB of the dominant strategy compared to the first alternative (INB1) and a second 

alternative (INB2). These two vectors have a linear relationship with XI. In this example the 

dominant alternative changes as shown by the solid line which is the farther from the y-axis. 

As a result, we must calculate the opportunity loss for each alternative while considering the 

threshold value (INBδ) at which the dominant alternative changes.

The algorithm involves determining the region on the Y-axis in which each strategy is 

optimal, then estimating the UNLI separately for INB1 and INB2 in each region (R1 and R2), 

respectively. Next we determine the minimum (most negative) opportunity loss in each 

region. Finally, the sum of these two values estimate the opportunity loss (L) which equates 

to the value of information, such that
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This approach can be readily extended to decision models that involve more than three 

strategies.

Appendix E Figure 1: A visual representation of an alternative approach to extend the unit 

normal loss integral (UNLI) approach to multiple strategies. (Please refer to the text for a 

description of the parameters in this diagram.)

Appendix F

In this appendix we provide a code example that illustrates how to compute EVPPI and 

EVPSI for two parameters combined from PSA results using Microsoft Excel and R (R 
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version 3.0.2). The code first imports the input parameter estimates and the resulting net 

benefit values from a Microsoft Excel workbook (MarkovModel.xlsx) from a previously 

built model. The first spreadsheet of the file contains 10,000 PSA samples of four input 

parameter, and the second sheet contains the resulting 10,000 net benefit of the two 

strategies.

Table

Description of the model parameters. Adapted from Ades et al (2004)26

Description Parameter Mean Distribution

Mean remaining lifetime L 30 Constant

QALY after critical event, per year QE 0.6505 Logit(QE) ~ N (0.6, 0.17)

QALY decrement due to side effects QSE 1 Constant

Cost of critical event CE $200,000 Constant

Cost of treatment CT $15,000 Constant

Cost of side effects CSE $100,000 Constant

Monetary value of 1 QALY W $75,000 Constant

Probability of critical event, no treatment pC 0.15 Beta(15,85)

Probability of treatment side effects PSE 0.25 Beta(3,9)

Odds ratio, PT (1−PC)/(PC(1−PT)) OR log(OR) ~ N (−1.5, 0.34)

Probability of critical event on treatment PT 0.0440

Table

Case study 2: input parameter

Description Parameter Mean Distribution

Cancer-specific mortality rate mCancer 0.398 Log-normal(−l, 0.4)

Annual probability of failing
chemotherapy

pFailChemo 0.7 Beta(14,6)

Probabilty of failing surgery pFailSurg 0.4 Beta(4, 6)

Probability of dying due to surgery pDieSurg 0.05 Beta(0.5, 9.5)

Annual Chemotherapy cost($) cChemo $3000 Constant

Surgery cost cSurg $15,000 Constant

Willingness to pay threshold wtp $50,000
/QALY

Constant
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Box 1

EVPI Algorithm

1.1: Probabilistic sensitivity analysis (PSA):

• Assign appropriate distributions for the uncertain input parameters to 

reflect their uncertainties.

• Sample m values from each parameter, and obtain a matrix X of input 

parameter values, where xij represents the ith value (i = 1…m) of the jth 

parameter.

• Determine the optimal strategy (t*) that maximizes the net benefit (B) 

over all parameter uncertainties .

• For each set of parameter values (xi), compute INBi, as the difference 

between the net benefit of the optimal strategy (t*) less that of the 

alternative strategy (t*), such as

• Compute μ0 and  as the mean and variance of the INB ’s prior 

distribution.

1.2: UNLI

• Use equation (2) to compute EVPI, such as:

–
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Box 2

EVSI Algorithm

1.1: PSA (follow 1.1).

• Compute μ0 and .

1.2: Calculate the preposterior variance of INB ( ):

• Calculate the variance fraction ν:

◦

◦

1.3: Compute EVSI:

•
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Box 3

EVPPI Algorithm

3.1: PSA (follow 1.1)

3.2: LRM: Compute the prior mean (μ̃0) and variance ( ) of INB explained by the 

parameters of interest (XI)

• Regress only the subset of parameters of interests (XI) on the prior 

INB, such as:

◦

where α is the regression intercept, β is a vector of regression coefficients, and e is the 

regression’s residual term.

• Compute μ̃0:

◦

• Compute :

◦

where Σ is the covariance matrix of XI.

3.3: UNLI: use μ̃0 and  in A.2 to compute EVPPI:

•
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Box 4

EVPSI Algorithm

4.1: PSA (follow 1.1)

4.2: LRM (follow 3.2)

4.3: Compute 

• If n0 and n are the same for all XI, then compute .

• Otherwise, in a heterogeneous design, compute a vector of variance 

fractions (ν), such as: νj. = nj /(nj + n0j), where νj represents the 

variance fraction for xj, xj ∈ XI, and nj and n0j represent the sample 

sizes for the prior and additional samples for xj, respectively. Then, 

compute .

4.4: Finally, compute 
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Figure 1. 
Comparing the results of the LRM and analytic approaches from Example 1. The EVPSI is 

shown for the probability of the new treatment causing side-effects (pSE) and the quality of 

life after the event (QE). [Note LRM = linear regression metamodeling, EVPSI = expected 

value of partial sample information]
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Figure 2. 
Comparing the results of the LRM and analytic approaches from Example 1. The EVPSI is 

shown for a combination of parameters: probability of the new treatment causing side-effects 

(pSE), the quality of life after the event (QE), and the log odds ratio of the new treatment 

causing the event relative to the standard treatment (LOR). [Note LRM = linear regression 

metamodeling, EVPSI = expected value of partial sample information]
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Figure 3. 
The impact of correlation between the probability of side effects (pSE) and the odds ratio of 

the critical event (OR) on the EVPPI and EVPSI of these two parameters combined in 

Example 1. The EVPSI is shown for three sample sizes n = 1,20 and 200. Correlation has a 

significant impact on EVPPI and EVPSI, this impact is proportional to the sample size. 

[Note EVPPI = expected value of partial perfect information and EVPSI = expected value of 

partial sample information].

Jalal et al. Page 26

Med Decis Making. Author manuscript; available in PMC 2016 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Results from Example 2 comparing the LRM and 2MCS approaches. The EVPSI for the 

probability of failing chemotherapy (pFailChemo) is shown. [Note LRM = linear regression 

metamodeling, 2MCS = two-stage Monte-Carlo simulation, EVPSI = expected value of 

partial sample information].
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Figure 5. 
The linearity assumption: (A) A local linear relationship is shown between INB over a 

parameter’s (x) uncertainty range (marked by the vertical dashed lines). (B) A potential 

linear relationship between INB and x can be the result of the difference between the net 

benefits of the optimal treatment (t*) and the alternative (t*) strategies. [Note INB = 

incremental net benefit].
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Table 1

Summary of the mean and variance used in the UNLI function by type of VOI measure.

All Parameters Subset of Parameters (XI)

Perfect
information.
Infinite sample
(∞)

EVPI
Prior mean of INB (μ0)
Prior variance of INB

EVPPI
Prior mean of INB explained by XI (μ̃0)
Prior variance of INB explained by a subset of

parameters of interest 

Sample
information (n) EVSI

Prior mean of INB (μ0)
Preposterior variance of

INB 

EVPSI
Prior mean of INB explained by XI (μ̃0)
Preposterior variance of INB explained by XI

UNLI = unit normal loss integral; VOI = value of information; EVPI = expected value of perfect information; EVPPI = expected value of partial 
perfect information, EVSI = expected value of sample information; EVPSI = expected value of partial sample information, INB = incremental net 
benefit.
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Table 2

The EVPI and EVPPI results of the current approach compared to Ades et al. (2004)26

Current
Approach

Ades et al.
(2004)

EVPI $10,200 $10,140

  Decision change probability 0.431 0.428

EVPPI

  Probability of treatment side effects (pSE) $6,000 $6,240

  QALY after critical event, per year (QE) $2,180 $2,080

  Odds ratio of critical event while on treatment
relative to the control (OR)

$3,800 $3,890

  EVPPI of OR, pSE and QE combined $8,840 $8,770

EVPI = expected value of perfect information, EVPPI = expected value of partial perfect information, QALY = quality-adjusted life year.
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