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Abstract

Independent component analysis (ICA) is an effective data-driven method for blind source 

separation. It has been successfully applied to separate source signals of interest from their 

mixtures. Most existing ICA procedures are carried out by relying solely on the estimation of the 

marginal density functions, either parametrically or nonparametrically. In many applications, 

correlation structures within each source also play an important role besides the marginal 

distributions. One important example is functional magnetic resonance imaging (fMRI) analysis 

where the brain-function-related signals are temporally correlated.

In this article, we consider a novel approach to ICA that fully exploits the correlation structures 

within the source signals. Specifically, we propose to estimate the spectral density functions of the 

source signals instead of their marginal density functions. This is made possible by virtue of the 

intrinsic relationship between the (unobserved) sources and the (observed) mixed signals. Our 
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methodology is described and implemented using spectral density functions from frequently used 

time series models such as autoregressive moving average (ARMA) processes. The time series 

parameters and the mixing matrix are estimated via maximizing the Whittle likelihood function. 

We illustrate the performance of the proposed method through extensive simulation studies and a 

real fMRI application. The numerical results indicate that our approach outperforms several 

popular methods including the most widely used fastICA algorithm. This article has 

supplementary material online.
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1. INTRODUCTION

Independent component analysis (ICA) is an effective data-driven technique for extracting 

the source signals from their mixtures (Hyvärinen, Karhunen, and Oja 2001; Stone 2004). It 

aims to solve the “blind source separation” problem by expressing a set of observed mixed 

signals as linear combinations of independent latent random variables (or source signals or 

components). It has many important applications, especially in functional magnetic 
resonance imaging (fMRI) analysis (McKeown, Hansen, and Sejnowsk 2003; Stone 2004; 

Huettel, Song, and McCarthy 2008; Calhoun, Liu, and Adali 2009).

The ICA problem can be formally expressed as follows. Suppose there are M mixed signals 

of length T each, which are stored in the observed signal matrix X. ICA then allows one to 

decompose X as

(1)

where A is a nonrandom mixing matrix and S is a matrix of independent source signals. The 

goal of ICA is to recover the latent source signals (rows of S) as

(2)

Many ICA procedures have been developed over the last fifteen years. The majority of the 

methods are based on estimates of the marginal densities of the sources, either 

parametrically or nonparametrically. Parametric approaches include infomax (Bell and 

Sejnowski 1995), which estimates the density parameters via minimization of mutual 

information, and is equivalent to maximum likelihood estimation using high-order 

cumulants (Comon 1994; Cardoso 1999); or fastICA (Hyvärinen, Karhunen, and Oja 2001) 

that maximizes non-Gaussianity as measured by the approximated negative entropy. (Note 

that the sources should not have a Gaussian distribution in order for the mixing matrix to be 

identifiable.)
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Parametric approaches sometimes can be too rigid. More flexible nonparametric methods 

include estimating the score function using kernel approximation (Vlassis and Motomura 

2001), kernel density estimation (Bach and Jordan 2003; Boscolo, Pan, and Roychowdhury 

2004; Chen and Bickel 2005; Chen 2006; Shen, Hüper, and Smola 2006), smoothing splines 

(Hastie and Tibshirani 2003), B-spline approximation (Chen and Bickel 2006), and 

logsplines (Kawaguchi and Truong 2009). Two other relaxations of the basic ICA model are 

subspace ICA (Hyvärinen and Hoyer 2000; Sharma and Paliwal 2006) that allows the 

sources to form mutually independent subgroups and does not require the sources within the 

same subgroup to be independent; and AMICA (Palmer et al. 2008) that uses mixtures of 

Gaussian scale mixtures to model the sources, which was extended to include mixtures of 

linear processes (Palmer, Kreutz-Delgado, and Makeig 2010). Note that when all the sources 

are mutually independent, subspace ICA reduces to ordinary ICA (Hyvärinen and Hoyer 

2000).

All the above methods, however, only make use of the marginal densities (with the exception 

of the recent extention of AMICA), which do not contain information about the correlation 

structures within the source signals. For example, in fMRI studies the experiment-stimulus 

related signals or physiological signals such as heartbeat or breathing are usually periodic, 

and therefore embedded in the fMRI data are some autocorrelation or colored noise 

structures within the signals (Bullmore et al. 2001). Such information is not incorporated 

when using the marginal-density-based ICA methods. In this article we develop ICA 

approaches that take into account the correlation structures within the sources. Our methods 

are applicable to analyze other imaging modality data such as EEG and MEG, as well as 

financial time series. See Hyvärinen, Karhunen, and Oja (2001) for more details.

An fMRI dataset is four-dimensional consisting of a three-dimensional image (or a 3D 

volume) being observed over time. Each 3D fMRI image consists of a certain number of 

two-dimensional slices, and each slice is made up of individual cuboid elements called 

voxels. The data are usually represented as a space-time matrix of dimension V × T, where 

V is the number of voxels in one image and T is the number of time points in the 

experiment. Thus each column of the matrix represents an fMRI image with V voxels and 

each row is the time course observed at one specific voxel.

The recorded time series can be viewed as a mixture of source signals that are temporally 

correlated, corresponding to the experimental stimuli, physiological functions such as 

heartbeat and respiration, subject movement, etc. This is illustrated graphically in Figure 1. 

For simplicity, this toy example considers only one slice of the brain. The left side of the 

figure plots the voxel time series (or the rows of the matrix) from three exemplary voxels in 

this slice. Note that each voxel is marked using a different symbol that is matched with its 

corresponding time series plot. The goal of ICA is to recover the (three) independent 

temporal sources [the rows of S in (1)], which are displayed on the right side of the figure, 

and represent an experimental stimulus, cardiac, or respiratory effect, and a movement 

effect, respectively. The columns of the mixing matrix A in (1) are shown as the spatial 

maps, where the voxels activated by the corresponding temporal signals are colored as red. 

Note that typical fMRI data have a high-spatial dimension (V ≈ 200,000), which is much 
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larger than the number of extracted independent components (M = 3 in our example). Hence 

dimension reduction is usually performed prior to ICA of fMRI data.

The applications of ICA to fMRI are classified into two categories based on their goals: 

spatial ICA (sICA) and temporal ICA (tICA). The sICA looks for independent image 

components (columns of A). The tICA, however, assumes independence of time courses 

(rows of S). In both cases, we view a single image component (one column of A) as one 

spatially distributed set of voxels that is induced by the corresponding time course in one 

row of S. The current article focuses on temporal ICA.

To the best of our knowledge, Pham and Garat (1997) is the first ICA procedure that takes 

into account the autocorrelation structures within the sources. The authors imposed certain 

parametric correlation assumptions on the sources. Specifically, they assumed that the 

spectral density of each source was known up to some scale parameters, and proposed a 

quasi-maximum likelihood method to recover the sources. Their formulation is in the 

spectral domain, and builds upon the asymptotic independence and normality of discrete 

Fourier transform (DFT). Since the spectral densities are known except the scale parameters, 

the authors used the corresponding (known) separating filters in the quasi-likelihood, and 

only needed to maximize the likelihood to get estimates for the scale parameters and the 

mixing matrix.

Although the spectral domain approach of Pham and Garat (1997) is natural and innovative, 

their assumption that the spectra of the sources are known can be unrealistic in practice. In 

this article, we relax that assumption and propose a new spectral domain ICA procedure for 

sources with autocorrelation, that is, colored sources. In particular, our procedure assumes 

certain parametric time series models for the source signals, and estimates the model 

parameters through parametric spectral density estimation. (Note that our method covers the 

special scenarios when the source signals are white or uncorrelated.) In addition, we use the 

Newton–Raphson method to improve the optimization efficiency, and incorporate the 

Lagrange multiplier method for orthogonal constraints.

On a related note, an earlier attempt to examine the source autocorrelation was described by 

Pearlmutter and Parra (1997). They introduced the contextual ICA by considering

a multivariate version of the autoregressive process of order p: AR(p). The autocorrelation is 

clearly specified by the convolution relationship. In fact, this formulation is also referred to 

as convolutive ICA. See Dyrholm, Makeig, and Hansen (2007) for a very thorough survey of 

this topic. Thus the instantaneous ICA of the traditional approach is a special case of 

convolutive ICA where p = 0. In practice, the AR order p will be ideally small and one way 

to achieve this is to model each source St by a moving-average process of order q: MA(q). 
The parameters are estimated via the likelihood derived from the standard time-domain 

method in time series, with logistic distribution as the baseline distribution. Dyrholm, 
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Makeig, and Hansen (2007) suggested to use Bayesian information criterion (BIC) to 

estimate the parameters p and q.

By contrast, our approach is to embed the autocorrelation into the sources via the 

instantaneous ICA. For instance, if each source is modeled by an autoregressive model with 

the same order p, then our model yields the convolutive ICA described above. The choice of 

p for all sources is convenient for the comparison (with the convolutive ICA). We can in fact 

allow each source to have a different AR order. Moreover, we can enhance the flexibility by 

fitting an autoregressive and moving-average process of orders p and q [ARMA(p, q)] to 

each source. The model parameters p and q can be of course source specific and can be 

estimated via an information based method such as AIC or BIC. The autocorrelation related 

parameters or the coefficients of the ARMA process are estimated using the Whittle 

likelihood, which is a discrete Fourier transform (DFT) based method. Thus this is a 

distribution-free approach, see Section 2.3 for a more detailed description of our method. 

Also an authoritative comparison between the two likelihood approaches is documented in 

Dzhaparidze and Kotz (1986).

Estimating the mixing matrix has an important application in studying brain function using 

fMRI through activity detection. Many statistical methods have been developed that can be 

roughly classified into either hypothesis-driven or data-driven approaches. Hypothesis-

driven approaches are based on conventional regression models to identify voxels whose 

time series are significantly correlated with the experimental task(s). Examples include 

statistical parametric mapping (Friston et al. 2007), a variety of Bayesian techniques 

implemented in FSL (Woolrich et al. 2009), diagnosis procedures for noise detection (Zhu et 

al. 2009), and many others described therein. Evidently, this voxelwise approach is very 

popular, but connecting the activated voxels for region-of-interest (ROI) analysis is 

something else to be desired (Huettel, Song, and McCarthy 2008). Alternatively, data-driven 

approaches for ROI analysis via mixing matrix estimation include principal component 

analysis (PCA) (Viviani, Gron, and Spitzer 2005), dynamic factor models (Park et al. 2009), 

clustering methods (Venkataraman et al. 2009), and ICA (McKeown, Hansen, and Sejnowsk 

2003; Esposito et al. 2005; Calhoun, Liu, and Adali 2009; Sui et al. 2009). Our approach 

takes these data-driven procedures a step further by exploiting the temporal correlation 

structures while detecting the brain activation. It is therefore a temporal ICA procedure.

The rest of the article is structured as follows. Section 2 describes our proposed method for 

handling colored sources. We illustrate its performance and compare it against several 

existing ICA methods through simulation studies in Section 3. The considered ICA methods 

are also applied to analyze a real fMRI dataset in Section 4. We finally conclude the article 

in Section 5.

2. COLORED INDEPENDENT COMPONENT ANALYSIS

This section presents the details of our procedure for handling colored sources. We start with 

some basic definitions in Section 2.1, followed by a discussion on the Whittle likelihood in 

Section 2.2. For the purpose of easy understanding and presentation, we first describe the 

procedure for autoregressive (AR) processes in Section 2.3. This is an important leading 
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case as Worsley et al. (2002) suggested that AR models are the most commonly used time 

series approaches for the temporal correlation structure in fMRI analysis. We then discuss in 

Section 2.4 how this procedure can be simplified to the special case of white noise 

processes, and in Section 2.5 how it can be extended to general autoregressive moving 

average (ARMA) processes.

2.1 Preliminaries

We start with several definitions in spectral analysis. Consider a vector-valued stationary 

process X(t) = (X1(t), . . . , XM(t))⊤, t = 0, ±1, ±, . . . , with mean zero and the covariance 

function cXX(u) = cov(X(t), X(t + u). If , we define the M × M 
spectral density matrix of the series X(t) as

where r is the angular frequency per unit time, or simply the frequency. The jth diagonal 

element of fXX, fXjXj, is the spectral density of the univariate time series Xj(t). For a more 

detailed discussion of spectral density, see Brillinger (2001).

In practice, we suppose that X(t), t = 0, 1. . . , T – 1, are observed. Consider the Fourier 

frequencies rk = (2πk)/T, k = 0, ..., T – 1. Then, we can define the discrete Fourier transform 

(DFT) of X(t), t = 0, 1, ..., T – 1, as

and its second-order periodogram as

where φ* is the conjugate transpose of the vector φ.

Considering the source signals S(t) = (S1(t), . . . , SM(t))⊤, t = 0, 1, . . . , T – 1, we can 

similarly define their spectral density matrix fSS, DFT, and periodogram. Since the sources 

are mutually independent, we have that fSS = diag{f11, . . . , fMM}, where fjj is the spectral 

density of the jth source.

2.2 The Whittle Likelihood

To minimize the bias in estimation associated with the misspecification of the time series 

distributions, Whittle (1952) formulated a likelihood approach by utilizing the asymptotic 

distributional properties of DFT (see theorem 4.4.1 of Brillinger 2001). Specifically, suppose 

that we were able to observe the source signals and compute their periodograms: f̃(rk, 

S1), . . ., f̃(rk, SM). In addition, if the sources are stationary with finite moments, then it can 
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be shown that f̃(rk, Sj) is asymptotically , independent of the other variates for k 
= 0, 1, . . . , T – 1 and j = 1, . . . , M (see theorem 5.2.6 of Brillinger 2001). Thus the source 

log-likelihood is given by

(3)

where fSS is the diagonal matrix of the power spectra of the sources.

This is known as the Whittle likelihood in the literature and is being introduced to ICA for 

the first time here. Asymptotic properties of the Whittle likelihood-based procedure can be 

found in Dzhaparidze and Kotz (1986). Other than the desirable property that the 

periodograms are independently distributed, one can see it is also advantageous that the 

source autocorrelation can be examined through their power spectra. This forms the core of 

our method.

Our next step is to express the above log-likelihood in terms of the periodograms computed 

from the observed mixed signals. Using the mixing relationship (2) and the linearity of DFT, 

the log-likelihood (3) can be rewritten as

(4)

where ej = (0, 0, . . . , 0, 1, 0, . . . , 0)⊤ with the jth entry being 1.

Once (4) is available, we maximize it to obtain the estimates of the unmixing matrix W and 

the parameters in the power spectra of the sources (see Section 2.3). The maximum Whittle 

likelihood approach can be interpreted as assigning a different weight of 

 to the source periodogram f̃ at the Fourier frequency rk. This 

procedure will be referred to as cICA hereafter, where c stands for color sources.

We make two remarks here. First, under this formulation, the novelty is the estimation of the 

autocorrelations of the sources, which was not considered in Pham and Garat (1997); they 

assumed the spectral densities fjj were known a priori. Second, the maximization of the log-

likelihood is subject to some identifiability constraints. ICA methods are known to have 

permutation and scale ambiguity problems. Specifically, for a permutation matrix P and a 

scalar a, we have X = W−1S = W−1(aP)(aP)−1S. To ensure the identifiability of W and S, we 

restrict W to be full rank matrix satisfying the following identifiability conditions proposed 

by Chen and Bickel (2005):

1. max1≤k≤M Wjk = max1≤k≤M |Wjk| for 1 ≤ j ≤ M, where Wjk is the (j, k)th 

entry of W;
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2. W1 ≺ ··· ≺ WM where Wj is the jth row of W. For , , we define 

a ≺ b if there exists a k ∈ {1, ..., M} such that the kth element of a is 

smaller than the corresponding element of b, while all the elements before 

the kth entry are equal between a and b (i.e., ak < bk and aj = bj, 1 ≤ j ≤ k – 

1, where ak is the kth element of a).

2.3 ICA for AR Sources and Its Algorithm

2.3.1 Penalized Whittle Likelihood—We first consider autoregressive (AR) models for 

the source signals, and assume that the jth source Sj follows a stationary AR(pj) process 

given by

where {ϕj,k} are the AR parameters and . The corresponding power 

spectrum is given by

where Φj(z) = 1 – ϕj,1z – · · · – ϕj,pjZpj is the corresponding AR polynomial.

Denote ϕj = (ϕj, 1, ···, ϕj,pj)⊤, , and .

The Whittle log-likelihood (4) can be rewritten as

(5)

If the data are prewhitened, the unmixing matrix W is orthogonal (Hyvärinen, Karhunen, 

and Oja 2001). In this case, the Whittle likelihood can be further simplified by dropping the 

last term, T ln | det(W)|. To incorporate the orthogonal constraints on the unmixing matrix, 

we propose to use Lagrange multiplier (Bertsekas 1982). More specifically, we consider 

minimizing the following penalized negative Whittle log-likelihood,

(6)
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where λ = (λ1, . . . , λM(M+1)/2)⊤ is the Lagrange parameter vector, and C is a M(M + 1)/2-

dimensional vector with the {(j – 1)M + k}th element being C(j–1)M+k = (WW⊤ – IM)jk, j = 

1, . . ., M, k = 1, . . ., j. Note that we need only M(M + 1)/2 constraints since the matrix 

WW⊤ – IM is symmetric.

We remark that there are other orthogonal constrained ICA algorithms based on optimization 

over a set of all orthonormal matrices known as the Stiefel manifold. For instance, see 

Edelman, Arias, and Smith (1998), Amari (1999), Douglas (2002), Plumbley (2004), Ye, 

Fan, and Liu (2006).

2.3.2 Iterative Estimation Algorithm—The minimization of the penalized criterion (6) 

is nontrivial. The computation involves nonlinearly the M(M + 1)/2 elements of the 

unmixing matrix, as well as the AR model parameters ϕ and σ2, for a given set of the AR 

orders {pj}. In addition, the true AR orders also need to be estimated using model selection 

criteria. As such, our estimation algorithm will be carried out in an iterative manner: 

alternating between updating the ICA unmixing matrix and estimating the AR parameters 

(along with model selection) for a fixed unmixing matrix, as opposed to joint optimization 

of the unmixing and the AR parameters.

We start the iteration procedure with a certain set of the AR orders followed by minimization 

of the criterion (6) in the following manner. First, start with an initial value of W̃, then 

estimate ϕ and σ2 by maximizing the unpenalized Whittle log-likelihood (5). Alternatively, 

we can first recover the sources via S̃ = W̃X, and then estimate the AR model parameters ϕ 
using the Yule–Walker procedure (Brockwell and Davis 1991). Our experience through 

numerical studies suggests that the two methods give similar results, while the Yule–Walker 

procedure is computationally faster. Hence, in the remainder of the article, we concentrate 

on the Yule–Walker procedure, and refer to the corresponding cICA procedure as cICA–
YW.

Once the AR coefficients ϕ are estimated, we can estimate the variances σ2 using

(7)

Given the estimates  and , we propose to obtain the updated estimate of the unmixing 

matrix W by minimizing the penalized criterion (6). Since (6) is nonlinear with respect to 

W, we use the Newton–Raphson method with Lagrange multiplier. To begin with, we find 

the first and second derivatives of (6) with respect to W and λ, denoted as Ḟ(W, λ; ϕ, σ2) 

and H(W, λ; ϕ, σ2), respectively. Then we obtain the one-step Newton–Raphson update for 

W and λ as

(8)
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Finally, the above two steps are iterated to update (W, λ) and (ϕ, σ2) alternatingly until 

convergence. To gauge the algorithm convergence, we use Amari error (Amari et al. 1996) 

as the convergence criterion, which is defined as

(9)

where W1 and W2 are two M × M matrices, W2 is invertible and aij is the ijth element of 

. This criterion has been used in the context of ICA (Bach and Jordan 2003; Chen 

and Bickel 2005). When the Amari error between  and  is less than some threshold, the 

iteration stops and we claim the algorithm converges. In our numerical studies the algorithm 

usually converges within 30 iterations.

In practice, the true AR order of each source is not known and needs to be estimated. We 

embed the order selection within the updating step for the AR model parameters, and 

dynamically determine the suitable model for each iteration. In particular, we consider the 

AR order pj to vary between 0 and some threshold. We then select the “optimal” order using 

a conventional model selection criterion such as the Akaike Information Criterion (AIC) 

(Akaike 1974).

The complete iterative algorithm (with order selection) is summarized as follows:

2.4 ICA for White Noise Sources

We now consider the case of white noise sources. Before proceeding, we remark that the 

Whittle likelihood approach is essentially a second cumulant based method. Thus it will be 

challenging to apply our method to separate sources with identical power spectra, especially 

for ICA involving prewhitened data from a mixture of white noise sources. Therefore, we 

focus on situations in which the dataset is an orthogonal mixture of white noise sources with 

different variances. Now, since the mixing matrix A is orthogonal, it will not be necessary to 

invoke the prewhitening step.

Suppose the jth white noise source has variance . Then its spectral density fjj equals 

. The Whittle log-likelihood is given by

(10)

Note that if the sources are white noise, we apply the same weight to all the frequencies 

when we maximize the Whittle log-likelihood (10). We also use the Lagrange multiplier to 

ensure the identifiability of the unmixing matrix, and consider minimizing a penalized 

negative Whittle log-likelihood similar to (6).
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The estimation of σ and W can be iterated as in cICA. There is no need to estimate the AR 

coefficients nor select the AR order. We refer to this method as wICA. In Section 3.2 we 

show that with white noise sources, the wICA is very competitive with conventional ICA 

methods; furthermore, the wICA and cICA perform similarly, which suggests that the model 

selection step of cICA works well.

2.5 Extension to General ARMA Processes

The cICA procedure in Section 2.3 can also be extended to general ARMA processes in a 

relatively straightforward way.

Suppose the jth source follows some stationary ARMA(pj, qj) model so that

where B is the backshift operator, Φj(z) = 1 – ϕj,1z – · · · – ϕj,pjz
pj, and Θj(z) = 1 + θj,1z + ··· 

+ θj,qjz
qj. According to Brockwell and Davis (1991), the power spectrum of this source is 

given by

We can update the Whittle log-likelihood (5) with the above power spectrum. The iterative 

cICA algorithm of Section 2.3 can still be used to estimate the parameters, except that 

special care is needed when estimating the time series model parameters and selecting the 

AR/MA orders of the model. For the sake of saving space, we omit the details of the 

technical derivation, and refer the readers to Brockwell and Davis (1991). We consider 

general ARMA processes in the simulation studies of Section 3.

3. SIMULATION STUDIES

3.1 Simulation Study I: Blind Separation of Colored Sources

According to the ICA model (1), we first generated the source matrix S and the M × M 
mixing matrix A seperately. We considered M = 5 and simulated five independent stationary 

ARMA time series under four different sample sizes (T = 128, 256, 512, 1024). The five 

sources were generated as:

•
S1: AR(2), ϕ1 = 1, ϕ2 = −0.21 with white noise from uniform ;

• S2: AR(1), ϕ1 = 0.3 with white noise from N(0, 1);

• S3 (1) ϕ1 = 0.8 with white noise from t(3);

• S4 MA (1), θ1 = 0.5 with white noise from Weibull(0.5, 0.5);

• S5: White noise from double exponential(1).
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We generated the 5 × 5 orthogonal mixing matrix A randomly. The data matrix X was 

obtained as X = AS. The simulation was replicated 100 times. Our method, cICA–YW, was 

compared with several popular existing ICA methods, including extended Infomax (Lee, 

Girolami, and Sejnowski 1999), fastICA (Hyvärinen, Karhunen, and Oja 2001), Kernel ICA 

(KICA) (Bach and Jordan 2003), Prewhitening for Charateristic Function based ICA 

(PCFICA) (Chen and Bickel 2005), and AMICA (Palmer, Kreutz-Delgado, and Makeig 

2010).

Following the practice of Bach and Jordan (2003) and Chen and Bickel (2005), we use the 

Amari error between the true unmixing matrix and its estimate as a performance criterion to 

compare the methods. Figure 2 shows the boxplot of the Amari error for each method under 

the different sample sizes. The median computation time for each method is also provided at 

the top of the corresponding boxplot. The cICA–YW procedure outperformed the other ICA 

methods uniformly, and the advantage increased with sample size. As far as the computing 

time is concerned, fastICA, Infomax, cICA–YW, and AMICA are the top four fastest 

methods. In summary, cICA–YW provides very good estimates in a fairly short time. The 

cICA–YW improved the performance over the other ICA methods by making use of the 

temporal correlation structures within the sources.

3.2 Simulation Study II: Blind Separation of White Sources

We also examined the performance of wICA and cICA–YW when the sources are white 

noises. In this second simulation study, three and five sources (M = 3, 5) were generated 

under two different sample sizes (T = 1024, 2048). Three of the white noise sources were 

simulated from uniform(−1, 1), N(0, 1) and double exponential (1) distributions. For the 

five-source setup, the two additional white noise sources were generated from t(3) and 

Weibull(1, 1). Again we randomly generated the orthonormal mixing matrix A. For reasons 

discussed in Section 2.4, the data were not prewhitened. We compared the performance of 

wICA, cICA–YW, extended Infomax, KICA, PCFICA, and AMICA over 100 simulation 

runs. Due to the ill performance of the fastICA without prewhitening, the corresponding 

result is not included.

Figure 3 shows the boxplots of the Amari error for each method under the four simulation 

setups, along with the median computation time in seconds. The AMICA performed best 

followed by KICA for both sample sizes. The wICA and cICA–YW gave comparable results 

in terms of the Amari distance when the number of sources is M = 3. For M = 5, wICA and 

cICA–YW become comparable as the sample size increases. This confirms that the model 

selection step of cICA–YW still works well for white noise cases. All the methods are 

comparable in terms of Amari distance.

3.3 Simulation Study III: Detection of Activated Brain Regions

3.3.1 Simulation Description—As discussed in Section 1, our research is primarily 

motivated by the application of fMRI analysis. The current simulation study is designed to 

compare the performance of the various ICA methods in analyzing a toy fMRI dataset. 

Below we describe the procedure for generating the pseudo-fMRI data.
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In this simulation, we first generated the V × M spatial map matrix A and the M × T time 

series matrix S, which were then multiplied to give the V × T data matrix. In particular, we 

consider M = 4 temporal independent components that are of length T = 512; each 

corresponding spatial map consists of 10 slices and each slice has 20 × 20 voxels, which 

results in a total of 4000 voxels for each spatial component. The final data matrix is 4000 × 

512 in dimension.

The four temporal components are assumed to represent the task function, heart beating, 

breathing, and noise artifact respectively. For the task function, we considered a simple rest-

activation block design with 18 seconds for each rest or activation period (a frequency of 

0.0052 Hz); for the heartbeat component, we used a harmonic function with a frequency of 

1.71 Hz; and for the breathing component, a harmonic function with a frequency of 0.3 Hz. 

These frequencies were chosen so that they have meaningful physiological interpretations. 

The data were sampled every 0.3 seconds.

The four underlying independent temporal components were generated as follows:

• S1: Task function with noise = Task function + σ1Z1;

• S2: Heartbeat with noise = sin(2π1.17t + 1.61) + σ2Z2;

• S3: Breathing with noise = sin(2π0.3t + 1.45) + σ3Z3;

• S4: S4(t)= −0.85S4(t – 1) −0.7S4(t – 2)+0.2S4(t – 3) + ϵ4(t), ϵ4(t)~ i.i.d. 

uniform( ).

The noises added to the three signal components were generated as follows:

• Z1(t)=0.8Z1(t – 1) + ϵ1(t), ϵ1(t) ~ i.i.d. uniform( );

• Z2(t)= −0.6Z2(t – 1) – 0.5Z2(t – 2) + ϵ2(t), ϵ2(t) ~ i.i.d. 

uniform( );

• Z3(t) = 0.1Z3(t – 1) – 0.8Z3(t – 2) + ϵ3(t), ϵ3(t) ~ i.i.d. uniform( ).

It is worthwhile to consider different signal-to-noise ratios (SNR), since the sources of 

interest can contain other irrelevant variabilities (Huettel, Song, and McCarthy 2008). Figure 

4 displays the task function at different SNR levels. At a higher SNR level, we can easily 

distinguish the task function, whereas it is harder to observe the task function at a lower 

SNR level. Hence, in the current study, we considered four different setups: SNR = 0.5, 1, 2, 

4, and studied the effects of SNR on the performance of the various ICA methods. In 

defining SNR, we follow the suggestion of Bloomfield (2000).

Given a SNR level, for each of the first three source signals we calculated the corresponding 

noise standard deviation as 

. The true temporal 

components at SNR = 1 (blue solid line) are illustrated in Figure 5 below the noise-less task 

functions (red dotted line). The spectral density curve for each component is also displayed 

at the top of each panel, which is estimated using Welch's power spectrum estimator (Welch 

1967). The red vertical line represents the main frequency of each component. Each 
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temporal component is displayed above the corresponding spatial map. We replicated the 

simulation 100 times for each SNR.

Each voxel of a spatial map (i.e., a column of A) takes a binary value 1 or 0, where the 

voxels with value 1 represent the regions that are activated by the corresponding temporal 

stimulus, and the voxels of 0 indicate no activation. When plotting the spatial maps in Figure 

5, the activated voxels are colored white and the nonactivated voxels are colored black. For 

the spatial map corresponding to the noise temporal component, we randomly selected 15% 

of the entries and coded them as 1. The voxels that correspond to none of the temporal 

components will remain zero.

3.3.2 Analysis and Results—We first column centered each simulated data matrix 

(Hastie and Tibshirani 2003). Due to the high dimension of the data matrix, before applying 

the ICA methods, we then used singular value decomposition (SVD) for dimension 

reduction (Petersen et al. 2000). In particular, we extracted the leading M = 4 SVD 

components which actually explained 99% of the raw data variance in all the simulation 

runs; we then approximated the raw data matrix X using ŨD̃Ṽ⊤, where the diagonal entries 

of the diagonal matrix D̃ are first M singular values, and the columns of Ũ and Ṽ are the 

forst M left and right singular vectors, respectively.

Finally, the ICA algorithms were applied to X̃ = D̃Ṽ⊤ to obtain the temporal component 

matrix Ŝ and the mixing matrix Â. In terms of decomposing the original matrix X, the spatial 

map matrix were estimated as Ã = ŨÂ, where each column is the spatial map corresponding 

to one recovered temporal component in Ŝ.

The independent components extracted by ICA are ordered arbitrarily. To match each 

recovered component with the original sources, we calculate the correlation between the 

recovered component and each of the 4 true temporal source signals, and the source that has 

the largest absolute correlation is identified as the match.

To identify the activated voxels in each spatial map, we followed the suggestion of 

McKeown et al. (1998): z scores were calculated for each map by subtracting the mean of 

the map and dividing the standard deviation of the map. The voxels with |z| ≥ 1 then were 

identified as those that were activated.

To gauge the performance of the ICA algorithms, we calculated the false positive and false 

negative rates for each estimated spatial map. Each column of Figure 6 displays the average 

of the false positive/negative rates over the 100 simulation runs under different SNRs. The 

rows correspond to the spatial maps for the task function, heartbeat, and breathing, 

respectively. In each panel, six ICA methods are compared: cICA–YW (black solid line), 

Infomax (red dotted line), fastICA (green dash–dot line), KICA (margenta dash–dot line), 

PCFICA (cyan dashed line), and AMICA (blue dashed line). The x-axis represents the four 

different SNRs (0.5, 1, 2, 4). The cICA–YW performed uniformly better than the other 

methods, having the smallest false positive and false negative rates. In addition, the false 

positive and false negative rates generally decreased as the SNR increased (except for 

Infomax).
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As a visual comparison of the detected spatial activation regions, we averaged the estimated 

spatial maps across the first five simulations. The average spatial maps are plotted for SNR = 

1 in the six rows of Figure 7 for the six ICA methods, respectively. In each row, the average 

spatial maps for the first three independent components (task function, heartbeat, and 

breathing) are displayed sequentially. We observe that cICA–YW [panels (a)] detected the 

spatial activation regions much better than its peers, whose noisier results for all three source 

signals are clearly shown (when comparing with the true regions depicted in Figure 5).

We also conducted a similar simulation study for random event-related design. The task 

function is random event-related contaminated with white noises (instead of correlated), 

where the time intervals between two consecutive random events follow a Poisson 

distribution with a mean of 4.5 seconds. (The other three sources follow the same models as 

in the above block design; hence their noises are correlated.) The study results indicated that 

the cICA–YW still leads the pack. These results along with the previous results for other 

values of SNR are available in the supplementary materials.

4. APPLICATION TO REAL FMRI DATA

4.1 Data Description

Experimental finger-tapping data were obtained from our collaborators (Sen et al. 2010; 

Lewis et al. 2011). The main neurological interest of the experiment was to identify the brain 

regions responsible for the finger-tapping tasks. Two hundred MR scans were acquired on a 

modified 3T Siemens MAGNETOM Vision system with a 3 second scan to scan repetition 

time (TR). Each scan consisted of 49 contiguous slices containing 64 × 64 voxels. 

Therefore, we have 64 × 64 × 49 voxels at each of the 200 time points. Each voxel is a 3 mm 

× 3 mm × 3 mm cube.

The dataset was obtained by a control subject performing three different tasks alternatively: 

rest, right-hand finger tapping, and left-hand finger tapping. Figure 8(a) illustrates the 

experimental paradigm. Each rest period lasted 30 seconds (10 time points) and each finger-

tapping task period lasted 120 seconds (40 time points). The block design task functions are 

displayed as the black solid lines in Figure 8(b). The red dashed lines stand for the sine 

curves of the main task frequency (0.0033 Hz).

4.2 Analysis

The dataset was first preprocessed using FSL (Smith et al. 2004). The preprocessing 

included brain image extraction using the Brain Extraction Tool (BET), motion correction 

using Motion Correction with FSL's Linear Image Registration Tool (MCFLIRT), slice time 

correction, spatial smoothing using FWHM 6 mm × 6 mm × 6 mm, and highpass temporal 

filtering using a local linear fit. We removed the background voxels using the mask file 

obtained during the preprocessing step. The dimension of the final data matrix was 68,963 

voxels × 200 time points.

FMRI images usually are of high dimension, especially in terms of the number of voxels. To 

reduce dimension, we used the supervised singular value decomposition (SSVD) algorithm 
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of Bai et al. (2008), which was shown to work better than SVD when doing ICA for fMRI. 

(We made the same observation in analyzing this dataset.)

We then employed the entropy matching method (Li, Adali, and Calhoun 2006) 

implemented in the Group ICA fMRI Toolbox (GIFT) (Calhoun et al. 2001) to select the 

number of independent components to extract, which was suggested to be 13. Hence we 

extracted the leading 13 SSVD components, which formed a low-rank approximation of the 

fMRI data matrix as Ũ68,963×13D̃
13×13 , where the columns of Ũ are the first 13 left 

supervised singular vectors, the columns of Ṽ are the corresponding right supervised 

singular vectors, and the diagonal matrix D̃ has the 13 supervised singular values on the 

diagonal. Finally, we applied the six ICA methods (cICA–YW, Informax, fastICA, KICA, 

PCFICA, and AMICA) to the reduced data matrix, X̃ = D̃Ṽ⊤, to estimate the temporal 

independent sources and the mixing matrix Â. The corresponding spatial maps were then 

estimated as ŨÂ.

4.3 Results

Figures 9 and 10 plot, for each of the six ICA methods, the first two temporal independent 

components having the highest absolute correlation (|r|) with the right- or left-finger tapping 

functions, along with the corresponding spatial maps. These results indicate that cICA–YW 

can recover brain function-related signals of interest more accurately and sensitively than the 

other ICA methods.

Each temporal component is displayed as a black solid line whereas the task function with 

the highest absolute correlation is depicted by a red dotted line. To display the spatial map, 

we transformed the subject's anatomical brain structure into a reference image using 

FMRIB's Linear Image Registration Tool (FLIRT), which is built into FSL. Next, using 

MRIcron (Rorden 2007), several slices containing brain regions of interest were selected and 

are shown with the component graphs. Activated voxels having z < −1 were colored 

according to a blue–black color gradient and those having z > 1 were colored according to a 

red–black color gradient. A darker color represents less activation and a brighter color 

represents higher activation. The areas with z < −3 or z > 3 are colored blue and red, 

respectively.

Due to the sign ambiguity of ICA, we carefully interpreted the results taking into account 

the signs of the spatial and temporal components. For the cICA–YW method, as shown in 

the first column of Figure 9(a), the left (contralateral) primary motor cortex (PMC), colored 

red, was activated when the task was completed with the right hand (|r| = 0.8861 with the 

right-hand task). The meaning of negative z scores in fMRI data is subject to interpretation, 

although one explanation may be that they represent decreased activation in a particular 

region. Using this rationale, during the right hand task, the right PMC (blue) showed less 

activation. The second column of Figure 9(a) demonstrates that the method can detect 

activity in bilateral PMC (red) during the left hand task (|r| = 0.8399 with the left-hand task).

The two components obtained by cICA–YW display activity in the corresponding 

contralateral PMC, the lateral and medial parietal areas, and the anterior prefrontal. The 

PMC is the final output center for motor tasks and thus activation in this region is consistent 
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with known biology and recent fMRI studies demonstrating increased activity in this region 

during the performance of a variety of motor tasks (Haslinger et al. 2001; Gowen and Miall 

2007; Lewis et al. 2007). In addition, recent imaging studies have shown the lateral and 

medial parietal areas are involved in the postural configuration of the arm during the 

planning and execution of movements, spatial attention, and representing the goals and 

functions of the hands (see Vingerhoets et al. 2010). Although referred to as one of the least 

understood regions of the brain (Semendeferi et al. 2001), the anterior prefrontal region is 

implicated in maintaining multiple tasks and their scheduling of operation (Koechlin and 

Hyafil 2007). The functions underlying both the parietal and frontal regions are integral 

parts of the motor task employed in the current study and thus activity in these regions is not 

unexpected. The control subject is strongly right handed and it was interesting to note that in 

the PMC, activity during the right-hand task revealed only contralateral activity, whereas 

during the left-hand task the activity was more bilateral activity. These results suggest that 

use of the nondominant hand may require increased (bilateral) neural activity in the PMC.

Figure 9(b) depicts the components with the strongest correlation with the right-hand task (|

r| = 0.2561) and left-hand task (|r| = 0.8829) obtained by Infomax. Both components have 

weaker correlations with the task functions than those obtained by the cICA–YW method 

and also appear to include other signals (possibly physiological functions such as heart beat 

and breathing). In addition, the spatial maps appear to include some artifacts which do not 

have very clear biological meaning.

Figure 9(c) shows the components obtained by fastICA. The left column displays the 

component with the strongest correlation with the right-hand task (|r| = 0.8629). Activity is 

observed in the left contralateral PMC (red) but there also appears to be substantial 

nonspecific activity (in red) that may represent some artifact or correlation to functions 

unrelated to the task. Similar to cICA–YW, there was decreased activity in the right PMC 

(blue) during this task, but there also was increased nonspecific (blue) activity. The right 

panel of Figure 9(c) shows the best fastICA component to correlate with the left hand task. 

The correlation obtained (|r| = 0.2582) is significantly smaller than that generated using our 

cICA–YM and it is unclear what the “decreased” (blue) activity represents biologically. The 

spatial map also appears to include a potential artifact and does not match to the task 

function of interest.

The components obtained by PCFICA are displayed in Figure 10(d). The first independent 

component (IC) (|r| = 0.7403 with right-finger tapping) and the second IC (|r| = 0.7740 with 

left-finger tapping) have weaker correlations with the task functions of interest compared to 

our cICA–YW method, although this method does detect activity in appropriate PMC 

structures.

Figure 10(e) depicts the results obtained by KICA. The first IC (|r| = 0.4013 with right-finger 

tapping) and the second IC (|r| = 0.6687 with left finger tapping) have much weaker 

correlations with the task functions compared to the cICA–YW method and also appear to 

include other signals (possibly physiological functions such as heartbeat and breathing). In 

addition, the spatial maps appear to include some artifacts possibly caused by head motion.
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The two components obtained by AMICA are reported in Figure 10(f). The component 

displayed in the left column of Figure 10 has weaker correlation with the right-hand task (|r| 
= 0.3338). Although the correlation with left-hand task function (|r| = 0.9159) is higher than 

that obtained using our cICA–YM, and the activation is observed in the right contralateral 

PMC (red), there also appears to be substantial nonspecific activity (in red) that may 

represent some artifact unrelated to the task.

5. CONCLUSION

In this article we introduced a new ICA method, cICA–YW, and compared its performance 

against several other established methods, including Infomax and fastICA. The method was 

developed using the spectral domain approach to model the correlation structures of the 

latent source signals, and the parameters were estimated via the Whittle likelihood 

procedure. The advantage of taking into account the temporal correlation over the existing 

methods was clearly demonstrated. The comparative simulation studies were conducted 

using a wide variety of time series models for the source signals, including white noise, 

where our method fared very well. In a real fMRI application involving motor tasks, the new 

ICA method also detected relevant brain activities more accurately and sensitively.

We conclude this section by mentioning a possible future research direction. We intend to 

extend our method to take into account both correlation structures within each source and 

between the sources similar to those considered by subspace ICA and AMICA. Research 

along this direction could be fruitful.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of ICA in fMRI studies. Simulated fMRI data (left) are modeled as the outer 

product of three spatial maps and their corresponding temporal components (right). The time 

series plots of three randomly selected voxels are depicted on the left side of the plot.
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Figure 2. 
Simulation Study I: Performance comparison for ARMA sources. Sample sizes T = 128, 

256, 512, 1024. Number of sources M = 5. The boxplots show the Amari error between the 

true unmixing matrix and the estimated unmixing matrix for the various methods. The 

median computation time is at the top of the corresponding boxplot. The cICA–YW 

provides more accurate estimates than its competitors in a fairly short time. Infomax stands 

for the extended Infomax as described in the text.
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Figure 3. 
Simulation Study II: Performance comparison for white noise sources. Sample sizes T = 

1024, 2048. Number of sources M = 3, 5. The boxplots show the Amari error between the 

true unmixing matrix and the estimated unmixing matrix obtained by various ICA methods. 

The median computation time of each method is provided on top of the corresponding 

boxplot. The wICA and cICA–YW provide comparable estimates as the other existing ICA 

methods. Infomax stands for the extended Infomax as described in the text.
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Figure 4. 
Simulation Study III: Task function at different SNR levels. The online version of this figure 

is in color.
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Figure 5. 
Simulation Study III: The true independent temporal components, spectral densities and 

spatial maps. The four temporal signals (task, heartbeat, breathing, and noise) are displayed 

sequentially from top left to bottom right with the corresponding spatial maps. The activated 

voxels are colored as white and nonactivated voxels are colored as black.
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Figure 6. 
Simulation Study III: Comparisons of false positive and false negative rates. Four different 

SNRs are considered. False positive and false negative rates are averaged over 100 

simulation runs and displayed at left and right columns respectively. The cICA performs 

uniformly better than the other five methods.
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Figure 7. 
Simulation Study III: Spatial maps detected by cICA–YW, Infomax, fastICA, KICA, 

PCFICA, and AMICA under SNR = 1. The average spatial maps (the relative frequency of 

each voxel detected as activated out of the first five runs) are colored using white (1) to black 

(0) with gray scale. The cICA–YW detects the spatial activation much better than the other 

ICA methods.
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Figure 8. 
(a) Experimental paradigm. (b) Task functions for right/left finger-tapping (black solid lines) 

with task sine curve of main frequency (0.0033 Hz, red dashed lines).
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Figure 9. 
Real fMRI analysis: Temporal independent components (ICs) and corresponding spatial 

maps for (a) cICA–YW, (b) Infomax, (c) fastICA. The ICs (black solid lines) of the first two 

components having the largest absolute correlation (indicated) with finger-tapping tasks (red 

dash lines) are displayed. Activated areas are colored blue–black or red–black gradient in the 

spatial maps. The comparison (Figures 9 and 10) suggests that cICA–YW can recover the 

task-related signals of interest more accurately; in addition, it can detect the regions 

activated by the tasks more sensitively.
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Figure 10. 
Real fMRI analysis: Temporal independent components (ICs) and corresponding spatial 

maps for (d) PCFICA, (e) KICA, and (f) AMICA. The ICs (black solid lines) of the first two 

components having the largest absolute correlation (indicated) with finger-tapping tasks (red 

dash lines) are displayed. Activated areas are colored blue–black or red–black gradient in the 

spatial maps. The comparison (Figures 9 and 10) suggests that cICA–YW can recover the 

task-related signals of interest more accurately; in addition, it can detect the regions 

activated by the tasks more sensitively.
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Algorithm

The cICA–YW Algorithm

Initialize W̃, λ.

While the Amari error (9) is greater than the convergence threshold,

    1. Estimate the sources by S̃ = W̃X. For j = 1, . . . ,M,

        (a) Estimate ϕ j using the Yule–Walker method with the order p̃j selected by AIC.

        (b) Compute σ j
2

 according to (7).

    2. Update W̃ and λ via the Newton–Raphson updating (8), using the estimates ϕ and σ2
.
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