Skip to main content
. 2016 Aug 9;17:582. doi: 10.1186/s12864-016-2931-8

Table 2.

Performance comparison on structure-based RPI369, RPI2241 and RPI1807

Dataset Method Accuracy Sensitivity Specificity Precision MCC AUC
RPI2241 IPMiner 0.824 0.833 0.812 0.836 0.650 0.906
SDA-RF 0.648 0.653 0.630 0.665 0.296 0.687
SDA-FT-RF 0.783 0.890 0.645 0.920 0.592 0.898
RPISeq-RF 0.646 0.652 0.630 0.663 0.293 0.690
lncPro 0.654 0.659 0.640 0.669 0.310 0.722
RPI369 IPMiner 0.752 0.735 0.791 0.713 0.507 0.773
SDA-RF 0.707 0.699 0.727 0.689 0.416 0.754
SDA-FT-RF 0.693 0.664 0.784 0.602 0.396 0.728
RPISeq-RF 0.704 0.705 0.702 0.707 0.409 0.767
lncPro 0.704 0.708 0.696 0.713 0.409 0.740
RPI1807 IPMiner 0.986 0.982 0.993 0.978 0.972 0.998
SDA-RF 0.972 0.970 0.981 0.962 0.944 0.995
SDA-FT-RF 0.972 0.955 0.997 0.940 0.944 0.995
RPISeq-RF 0.973 0.968 0.984 0.960 0.946 0.996
lncPro 0.969 0.965 0.981 0.955 0.938 0.994

The positive pairs are all from original papers. The negative pairs for RPI1807 is from original paper

The boldface indicates this measure performance is the best among the compared methods for individual dataset