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Abstract

Genome-wide association studies (GWAS) have identified hundreds of genetic variants associated with complex

traits and diseases. However, elucidating the causal genes underlying GWAS hits remains challenging. We applied
the summary data-based Mendelian randomization (SMR) method to 28 GWAS summary datasets to identify genes
whose expression levels were associated with traits and diseases due to pleiotropy or causality (the expression level
of a gene and the trait are affected by the same causal variant at a locus). We identified 71 genes, of which 17 are

follow-up, for example in functional studies.

Mendelian randomization (SMR), Complex traits

novel associations (no GWAS hit within 1 Mb distance of the genes). We integrated all the results in an online
database (http://www.cnsgenomics/shiny/SMRdb/), providing important resources to prioritize genes for further
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Background

Genome-wide association studies (GWAS) have identi-
fied thousands of genetic loci associated with various
complex traits, disorders, and diseases [1, 2]. The GWAS
paradigm exploits the linkage disequilibrium (LD) correl-
ation structure of the genome, which means that the ma-
jority of the variation in the genome can be captured in a
cost-effective way by genotyping only a few hundred thou-
sand variants, followed by imputation of non-genotyped
variants using a densely genotyped reference panel [3].
However, the LD structure also means that identified asso-
ciations frequently point to genomic regions that harbor
many genes, and it is extremely difficult to prioritize
among these genes to identify the most functionally rele-
vant genes using GWAS data alone. Laboratory-based
follow-up of the associated regions is costly and prohibitive
given the number of putatively causal variants in a typical
genome-wide significant locus. GWAS of gene expression
levels has allowed identification of expression quantitative
trait loci (eQTL) [4—6]. Several recent methods [7—11] have
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used analytical approaches to integrate eQTL and complex
trait associations as strategies to prioritize genes for further
studies. In this study, we apply the recently developed sum-
mary data-based Mendelian randomization (SMR) method
to 28 complex traits (including diseases), which have
GWAS summary statistics available in the public domain,
to obtain a list of genes to prioritize for further follow-up
such as functional studies, and develop a database to query
all the data and results. We use the SMR method because:
it implements a transcriptome-wide association analysis in
a formal statistical framework using summary data so that
the statistical power is increased by using the latest GWAS
and eQTL data of very large sample size; it provides a test
to distinguish pleiotropy (or causality) from linkage (see
below for more details) [11]; and it is implemented in a
user-friendly software tool [12, 13].

Construction and content

Details of the SMR method can be found in the Zhu et al.
paper [11]. In brief, SMR applies the principles of Mendel-
ian randomization (MR) to jointly analyze GWAS and
eQTL summary statistics in order to test for association be-
tween gene expression and trait due to a shared causal vari-
ant at a locus. Mendelian randomization is an instrumental
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variable analysis approach that uses genetic variant(s) as in-
strumental variable(s) (Z) to test whether an exposure (X)
has a causal effect on an outcome (Y) [14, 15]. Equivalently,
it is an analysis to test whether the effect of Z on Y is medi-
ated by X (a model of Z - > X - >Y). The instrumental vari-
able estimate of the effect of X on Y (bxy) can be expressed
as bxy = bzy/bzx, where byy is the effect size of Z on Y and
byx is the effect size of Z on X [16]. This approach is usu-
ally used to test for the causative effect of a modifiable risk
factor on health outcomes but the same principle can be
used to test whether the effect size of a SNP (Z) on a trait
(Y) identified from GWAS is mediated by the expression
level of a gene (X). The SMR test [11] is a two-sample MR
approach [17, 18]. It allows us to estimate and test byy
using summary data from independent studies [11]. For the
purpose of testing for the association between gene expres-
sion and trait, it uses the estimate of SNP effect on the trait
(bzy) from GWAS summary data and the estimate of SNP
effect on gene expression (bzx) from summary data of an
independent eQTL study. In this case, trait is the outcome
(Y), gene expression is the exposure (X), and the top cis-
eQTL that is strongly associated with gene expression is
used as the instrument (Z) (we used cis-eQTL with Peqrr,
<5e-8 in this study). Here we use “association” rather than
“causal association” because previous results [11] suggest
that there are at least three models consistent with a signifi-
cant association from the SMR test using only a single gen-
etic variant. These models are causality (Z ->X ->Y),
pleiotropy (Z ->X and Z ->Y), and linkage (Z; ->X, Z,
->Y, and Z; and Z, are in LD). We provide details below
of a test to distinguish pleiotropy (or causality) from linkage
that is of less biological interest. The purpose of this study
is to identify genes whose expression levels are associated
with complex traits due to a shared causal variant. We
therefore do not further distinguish between causality and
pleiotropy (which is also impossible to achieve using only
the cis-eQTLs).

As mentioned above, significant SMR results could also
reflect linkage (i.e. the top associated cis-eQTL being in LD
with two distinct causal variants, one affecting gene expres-
sion and the other affecting trait variation), which may be of
less interest, at least in the first round of gene prioritization.
To exclude SMR results that may reflect linkage, Zhu et al.
[11] proposed the heterogeneity in dependent instruments
(HEIDI) test, which considers the pattern of associations
using all the SNPs that are significantly associated with gene
expression (eQTLs) in the cis-region. The null hypothesis is
that there is a single causal variant affecting trait and gene
expression (pleiotropy or causality), which is of biological
interest and should be prioritized for follow-up studies. The
alternative hypothesis is that gene expression and trait are
affected by two distinct causal variants, which is of less bio-
logical interest. Under the null hypothesis that there is a sin-
gle causal variant, byy estimated at any of the cis-SNPs that
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are associated with gene expression (e.g. SNPs with Peqrr.
<1.6 x 107, equivalent to y* > 10) is expected to be equal to
that estimated at the top associated cis-eQTL (see Equation
7 of Zhu et al. [11] for more details). Therefore, it is equiva-
lent to test whether there is heterogeneity in byy estimated
at the significant cis-eQTLs (null hypothesis: no heterogen-
eity, causality or pleiotropy model; alternative hypothesis:
heterogeneity, linkage model). Note that the HEIDI test
takes into account non-independence of cis-eQTLs due to
LD (using individual-level data from a reference sample to
estimate LD between the cis-SNPs). Probes that show evi-
dence of heterogeneity (e.g. Pyemp; <0.05) are rejected.

The previous SMR study analyzed three traits (body
mass index (BMI), height, and waist-to-hip ratio ad-
justed by BMI) and two diseases (rheumatoid arthritis
and schizophrenia) and identified 21 novel genes (genes
that passed the SMR and HEIDI tests and that are lo-
cated >1 Mb from the nearest GWAS hit) [11]. In this
study, the SMR analysis is extended to an additional 28
complex traits and diseases (Table 1) which have sum-
mary data available in the public domain from large-
scale GWAS. The results from the SMR analyses are
made available in an online query database (http://
www.cnsgenomics.com/shiny/SMRdb/) [13], which is
implemented in R Shiny.

Utility and discussion

After quality control (QC) steps [11], associations between
5967 probes and 757,479 SNPs from the blood gene ex-
pression study by Westra et al. [5] were used in the analysis.
The Westra eQTL summary data are available in the public
domain and on the SMR website [12]. It should be noted
that all the probes included in the analysis have at least a
cis-eQTL at Peqyrr, <5 x 1078, For each probe, the top asso-
ciated cis-eQTL was used as the instrument for the SMR
test. The SMR test was performed for each of the 5967
probes on 28 traits and disorders/diseases (Additional file 1:
Table S1). The genome-wide significance level for the
SMR test, corrected for multiple testing, is defined as
0.05/5967 = 8.4 x 107%. For probes with Pgyr <8.4 x
107%, we conducted the HEIDI test and retained for
further investigation only those probes with little evidence
of heterogeneity Pygp; =0.05. All the analyses were per-
formed using the SMR software tool [11, 12]. We particu-
larly emphasized results that are considered to be novel, i.e.
no previously identified SNP, reported as genome-wide sig-
nificant in the primary GWAS paper, within a 1 Mb
window of the probes. We identified 247 gene-trait associa-
tions (271 probes) with Psyr <8.4 x 10° (Additional file 1:
Table S2). After application of the HEIDI test (Pygipi
>0.05), this was reduced to 71 gene-trait associations
(77 probes) (Additional file 1: Table S3). Of these, 17
gene-trait associations were considered novel (Table 2
and Additional file 1: Table S4).
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Table 1 GWAS information and SMR results for 28 complex traits and diseases

Trait/Disease N for quantitative traits Number of genes (probes) Number of genes (probes) not Reference
or Neases/Neontrols GWS for the SMR test rejected by the HEIDI test
Attention deficit and hyperactivity 2787/2635 - - [22]
disorder (ADHD)
Alzheimer's disease (ALZ) 17,008/37,154 7 (8) 22 [23]
Autism spectrum disorder (ASD) 13,088/16,664 - - [24]
Bipolar disorder (BIP1) 7481/9250 (1) (1) [25]
Major depressive disorder (MDD) 9240/9519 - - [26]
Inflammatory bowel disease (IBD) 12,882/21,770 37 (40) 14 (14) [19]
Crohn's disease (CD) 5956/14,927 29 (33) 11 (12) [19]
Ulcerative colitis (UC) 6968/20,464 17 (17) 6 (6) [19]
Coronary artery disease (CAD) 60,801/123,504 9 ( 5 (5) [27]
Diastolic blood pressure (DBP) 69,395 5( - [28]
Systolic blood pressure (SBP) 69,395 4 ( - [28]
High-density lipoproteins (HDL) 93,561 38 (43) 12 (13) [29]
Low-density lipoproteins (LDL) 89,138 28 (31) 6 (7) [29]
Total cholesterol (TC) 93,845 40 (43) 8(9) [29]
Triglycerides (TG) 90,263 22 (25) 2(2) [29]
Type-2 diabetes (T2D) 12,171/56,862 - - [30]
Fasting glucose (FGLUCOSE) 38,422 4 (5) - [31]
Fasting insulin (FINSULIN) 23,823 - - [31]
Cigarettes per day (CIGPERDAY) 38,181 2(3) 1) [32]
Ever smoked (EVERSMOKED) 74,035 - - [32]
College completion (COLLEGE) [33] 95,427 1(1) 1(1) [33]
Education attainment (EDUYEARS) 101,069 303 3(Q3) [33]
Intelligence quotient (1Q) 17,989 - - [34]
Agreeableness (AGREE) 17,375 - - [35]
Conscientiousness (CONS) 17,375 - - [35]
Extraversion (EXTRAVERT) 17,375 - - [35]
Neuroticism (NEUROTIC) 63,661 - - [36, 37]
Openness (OPEN) 17,375 - - [35]

Total

247 (271)

71.(77)

Probe: a specific DNA sequence designed on a gene expression array to capture a transcript

There were 15 genes associated with more than one trait
or disease (Additional file 1: Table S5). Where a gene was
associated across more than one trait, there was a strong
correlation between the traits, with only two cross trait
associations being between disparate traits or diseases.
Crohn’s disease (CD) and ulcerative colitis (UC) are
chronic gastrointestinal disorders that represent as in-
testinal inflammation; collectively they are known as in-
flammatory bowel disease (IBD). GWAS to date have
identified 200 loci associated with IBD [19], 71 with CD
[20], and 47 with UC [21], as well as evidence for trans-
ancestry shared genetic risk for IBD [19]. The SMR ana-
lyses predicted ten gene targets for a combination of IBD,
CD, and UC (Additional file 1: Table S6), of which four

were novel gene associations (in total there were two
novel gene associations for CD and three each for IBD
and UC). The other traits that shared gene associations
were the lipids, i.e. high-density lipoprotein (HDL), low-
density lipoprotein (LDL), and total cholesterol (TC)
(Additional file 1: Table S7).

The results from this analysis can be queried and
viewed in the online application [13]. Results from the
initial Zhu et al. study are also included in this database.
We intend that as more GWAS summary data becomes
available, SMR analysis will be conducted using the sum-
mary data and the results database will be updated ac-
cordingly. This application enables users to query the
database by trait, gene, or both and apply thresholds



Table 2 Seventeen novel genes identified in the SMR Analysis. Novel genes are genes that have passed both the SMR and HEIDI tests (Psyr <8.4E-06 and Pg o 2 005), have not
previously been identified as GWS, and no GWS loci within 1T Mb window reported in the primary GWAS paper (full results are given in Additional file 1: Table S4)

Trait Probe ID Gene Top cis-eQTL Allele Freq PeatL Pawas Psmr Phepi nsnp
BIP1 ILMN_1665280 SPCS1 rs998909 0420 2.1E-39 6.8E-07 34E-06 0.15 155
CAD ILMN_1713380 EIF2B2 rs175016 0475 1.8E-278 4.7E-06 5.6E-06 0.23 189
ILMN_1712430 ATP5G1 rs1962412 0.281 1.3E-44 74E-07 3.0E-06 0.27 127
(@b ILMN_1718852 PLCLT rs2117339 0486 6.76-30 8.0E-07 6.0E-06 0.14 216
ILMN_2122952 CISD1 rs1199098 0214 <1.0E-300 1.5E-06 1.7E-06 0.17 241
ILMN_2122953 rs1550773 0.212 <1.0E-300 2.0E-06 2.2E-06 0.13 217
COLLEGE ILMN_1723684 DARC rs12075 0456 4.8E-107 33E-06 54E-06 047 110
EDUYEARS ILMN_1718023 APEH rs3197999 0.291 1.1E-27 5.7E-07 5.5E-06 0.08 88
ILMN_2343048 ABCB9 rs1615350 0.248 9.1E-43 2.0E-06 7.2E-06 0.75 53
ILMN_1738369 TUFM rs8049439 0405 <1.0E-300 1.5E-07 1.7E-07 0.11 37
HDL ILMN_1684227 GPR146 11997243 0.155 2.2E-300 24E-07 3.1E-07 0.22 130
IBD ILMN_1697409 TNFRSF14 15734999 0483 2.1E-90 2.3E-07 54E-07 0.98 64
ILMN_1727709 GPBAR1T 152292550 0405 83E-43 6.3E-08 4.9E-07 024 109
ILMN_1684628 ZFP90 151182968 0219 <1.0E-300 3.3E-06 3.6E-06 0.90 311
LDL ILMN_1718706 ERALT 15901975 0.202 6.5E-46 22E-06 6.9E-06 0.19 66
uc ILMN_1744713 PARK7 153766606 0.173 1.1E-53 5.7E-08 3.0E-07 0.09 195
ILMN_1727709 GPBAR1 152292550 0405 8.3E-43 1.2E-07 8.1E-07 0.12 109
ILMN_1683811 TNPO3 rs3807306 0496 14E-150 2.3E-06 3.3E-06 0.69 125

Peqr p value of the top associated cis-eQTL of the probe, Pgwas GWAS p value of the top cis-eQTL, Psug p value for gene-trait association from the SMR test, Pgip p value from HEIDI test to indicate whether the gene-trait

association is due to a single shared genetic variant (the smaller Py the more likely that there are more than one genetic variant)
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based on the p value from the SMR method and the
HEIDI test. In addition, Manhattan plots are given based
on the p value from the SMR analysis and regional asso-
ciation plots are provided for those probe-trait associa-
tions that pass both the SMR and HEIDI tests.

Conclusion

SMR, as indicated by the results, provides a means of
using summary statistics from GWAS and eQTL data
to prioritize likely functionally relevant genes within
previously identified regions of association and in
some cases identify novel gene associations.

Additional files

Additional file 1: Table S1. GWAS information. Table S2. SMR results
(Psyi <84 % 107°). Table $3. SMR and HEIDI results (P.gp 20.05). Table S4.
Novel genes. Table S5. Genes across more than one trait. Table S6. IBD, CD,
and UC gene associations. Table S7. HDL, LDL, and TC gene associations.
(XLSX 141 kb)
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