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Abstract

Vascularization of large bone grafts is one of the main challenges of bone tissue engineering 

(BTE), and has held back the clinical translation of engineered bone constructs for two decades so 

far. The ultimate goal of vascularized BTE constructs is to provide a bone environment rich in 

functional vascular networks to achieve efficient osseointegration and accelerate restoration of 

function after implantation. To attain both structural and vascular integration of the grafts, a large 

number of biomaterials, cells, and biological cues have been evaluated. This review will present 

biological considerations for bone function restoration, contemporary approaches for clinical 

salvage of large bone defects and their limitations, state-of-the-art research on the development of 

vascularized bone constructs, and perspectives on evaluating and implementing novel BTE grafts 

in clinical practice. Success will depend on achieving full graft integration at multiple hierarchical 

levels, both between the individual graft components as well as between the implanted constructs 

and their surrounding host tissues. The paradigm of vascularized tissue constructs could not only 

revolutionize the progress of bone tissue engineering, but could also be readily applied to other 

fields in regenerative medicine for the development of new innovative vascularized tissue designs.
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Introduction

Current medical practice still faces significant challenges in treating large bone defects 

caused by trauma or disease. Developing bone grafts that can restore vascular function to the 

regenerating bone tissue has arguably been the most difficult aspect to address.104 The main 

causes of large graft failure are inner graft necrosis and lack of integration with the host 

tissue. Host tissue remodeling capabilities for severely damaged vascular beds are 

limited,115 and integrating a fully functional vasculature deep inside bone grafts is 
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technically and biologically challenging. Incomplete and inhomogeneous graft viability is 

therefore a problem, and generally results in premature failure of the implanted constructs.

Bone is a very complex tissue with multiple intricate hierarchical architectures (Figure 1). 

The innermost region consists of cancellous bone tissue, which is comprised of a highly 

porous layer of rigid struts (trabeculae), red marrow tissue (site of blood cell formation) and 

blood vessels. Surrounding the cancellous bone is dense cortical bone, which has 

mechanical properties that can be up to two orders of magnitude greater than those of the 

inner trabecular region.5 Enveloping the outside of the bone structure is the periosteum, a 

thin highly vascularized membrane that contains the osteoblast precursor cells responsible 

for forming new bone tissue. The basic units of cortical bone are layered cylindrical 

structures called osteons, which are joined together by interstitial lamellae. Vascular 

networks spread throughout the cortical bone structure via transverse (Volkmann) and 

longitudinal (Haversian) canals.16, 77 Several specialized cell types such as osteoblasts and 

osteoclasts are interspersed within the tissue in order to carry out the biological processes 

necessary for bone remodeling and homeostasis. At the microscale, cells and vascular 

networks are separated by distances ranging from 100 to 300 μm,25, 33, 97, 125 which 

guarantees effective nutrient supply and waste removal to individual cells.

All bones share common constituents: an extracellular matrix (ECM), signaling factors, and 

bone cells.12 Bone ECM is an organic and inorganic composite framework that gives the 

tissue its mechanical strength and toughness and provides a surface for new bone deposition. 

Molecular signaling factors included in the ECM actively promote the differentiation of 

precursor or progenitor cells into functional bone cells. These bone cells (osteoblasts, 

osteoclasts, and osteocytes) in turn regulate the formation and remodeling of the other 

components of bone. Thus, natural bone is considered to be osteoconductive, osteoinductive, 

and osteogenic.3

Any graft intended to repair or regenerate bone should also express one or more of these 

properties.8 As a result, bone tissue engineering (BTE) has traditionally focused on 

combining osteoconductive scaffolds, osteoinductive growth factors, and osteogenic 

precursor cells or osteoblasts to repair and regenerate bone. It is worth noting that current 

BTE efforts are not developed in parallel with the innovations in vascular tissue engineering, 

while state-of-the-art vascular substitutes are not designed for bone applications. This severe 

disjunction between bone and vascular tissue engineering overlooks the inherent importance 

of well-developed vascular beds in the skeletal system. As a fact, nutrient and waste 

exchange between individual cells and capillary vessels in bone is limited to distances of 

100 to 300 μm.25, 33, 97, 125 Because designing around this diffusion limit is vital for graft 

success, vascularization is arguably the greatest challenge in tissue engineering and 

regenerative medicine, including BTE. In addition, the difference between BTE and other 

tissue engineering fields is that the former requires integration between components having 

multiple order-of-magnitude differences in mechanical properties. To date, limited successes 

have been seen in clinical implementation of BTE approaches because of the challenge of 

reproducibly achieving hierarchical integration of the graft components, from cell-cell 

interactions to macroscale incorporation into the host tissue. In particular, vasculature repair 

and integration must be achieved at multiple levels: larger perfusable blood vessel grafts are 
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needed for restoration of blood flow into the site of injury, while smaller microvascular beds 

are needed to provide thorough distribution of blood across the entire scaffold volume, 

sustaining osteogenesis and osseointegration until bone function is restored (Figure 2). In 

fact, the consensus through all tissue engineering fields is that improved vascularization is at 

the crux of all future scaffold designs.36, 47, 61

We83, 91 and others58, 90 have already addressed the necessity to target the limitations in 

current approaches for BTE, but here we emphasize integrative strategies for complete 

restoration of bone function. We will examine current surgical treatments for large 

segmental bone defects, BTE approaches for the design of synthetic vascularized bone 

grafts, strategies for translational implementation of these constructs into clinical practice, 

and future perspectives on vascular BTE.

Current surgical approaches to vascularized bone repair

Annually, about 2.2 million bone graft procedures are performed around the world, with 

more than half a million in the United States alone, at a cost surpassing $2 billion.76 

Currently, in clinical settings, there are three types of bone grafts used to repair defects in 

long bones: synthetic bone void fillers, allografts, and autografts.124 Synthetic fillers can 

provide an osteoconductive scaffold into which bone depositing cells migrate and deposit 

new bone tissue.53 Allografts are made of decellularized bone tissue, harvested from other 

human donors, that still possess ECM and their associated growth factors that are able to 

recruit host bone cells and stimulate bone deposition.30 As such, allografts demonstrate 

osteoinductivity in addition to the osteoconductivity displayed by synthetic fillers. But the 

gold standard of bone repair is autografting,106 which involves removing a section of the 

patient’s own bone tissue from elsewhere in the body in order to transplant it at the defect 

site, providing a graft with all three formative bone properties and a pre-existing vascular 

network. Autologous grafts constitute the most common surgical approach to large bone 

defect repair. Harvesting autografts from highly vascularized regions of bone tissue can 

improve revascularization of the bone defect. For example, vascularized fibular grafting 

(Figure 3A) takes advantage of the small vessels from harvested fibula grafts to repair bone 

defects by microvascular anastomosis.111 Free vascularized flap techniques, including those 

from the iliac crest, scapula, and radial forearm, can help restore the vascularity of the 

damaged bone and its surrounding tissue.17 However, autograft supply is limited and can 

cause pain, damage, or morbidity at the donor site.11 Graft usage is also restricted by 

outcome unpredictability, which increases when bone defect size exceeds 4 cm.74

Some clinical approaches that have been adopted to fix larger segmental bone defects are 

induced membranes,112 distraction osteogenesis,93 insertion of vascular bundles,48 and 

cement casting.13 The induced membrane, for example (Figure 3B), is one of the methods 

used to increase the density of the vasculature surrounding the defect site and has been 

reported to successfully repair large segmental defects up to 20 cm.73 For this technique, a 

polymethyl methacrylate cement block is placed on the bone defect and is surrounded with 

the adjacent soft tissues. The host slowly creates a membrane rich in vasculature around the 

block, which is then removed and replaced with an autograft. Bone repair is then prompted 

by host remodeling in this vascularized environment. The main disadvantages of this method 
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are the required burdensome second operative procedure, potential for infection, and the 

possible need of repeated debridement.46 Another applied technique for restoring bone 

function is distraction osteogenesis. In this procedure the spacing of the defect is slowly 

augmented by mechanical means to control the formation of new bone and new vascular 

beds (Figure 3C).35 The main limitations involve the slow recovery period, the long duration 

of treatment time with a cumbersome mechanical apparatus in place around the affected 

limb, associated pain from the surgical method, possibility of infection at the site of injury, 

and relatively high rates of failure.14 In addition, the limited availability of vascular bundles 

for massive extremity trauma, and lack of remodeling capability of non-degradable cements 

are the drawbacks for these approaches.

The methods discussed above have shown the ability to treat bone with a certain degree of 

success. The future of clinical treatments will depend on decreasing surgical complexity, 

accelerating the time of regeneration, and reducing the potential for treatment failure. To this 

end, BTE constructs have been the focus of recent research.

Tissue engineering approaches for vascularized bone repair

Traditional approaches

Initially, the field of BTE focused on synthesizing biomaterials to use as bone scaffolds or 

fillers; however, the focus has been shifting gradually toward understanding the role that 

cells and biological cues play in the reestablishment of bone functionality and structure. The 

current methodologies involve studying the components of the “golden triad” of tissue 

engineering: scaffolds, cells, and signals.

Rigid porous scaffolds form the basic support frames of vascularized BTE constructs. The 

balance between porosity and mechanical strength is the key factor in the fabrication of 

scaffolds.102 Several methods have been used for porous scaffold fabrication, including 

molding,57 foaming,21 leaching,64 template-casting,45 machining,27 layer-by-layer assembly 

(LBL),71 lithographic techniques,67 and additive manufacturing.107 Metals, such as 

titanium,18 tantalum,118 and magnesium,109 ceramics such as calcium phosphate,113 and 

polymers ranging from polyesters,79 polyurethanes,15 and polycarbonates,65 to more 

specialized chemistries, such as polyanhydrides,99 polyphosphazenes,86 and polypropylene 

fumarates,23 have provided a basic array of materials that can be used for scaffold 

fabrication. By themselves, however, rigid scaffold frameworks cannot promote the full 

biofunctionality that a vascularized BTE construct requires. We will discuss our perspectives 

on improving these traditional approaches in upcoming sections.

Similar to the rigid bone scaffolds, synthetic tissue engineered vascular grafts have also been 

made from a variety of tough biocompatible and hemocompatible materials, though it is 

worth noting that traditional BTE design has not included tissue engineered vessel grafts as a 

component. Elastomers have shown excellent properties for bone scaffold and vascular graft 

fabrication due to their biocompatibility, resorbability, and multiaxial load-bearing elastic 

properties.80 For example, Yadong Wang and coworkers developed a heparin-coated porous 

polyglycerol sebacate (PGS) vascular graft with an outer polycaprolactone (PCL) shell for 

added mechanical strength.117 More recently, we developed and characterized elastomeric 
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hollow fiber membranes as small diameter vascular grafts,81 with intended use in BTE 

constructs to initiate and establish vascular beds.

Hydrogels and other soft materials have been proposed as matrix candidates for osteogenesis 

and angiogenesis due to their capacity to be loaded with cells and signals at relatively high 

density and their ability to sustain cell viability for relatively long periods of time.22 

Biologically derived gels, such as collagen,26 elastin,6 hyaluronic acid,95 chitosan,51 and 

alginate87 provide excellent biocompatibility, but low availabilities and high costs are 

usually associated limitations of these materials. Synthetic materials22 and synthetic 

biologically derived composites49 have been able to relieve these issues. However, since a 

hydrogel structure is easy to disrupt, integration with the host tissue and interface 

stabilization becomes a critical problem.22

Cells constitute the biologically functional units of vascularized BTE constructs. Osteoblasts 

and stem cells are the major causative agents of bone tissue formation, and they have 

consistently been shown to promote bone formation inside scaffolds. MSCs,122 endothelial 

progenitor cells (EPCs),70 human umbilical vein endothelial cells (HUVECs),43 embryonic 

stem cells,72 adult human circulating CD34+,75 and even adipose-derived stem cells121 have 

been successfully tested for assisting vascularization and mineral deposition inside scaffolds. 

The angiogenic potential of endothelial cells (ECs) has been observed on a number of 

scaffolds.105, 116 Smooth muscle cells (SMCs)89 or pericytes9 are required for proper 

function, strength, and structural stability of endothelialized neovessels in scaffolds.84, 123 

Numerous studies have been performed on cell mono- or co-cultures in scaffolds for 

improved vascular formation.1, 20, 44, 70 Even though cells in scaffolds can promote the 

formation of microvascular networks, it usually takes a relatively long period, from days to 

weeks, to develop functional vasculature in vitro and in vivo,7, 43, 44 so ischemia could set in 

before this process is sufficiently developed to restore blood perfusion.55 As a result, 

cellularized constructs have met with limited implementation in clinical practice due to long-

term loss of viability and adverse host responses.52 More research is needed to understand 

and optimize the underlying mechanisms of vascular tissue maturation and organization, 

both in vivo and in vitro, from cells inside the scaffold.60, 103, 104

Cellular responses have been shown to be highly regulated by biochemical, biomechanical 

and biophysical signals.100 Growth factors (GFs) are biological macromolecules that direct 

cell growth, differentiation, and migration by binding to receptors located on the cell 

membrane to conduct signals between cells. A number of powerful GFs have been used to 

induce differentiation in cells. For example, bone morphogenetic proteins (BMPs), including 

bone morphogenetic protein-2 (BMP-2)40, 42 BMP-4,24 BMP-6,85 and BMP-710 have been 

used to promote osteogenic and chondrogenic differentiation of cells on scaffolds. Fibroblast 

growth factor-2 (FGF-2)101 and vascular endothelial growth factor (VEGF)119 have been 

used to enhanced tissue and vascular growth in ceramic scaffolds. Other derived molecules, 

such as transforming growth factor beta-1 (TGF-β1),96 insulin growth factor-1 (IGF-1),108 

and growth factor derived peptides82 have also shown to induce osteogenic and vasculogenic 

responses from progenitor cells. GF combinations have also been studied due to synergistic 

effects.94 Other stimuli, such as physicochemical features,100 electrical impulses,37 

temperature,32 and mechanical stresses,100 can also direct cell proliferation and 
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differentiation. Collectively, spatiotemporal control of cell and signal presentation has been 

investigated as a strategy to facilitate tissue formation and scaffold remodeling.88 One 

promising scheme is to mimic biological cascades by sequential delivery of growth 

factors50, 68 or cells39, 44, 78, 92 to enhance tissue regeneration as compared to approaches 

involving simultaneous GF release68 or uniform cell loading.39

The next step: Integration

Although promising results have been obtained, it has become increasingly evident that new 

research should be aimed at hierarchical integration of bone and vascular devices to yield 

fully functional BTE constructs with enhanced biological properties that can promote 

concurrent osteogenic and angiogenic growth and seamlessly assimilate with the host bone 

matrix and vasculature. To achieve tissue regeneration and integration, cells and signals need 

to be incorporated into the constructs in a fashion that can establish stable graft-host tissue 

interfaces, and facilitate instant or rapid blood perfusion across the constructs to sustain 

cellular viability under the mechanical loading of daily activity.38 It is worth noting that the 

final integration is probably only achievable by the remodeling of the regenerating bone 

during functional loading. A promising strategy for engineering vascularized bone tissue 

constructs would be the incorporation of cell-laden hydrogels and synthetic tissue 

engineered vascular grafts into a porous osteoconductive rigid frame in a hierarchical 

manner. More specifically, the hydrogel can be used to deliver signals and encapsulate and 

support the cells necessary for osteogenesis and microvascularization, the large scale tissue 

engineered vascular grafts can accommodate immediate blood supply as well as initiate and 

establish microvascular beds in hydrogel microenvironment, and the rigid frame offers 

improved structural guidance and mechanical integrity (Figure 4). The question, however, is 

how to reconcile the properties of different components efficiently to achieve maximum 

integration between each other and with the host.

In general, a mechanically robust frame can improve integration to the host by stabilizing 

interfaces between engineered and host tissues under weight-bearing conditions. The 

scaffold should provide structure and mechanical properties resembling those of bone to 

promote ideal integration and facilitate load transfer. For this, a graded structure would be 

favored over a homogeneously designed scaffold. Although uniform porosity is the 

dominant trend in rigid scaffold fabrication, we and others have demonstrated that a scaffold 

with a pore size gradient could match the architecture of bones by combining a highly 

porous component that promotes host tissue ingrowth with a less porous component that 

provides load-bearing support to make an ideal construct for restoring the functionality of 

damaged bone.69, 120 A porous design also allows for addition of cell-laden soft materials, 

which can facilitate and guide remodeling to produce new bone tissue with properties 

similar, or ideally, identical, to that of the host. In order to better mimic the properties of 

bone, a top-down approach could also be adopted, in which microstructures could be 

actually incorporated into the bone scaffold frame to facilitate osseous tissue remodeling and 

inclusion, ingrowth, or development of new vascular beds.41, 56, 83, 91 However, it remains to 

be determined if mimicking the complex geometry of bone as closely as possible would be 

necessary or if it would represent an improvement on graded scaffolds.
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Soft hydrogel fillers can deliver and control the 3D spatial distribution of encapsulated or 

migrating cells.110 These cells, in turn, can grow to form mineralized matrix and vascular 

structures inside scaffolds. However, it is very challenging to preform a complex hydrogel-

based vasculature within a mechanically-sound macroporous scaffold for load-bearing 

applications.43, 114, 123 Moreover, hydrogel-based microvascular beds are not suitable for 

surgical anastomosis to major vessels due to low mechanical strength. Notwithstanding these 

limitations, hydrogels are so far the most promising alternative to creating preformed 

synthetic vascular networks on a relatively small scale. By customizing and conditioning 

these soft matrices for a particular vascular response in cells, networks allowing 

microcirculation through the scaffolds are possible. Though tissue engineered vessel grafts 

are traditionally not incorporated into and designated for BTE, instant or rapid blood 

perfusion across the constructs and the interface of graft-host tissue is highly desirable to 

overcome the long-lasting problems of necrosis at the center of large grafts. As such, the 

incorporation of connectable, perfusable vessel graft beds into the newly designed 

vascularized bone constructs would be a promising approach and present a future direction 

for vascularized BTE. The new generation vascular substitutes within the scaffold require 

sufficient hemocompatibility to maintain patency and compliance to withstand blood 

pressure and body loads.28 More importantly, they should possess remodeling capabilities to 

initiate and form functional vessel networks and to integrate with the host vessels, leading to 

rapid efficient blood perfusion through the construct.62 As indicated before, several 

materials have been used for development of synthetic grafts, which can be designed to 

exhibit the aforementioned characteristics. However, fabrication of functional perfusable 

vessels with improved vessel compatibility and bioremodeling properties are necessary for 

the development of future vascularized BTE constructs. For example, L’Heureux59 and 

Niklason63 developed tissue engineered blood vessels from deposited vascular ECM which 

was left behind as autogenous cells were washed away after growth in a polymer mesh. This 

deposited ECM presents a biocompatible environment with sufficient bioactivity to support 

neovessel stabilization and vasculogenic development.19 In another recent study, Gurtner 

and coworkers were also able to sustain the viability of explanted vascular beds ex vivo, and 

seed them with progenitor cells to create neo-organs for implantation.29 Suturable explanted 

beds such as these ones can offer a fast way to connect to the host vasculature, provide a 

stable blood supply, and support viability inside BTE constructs. The feasibility of this is 

noted in macrochanneled tissue engineered constructs, like those fabricated by Akita2 and 

Haholu,31 in which relatively large host vessels were directly inserted into the channels to 

promote vascular formation and infiltration. Moreover, Kneser showed high vascular 

development on scaffolds, consisting of arteriovenous loops integrated to processed bovine 

cancellous bone, implanted on rat femoral defects.54, 55 These approaches could bridge gaps 

between tissue engineering and modern surgery.

Overall, mechanical, chemical, and biological gradients will constitute the base for seamless 

integration inside the constructs. The structural integrity of vascular networks included in the 

scaffold design will depend on the level of integration between the rigid scaffold frame and 

the developing vascularized matrix. A successful BTE construct would contain the graded 

structure of bone tissue and the branching structure of vessel networks, from major vessel 

conduits to small capillary beds inside the scaffold, working synergistically to promote both 
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osteogenesis and angiogenesis. A number of BTE construct designs are possible by going 

through this approach. We have proposed integrating connectable vascular graft beds into a 

rigid channeled macroporous composite scaffold with infiltrated cell-laden hydrogels, 

aiming at a surgical implant that can both promote angiogenic growth and supply blood 

immediately throughout the construct. Other possible designs could be the combination of 

rigid scaffolds and computer-designed or explanted decellularized vascular beds that could 

provide the thorough coverage needed for fully vascularized constructs.

Translation and implementation

Regulations and standards

The testing of medical devices must observe the needs of the medical community, based on 

generally approved standards and regulations. There have been a number of agencies, local 

and international, that have regulated the design of new bone scaffolds. However, there are 

variations between the standards set by different regulatory agencies.4, 34 Currently, 

concerted efforts have been taken to produce more standardized protocols and increase the 

efficiency of evaluation. For example, there has been a call to simplify and expedite the 

evaluation of specialized medical devices (requiring special control and marketing 

assessment) without compromising their strict risk evaluation.66 Moreover, American 

regulators have moved towards adding vascularized composite allografts in the list of 

“organs”, which will lead to more generalized definitions and enhance the evaluation 

process.98 It is to be expected, thus, that vascularized construct regulation and eventual 

implementation will closely depend on the coordinated work of regulatory agencies and 

governments.

Clinical evaluation of implanted constructs

Following the in vivo pre-clinical implementation of a novel vascularized BTE construct, it 

is important to evaluate whether the development constitutes a significant improvement over 

current methods of treatment. Methods of construct evaluation focus on three levels of graft 

integration with surrounding tissues (Figure 5). The first level corresponds to 

osseointegration. This stage considers the degree of bone tissue repair and regeneration, 

which is heavily dependent on interface stability and cell activity. The second level 

corresponds to vascular integration. It is necessary that blood flow be seamlessly restored 

throughout the construct to prevent complications related to insufficient circulation and 

promote cell and tissue viability. The last level involves gradual substitution of BTE 

constructs by bone remodeling under functional loading to achieve complete integration. 

Osteogenic and vascular regeneration need to be complementary and should proceed at 

satisfactory rates for effective repair and functional restoration. Though the majority of 

current practices implement vascular repair and scaffold implantation as separate 

procedures, the translational future of vascularized bone scaffolds will greatly depend on our 

capability to combine both processes into a single system. To achieve this, BTE approaches 

should be developed together with advances of vascular graft beds for a more efficient and 

integrated design in bone repair.
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The ultimate measure of the success of the vascularized scaffold will be accelerated function 

restoration, and the most immediate indicative measure will be the extent of integration and 

anastomosis to host tissues, both osseous and vascular. For example, the rigid porous frame 

should match the structural and mechanical properties of bone for improved interface 

stabilization and integration. Large tissue engineered vascular grafts should be able to 

surgically connect to major vessels, while the inner microvasculature should be capable of 

spontaneous anastomosis with both larger vessel grafts and surrounding host vascular 

networks. Ultimately, the most effective vascularized scaffold would be one that allows the 

greatest extent of angiogenesis and anastomosis following implantation.

Future outlook and conclusions

Although the search for an ideal BTE construct is ongoing, and significant limitations 

remain for osseointegration, degree of internal revascularization, anastomotic potential, 

reproducibility, and long-term viability, definitive progress has been achieved. These include 

the fabrication of novel bioactive materials, controlled distribution of cells and signaling 

cues, and clinical modifications aimed at improving the effectiveness of current surgical 

methods. Multifunctional approaches are needed for concurrent angiogenesis and 

osteogenesis, which will lead to effective vascular graft beds integration within synthetic 

scaffolds. This has been possible due to coordinated efforts in integrated, multi-

interdisciplinary fields to provide increasingly streamlined translational processes. Future 

BTE constructs are expected to have an architecture that can be easily incorporated into the 

injured area and the surrounding vascular beds for complete restoration of tissue function. 

Success of multifunctional BTE constructs will depend on integration at different levels, 

from cell-scaffold interactions, to combinations of surgical methods and materials, to the 

hierarchical arrangements of the synthetic vessel grafts within the rigid scaffolds. Clinical 

translation will strongly depend on combining multiple strategies into a single platform that 

can provide both accelerated osteogenesis and an increased incorporation rate into the host 

vasculature at the implant site.
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Figure 1. 
Schematic of the bone structure. Bone is highly vascularized, from the intramedullary cavity 

to the periosteal mineral matrix.
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Figure 2. 
Hierarchical levels in bone vasculature. Large vessels branch out internally into smaller 

capillary units to perfuse blood throughout the scaffold.

Mercado-Pagán et al. Page 18

Ann Biomed Eng. Author manuscript; available in PMC 2016 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Current techniques used for the repair of vascularized bones. (A) In vascularized fibular 

grafting, a highly vascularized section of the fibula, with its associated muscle and skin 

flaps, are removed for implantation in other affected areas. (B) In the induced membrane 

technique, an autograft is placed inside a highly vascularized tissue envelope formed around 

a temporary bone cement spacer. (C) A general schematic of an Ilizarov apparatus around a 

tibial defect. Distraction osteogenesis utilizes several mechanical devices such as this one to 

repair long bone defects.
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Figure 4. 
Integration of BTE strategies into a vascularized construct.

Mercado-Pagán et al. Page 20

Ann Biomed Eng. Author manuscript; available in PMC 2016 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Levels of graft integration into the host body: (A) osseointegration, (B) vascular 

anastomosis, (C) vascular scaffold integration.
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