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Abstract

In mammalian cells, chromatin poly(ADP-ribos)ylation (PARylation) at sites of DNA Double-

Strand Breaks (DSBs) is mediated by two highly related enzymes, PARP1 and PARP2. However, 

enzyme-specific genetic interactions with other DSB repair factors remain largely undefined. In 

this context, it was previously shown that mice lacking PARP1 and H2AX, a histone variant that 

promotes DSB repair throughout the cell cycle, or the core nonhomologous end-joining (NHEJ) 

factor Ku80 are not viable, while mice lacking PARP1 and the noncore NHEJ factor DNA-PKcs 

are severely growth retarded and markedly lymphoma-prone. Here, we have examined the 

requirement for PARP2 in these backgrounds. We find that, like PARP1, PARP2 is essential for 

viability in mice lacking H2AX. Moreover, treatment of H2AX-deficient primary fibroblasts or B 

lymphocytes with PARP inhibitors leads to activation of the G2/M checkpoint and accumulation of 

chromatid-type breaks in a lineage- and gene-dose dependent manner. In marked contrast to 

PARP1, loss of PARP2 does not result in additional phenotypes in growth, development or 

tumorigenesis in mice lacking either Ku80 or DNA-PKcs. Altogether these findings highlight 

specific nonoverlapping functions of PARP1 and PARP2 at H2AX-deficient chromatin during 

replicative phases of the cell cycle and uncover a unique requirement for PARP1 in NHEJ-

deficient cells.
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1. Introduction

Poly(ADP-ribos)ylation (PARylation) is a ubiquitous posttranslational modification that 

regulates DNA damage signaling and repair, transcription and other cellular processes [1-3]. 

Among six bona fide cellular poly(ADP-ribose) polymerases (PARPs), PARP1 and PARP2 

are nuclear proteins recruited to sites of DNA breaks to promote their repair [4]. While 

PARP2 provides the bulk of PARP activity in plants [5], PARP1 is thought to generate most 

PAR within mammalian cells in response to DNA damage [6-8]. PARP1 and PARP2 share a 

highly homologous carboxi-terminal PARP domain with bona fide polymerase activity [9] 

but display unique amino-terminal DNA binding domains. In this context, their substrates 

only partially overlap [10, 11] and the analysis of Parp2−/− mice has revealed unique 

functions for PARP2 in lymphoma suppression, spermatogenesis, metabolism and other 

processes ([12-14]; reviewed in [15]). Furthermore, depletion of both PARP1 and PARP2 

leads to early embryonic lethality in the mouse [16], indicating that PARP2-dependent 

PARylation is not a mere redundant activity.

In the context of single-strand breaks (SSB) repair, both PARP1 and PARP2 PARylate polβ 
and XRCC1 to promote ligase III-dependent repair [7, 17]. In line with these findings, 

Parp1−/− or Parp2−/− mouse embryonic fibroblasts (MEFs) show delayed kinetics of SSB 

repair, radiosensitivity, hypersensitivity to alkylating agents and increased frequency of 

Sister Chromatid Exchanges [7, 16]. These functions of PARP1 and PARP2 in SSB repair 

have formed the basis for the use of PARP inhibitors (PARPi) as sensitizers to radiation or 

chemotherapy and for the treatment of cancers with deficiencies in HR factors [18-20].

PARP1 and PARP2 are also recruited to chromatin at sites of DSBs [21], where they 

promote repair via PARylation of repair factors, histones and chromatin remodeling 

activities [10, 11, 21-24]. However, PARP1 and PARP2 are recruited to these lesions with 

different kinetics [25] and recognize differentially processed broken DNA ends [26], 

suggesting that they may have evolve specialized roles at DSBs. Specifically in the context 

of the DNA Damage Response (DDR), PARylation was previously shown to cooperate with 
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γ-H2AX to promote BRCA1 recruitment to DSBs [27]. Consistent with this finding, we 

previously reported that mice lacking PARP1 and H2AX are not viable [28]. Although a role 

for PARP2 in this setting has not been reported, the observation that loss of PARP2 leads to 

embryonic lethality in ATM-deficient mice [29] suggests that both factors may become 

essential in DDR-deficient cells. In addition, PARP1 has been shown to play essential roles 

at DSBs arising in cells deficient in repair per se. Specifically, PARP1 disruption markedly 

aggravates the phenotypes of mice deficient for the NonHomologous End-Joining (NHEJ) 

factors Ku80 [30] or DNA-PKcs [31, 32]. Whether PARP2 may play a similar role in this 

setting has not been reported.

To better define common and unique functions for PARP1 and PARP2 at sites of DSBs, we 

have generated mice lacking histone H2AX or the NHEJ factors Ku80 and DNA-PKcs in a 

PARP2-deficient background. Their analyses demonstrate essential roles for both PARP1 

and PARP2 at H2AX-deficient chromatin, while PARP1 is uniquely required at NHEJ-

deficient chromatin.

2. Materials and Methods

2.1. Mice

Mice deficient for H2AX [33], PARP1 [34], PARP2 [16], DNA-PKcs [35] or Ku80 [36] 

were previously described. For experiments with primary lymphocytes, mice were 

euthanized at 2-4 months of age. For experiments involving lymphomas, the health of mice 

cohorts was monitored clinically and mice were euthanized when moribund. All mouse 

experiments included similar numbers of males and females and were conducted in 

accordance with Institutional Animal Care and Use Committee (IACUC)-approved 

protocols. Mouse genotypes from tail biopsies were determined using real time PCR with 

specific probes designed for each gene and validated on positive and negative control tail 

DNA (Transnetyx, Cordova, TN).

2.2. Cells

Mouse embryonic fibroblasts (MEFs) were obtained from timed matings at E13.5 following 

standard procedures. B-lineage splenocytes were purified from the spleen by negative 

selection with CD43 beads (Miltenyi) and activated by incubation with the B cell mitogens 

α-CD40 antibody (1 μg/mL, BD Pharmingen) and IL-4 (20 ng/mL, R&D Systems), as 

described [37]. Fresh lymphoma tissue was disaggregated mechanically and cultured briefly 

in the presence of IL-2 (100 IU/mL) and IL-7 (5 ng/mL), as described [32].

2.3. Drug treatments

Olaparib/AZD2281 (Selleckchem, S1060) and veliparib/ABT-888 (Enzo Life Sciences, 

ALX-270-444-M001) were stored at −80° C in single use aliquots.

2.4. Telomere FISH

Activated B cells or primary MEFs were incubated in colcemid (KaryoMAX, Gibco), 

swollen in 30 mM sodium citrate, fixed in methanol/acetic acid (3/1), hybridized with a 
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telomere PNA probe and imaged as described [37]. At least 30 metaphases per sample were 

scored for chromosomal aberrations.

2.5. Cell cycle analysis

Cells were fixed in cold 70% ethanol, permeabilized in Triton-X, digested with RNAse A 

and stained with propidium ioidide (PI), as described [38]. Data was acquired using a 

FACSCalibur and analyzed with FlowJo software.

2.6. Statistical analysis

To determine statistical significance, we performed Student's T test on 3-5 data points per 

experiment, from 3-5 independent experiments. P≥0.05, not significant (n.s.); P<0.05, *; 

P<0.01,**; P<0.001,***).

3. Results and Discussion

3.1. PARP2 is required for viability of H2AX-deficient mice

We previously showed that concomitant loss of PARP1 and H2AX results in embryonic 

lethality in the mouse [28]. To determine whether this genetic interaction is PARP1-specific, 

we interbred Parp2+/−/H2afx+/− mice and genotyped 107 pups from Parp2+/−/H2afx+/− 

intercrosses (n=18 litters; age at genotyping, 7-10 days). We failed to observe Parp2−/−/

H2afx−/− pups, while all remaining genotypes were observed at near Mendelian ratios (Table 

1). Additional breedings of Parp2−/−/H2afx+/− or Parp2+/−/H2afx−/− females to Parp2+/−/

H2afx+/− males similarly failed to yield double mutants (not shown). In contrast, Parp2−/−/

H2afx+/− and Parp2+/−/H2afx−/− mice were viable and showed no additional phenotypes on 

growth and development over their Parp2−/− or H2afx−/− control littermates (not shown). 

Moreover, cohorts of Parp2−/−/H2afx+/− (n=12 mice) and Parp2+/−/H2afx−/− mice (n=9 

mice) followed for an average of 9 months (range, 6-13 months) appeared healthy and 

elective necropsies didn't reveal the appearance of tumors or other relevant macroscopic 

abnormalities (not shown). We conclude that both PARP1 and PARP2 are essential for 

embryonic development in an H2AX-deficient background, paralleling previous 

observations in the absence of ATM [29]. Together, these findings underscore unique 

functions for PARP2 at DSBs that cannot be compensated by PARP1.

3.2. H2AX suppresses PARPi-induced genomic instability during replication

To gain insights into the mechanisms leading to embryonic lethality in mice lacking H2AX 

and either PARP1 or PARP2, we quantified genomic instability in metaphase spreads of wt 

and H2afx−/− activated B cells treated with PARPi olaparib [39] or veliparib [40], at 

concentrations known to inhibit both PARP1 and PARP2 (Table 2, Fig. 1). In HR-deficient 

cells, PARPi induce breaks during replication [18, 19], visualized as chromatid-type breaks 

in the first mitosis after treatment. We observed no statistically relevant increase in genomic 

instability H2afx+/+ B cells after PARPi exposure (Table 2; Fig. 1A). In contrast, both 

olaparib and veliparib induced a statistically significant increase in the frequency of 

metaphases containing aberrations and in the number of aberrations per cell in H2afx−/− B 

cells (Table 2 for quantification and p values; Fig. 1A). Importantly, most chromosomal 

aberrations in PARPi-treated H2afx−/− cells were chromatid-type (60% and 75% of all 
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breaks after olaparib or veliparib, respectively; Table 2; Fig. 1B for examples). These 

observations were not specific to B cells, because concanavalin A-activated H2afx−/− T cells 

similarly harbored frequent chromatid-type chromosomal breaks after exposure to olaparib 

(Table S1).

To extend these analyses to a nonlymphoid lineage, we also examined the effect of PARPi 

on cell cycle distribution and genomic integrity in primary H2afx−/− and control wt MEFs 

(Table 2, Figure 1C-F). Because H2afx−/− MEFs senesce prematurely [41], these studies 

were done at early passage (P1), when the cell cycle distribution was similar across 

genotypes (Fig. 1C; “day 0”). Exposure to 1 μM olaparib led to a marked increase in the 

frequency of cells with 4N DNA content across all genotypes (Fig. 1C-D, “day 1”). 

However, while cell cycle distribution of wt MEFs had returned to baseline at day 2, 

persistent accumulation of cells with 4N DNA content was evident in H2afx−/− cultures (Fig. 

1C-D; “day 2”). Because these experiments were done in primary cells with intact 

checkpoints, these observations strongly suggest persistent DNA damage in the absence of 

H2AX. In support of this notion, telomere FISH of metaphase spreads in the same cells 

revealed a marked, dose-dependent increase in the frequency of olaparib-induced 

chromosomal aberrations in H2afx−/− MEFs relative to wt controls (Table 2, Fig. 1E for 

quantification; Fig. 1F for examples). Similar to our observations in H2afx−/− B cells, 

olaparib-induced chromosomal aberrations were mostly chromatid-type (Table 2, Fig. 1E-F).

Because H2AX haploinsufficiency compromises DSB repair in some settings [33, 42], we 

also analyzed PARPi-induced genomic stability in H2afx+/− B cells and MEFs. We observed 

a small but statistically significant increase in the frequency of chromosomal aberrations in 

H2afx+/− MEFs, albeit only at the lower doses of olaparib (0.5 μM). In contrast, olaparib did 

not induce genomic instability in H2afx+/− B cells at the doses used here (data not shown). 

Altogether, these data suggest that decreased H2AX nucleosomal density may be sufficient 

to modestly sensitize some lineages to PARP inhibition.

Overall, these data is in line with previous findings in chicken DT40 cells [20] and mouse 

ES cells [43] that deficiency for H2AX sensitizes cells to PARP inhibitors and demonstrates 

for the first time that hypersensitivity relates to increased genomic instability. Moreover, cell 

cycle and cytogenetic analyses demonstrate that all or most PARPi-dependent chromosomal 

instability in H2AX-deficient cells occurs in the context of replication, leading to frequent 

chromatid-type aberrations. These findings suggest that PARP1 and PARP2-dependent 

PARylation and γ-H2AX provide compensatory mechanisms specifically in S and/or G2/M 

phases of the cell cycle. These findings were unanticipated, because H2AX-deficient cells 

show primarily a defect in NHEJ [37]. Similarly, treatment of ATM-deficient cells with 

PARP inhibitors leads to replication-dependent DSBs [44]. Altogether, these findings 

provide a rationale for the development of PARP1- or PARP2-specific inhibitors for the 

treatment of cancers lacking ATM [45-50] and/or haploinsufficient for H2AX [51].

3.3. Unlike PARP1, PARP2 does not compromise growth and development of DNA-PKcs-
deficient mice

Loss of PARP1 results in embryonic lethality or severe growth defects in NHEJ-deficient 

backgrounds [30, 31, 38], but a role for PARP2 in this context has not been investigated. To 
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address this issue, we first generated mice doubly deficient for PARP2 and DNA-PKcs, a 

noncore NHEJ factor. In marked contrast to the severe growth retardation observed in 

Parp1−/−/Prkdc−/− mice [31, 32], Parp2−/−/Prkdc−/− mice were born at mendelian ratios and 

showed no additional phenotypes in growth and development over single mutants (Table 1, 

Fig. 2A).

PARP2 was previously shown to promote survival of thymocytes by suppressing apoptosis 

in response to programmed DSBs [52]. Moreover, loss of PARP1 markedly increases the 

penetrance and decreases the latency of thymic lymphomas in DNA-PKcs-deficient mice 

[31, 32], but a similar role for PARP2 has not been examined. To address this question, we 

followed cohorts of Parp2−/−/Prkdc−/− and control Parp2+/−/Prkdc−/− and Parp2−/−/Prkdc+/− 

littermates until moribund. In contrast to Parp1−/−/Prkdc−/− mice, we found that the survival 

of Parp2+/−/Prkdc−/− and Parp2−/−/Prkdc+/− mice was comparable (Fig. 2B). Specifically, 

14/15 Parp2−/−/Prkdc−/− mice and 15/16 Parp2+/−/Prkdc−/− mice died within the first year of 

life. The average age at death was 26.9 weeks (range, 13-40 weeks) and 24.5 weeks (range, 

13-42 weeks) for Parp2−/−/Prkdc−/− and Parp2+/−/Prkdc−/− mice, respectively. Necropsies of 

moribund animals revealed thymic lymphoma as cause of death in approximately 7/14 and 

7/15 Parp2−/−/Prkdc−/− and Parp2+/−/Prkdc−/− mice, respectively. In this subset of 

lymphoma-bearing mice, the average age at death was 29.2 weeks (range, 13-40 weeks; 

n=7) and 23.1 weeks (range, 14-27 weeks; n=7) for Parp2−/−/Prkdc−/− and Parp2+/−/Prkdc−/− 

mice, respectively. Consistent with previous observations in Parp2−/− mice [16], 17/17 

Parp2−/−/Prkdc+/− littermate mice appeared healthy at the end of the one-year observation 

period (Fig. 2B) and elective necropsies failed to reveal tumors or other macroscopic 

alterations (not shown). We conclude that, unlike PARP1, PARP2 does not mediate tumor 

suppression in thymocytes deficient for DNA-PKcs.

3.4. PARP2 is dispensable for the fusion of DNA-PKcs-deficient telomeres

DNA-PKcs functions to suppress telomere fusions in mouse and human cells [53, 54] and, 

consistent with these previous observations, control Parp2+/−/Prkdc−/− thymic lymphomas 

accumulate telomere fusions (Fig. S1A for quantification; Fig. S1B for representative 

metaphases). Because PARP2 binds the shelterin component TRF2 [55] and suppresses 

chromosomal translocations of programmed DSBs in B cells undergoing Class Switch 

Recombination (CSR) [56], we investigated whether PARP2 functions to suppress the fusion 

of DNA-PKcs-deficient telomeres. To this end, we quantified telomere fusions in five 

Parp2−/−/Prkdc−/− thymic lymphomas (Figs. S1A-B). Three out of five double mutant 

tumors contained telomere fusions in all or most cells, while the remaining two tumors 

contained fusions in a smaller fraction of cells. Moreover, the frequency and patterns of 

telomere fusions in Parp2−/−/Prkdc−/− thymic lymphomas were similar to those observed in 

Parp2−/−/Prkdc−/− lymphomas.

We previously showed that most Parp1−/−/Prkdc−/− lymphomas harbor oncogenic mutations 

in p53, leading to aneuploidy and amplification of telomere fusions [32]. In contrast, 

cytogenetic analysis of Parp2−/−/Prkdc−/− lymphomas revealed that all tumors were euploid 

or near-euploid, similar to control Parp2-+-/Prkdc−/− tumors (Fig. S2A for quantification; 

Fig. S2B for examples of representative metaphases). These data strongly suggest that 
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PARP2 does not play a significant role in the suppression of oncogenic p53 mutations in 

DNA-PKcs-deficient thymocytes.

3.5. Mice lacking PARP2 and Ku80 are viable and show no significant additional 
phenotypes in growth and development

Because DNA-PKcs is required for a subset of NHEJ reactions, we next extended our 

analysis to a core NHEJ factor, Ku80 (gene symbol, Xrcc5) [57]. To this end, we bred 

Parp2+/−/Xrcc5+/− males and females to generate double mutants (expected ratio, 1/16). 

Genotyping of n=198 pups at day 7 of life revealed similar numbers of Ku80-deficient mice 

regardless of Parp2 copy number (Table 1). Like control Parp2+/+/Xrcc5−/− mice [36], 

Parp2+/−/Xrcc5−/− and Parp2−/−/Xrcc5−/− littermate mice were markedly growth retarded 

and about half of the mice died prior to weaning. However, weaned double mutant mice 

appeared robust and a few mice survived when followed for up to six months (not shown). 

Together with our analysis of Parp2−/−/Prkdc−/− mice above and previous observations of 

early embryonic lethality in Parp1−/−/Xrcc5−/− mice [30], these findings indicate that PARP1 

plays unique, nonoverlapping functions in the signaling and/or repair of DSBs that arise in 

the absence of NHEJ. In this regard, PARP1 has been implicated in end-joining via an 

alternative, ligase III-dependent pathway (A-NHEJ) [58-60] and cooperates with DNA-PKcs 

in the restart of a subset of stalled replication forks [61]. In the future, it will be important to 

determine PARP1 unique substrates and functions in these contexts.

4. Conclusions

PARP2 is closely related to PARP1, yet their unique amino-terminal domains confer them 

with unique substrates and functions. To define these in the context of DNA double-strand 

break (DSB) repair, we have generated here three novel mouse models of PARP2 deficiency, 

Parp2−/−/H2afx−/−, Parp2−/−/Prkdc−/− and Parp2−/−/Xrcc5−/− mice. The analyses of these 

compound models have uncovered a novel essential function for PARP2 in concert with 

H2AX during replicative phases of the cell cycle. In contrast, we find that the genetic 

interaction between PARP1 and NHEJ, a DSB repair pathway that operates primarily in pre-

replicative phases of the cell cycle, is not shared with PARP2. Overall, these findings have 

broad implications for understanding how PARylation cooperates with other cellular 

pathways to maintain genomic integrity, thereby suppressing organismal phenotypes of 

aging and cancer. In the future, the analyses of novel genetic models for conditional 

inactivation of PARP1 and/or PARP2 in somatic cells deficient for H2AX or NHEJ factors 

will further define the mechanisms underlying their common and unique functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
H2AX suppresses replication-dependent chromosomal breaks induced by PARP inhibitors in 

a lineage and gene-dose dependent manner. (A-B) H2afx−/− and control H2afx+/+ B cells 

were purified from the spleen, activated in vitro with cytokines and treated with olaparib (1 

μM) or veliparib (3 μM) for 24 hours prior to metaphase analyses by telomere FISH. The 

number of chromosomal breaks per metaphase is shown and subdivided as “chromosome-

type” or “chromatid-type”. Representative examples of complex “chromatid-type” 

rearrangements observed in H2AX-deficient cells after olaparib treatment are shown in B. 

(C-D) Primary P0-P1 MEFs of the indicated genotypes were treated with either 1 μM 

olaparib for 24 hours (day 1) or 48 hours (day 2) and harvested for cell cycle analysis after 

staining with propidium iodide (PI). The percentage of cells with 2N (G1), 2N>4N (S), 4N 

(G2) and >4N DNA content is shown in C. Each bar represents the average and standard 

deviation of three MEF cultures derived from 3 independent embryos. Representative 

examples for each genotype after either 1 day or 2 days of treatment are shown in D. (E-F) 

Primary P0-P1 MEFs of the indicated genotypes were treated with either 0.5 or 1 μM 

olaparib for 24 hours and metaphases were analyzed by telomere FISH. Bars represent the 

average and standard deviation of three independent cultures per genotype. Representative 

examples of chromosomal aberrations observed in wt and H2afx−/− MEFs exposed to 

olaparib for 24 hours are shown in F. Yellow arrows point to chromatid-type breaks.
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Figure 2. 
Phenotypic analysis of mice deficient for DNA-PKcs and PARP2. (A) Weight of mice 

deficient for DNA-PKcs and/or PARP2. Bars represent the average and standard deviation of 

3-5 8-12 week-old females. Similar observations were made for males (not shown). (B) 

Kaplan Meier analyses of cohorts of Parp2−/−/Prkdc+/− (n=17), Parp2+/−/Prkdc−/− (n=16) 

and Parp2−/−/Prkdc−/− (n=15) mice followed for one year.
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Table 2

Analysis of genomic instability via telomere-FISH in PARPi-treated H2afx−/− and control primary cells

Genotype Treatment # mice # metaphases # metaphases with 
aberrations (%)

# aberrations per 
metaphase (# chromatid 
breaks per metaphase)

p values
a

Activated B cells

H2afx+/+ vehicle 5 150 11 (7.3%) 0.09 (0.01)

olaparib (1 μM) 5 150 28 (18.7%) 0.31 (0.1) p=0.18/0.17/0.20

veliparib (2.5 μM) 3 90 13 (14.4%) 0.3 (0.1) p=0.21/0.36/0.26

H2afx−/− vehicle 5 150 55 (36.7%) 0.76 (0.4)

olaparib (1 μM) 5 158 115 (74.1%) 2.4 (1.4) p=0.007/0.03/0.02

veliparib (2.5 μM) 3 90 62 (68.9%) 1.7 (1.3) p=0.004/0.01/0.008

Primary MEFs

H2afx+/+ vehicle 3 90 8 (8.9%) 0.1 (0.0)

olaparib (0.5 μM) 3 90 42 (46.7%) 0.8 (0.4) p=0.01/0.12/0.05

olaparib (1 μM) 3 90 55 (61.1%) 1.7 (1.3) p=0.01/0.01/0.05

H2afx+/− vehicle 4 120 30 (25.0%) 0.4 (0.2)

olaparib (0.5 μM) 4 120 65 (54.2%) 1.4 (0.9) p=0.01/0.004/0.02

olaparib (1 μM) 4 120 75 (62.5%) 1.9 (1.6) p=0.002/0.02/0.02

H2afx−/− vehicle 3 67 42 (62.7%) 1.3 (0.4)

olaparib (0.5 μM) 3 90 84 (93.3%) 4.0 (2.9) p=0.001/0.009/0.009

olaparib (1 μM) 3 90 85 (94.5%) 5.6 (4.0) p=0.003/0.001/0.001

a
the three indicated p values correspond to: % metaphases with aberrations / #chromosome breaks per metaphase / #chromatid breaks per 

metaphase, respectively.
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