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Abstract

Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum resident of the heat shock 

protein 90 kDa (Hsp90) family of molecular chaperones. Grp94 associates with many proteins 

involved in cell adhesion and signaling, including integrins, Toll-like receptors, immunoglobulins, 

and mutant myocilin. Grp94 has been implicated as a target for several therapeutic areas including 

glaucoma, cancer metastasis, and multiple myeloma. While 85% identical to other Hsp90 

isoforms, the N-terminal ATP-binding site of Grp94 possesses a unique hydrophobic pocket that 

was used to design isoform-selective inhibitors. Incorporation of a cis-amide bioisostere into the 

radamide scaffold led to development of the original Grp94-selective inhibitor, BnIm. Structure–

activity relationship studies have now been performed on the aryl side chain of BnIm, which 

resulted in improved analogues that exhibit better potency and selectivity for Grp94. These 

analogues also manifest superior antimigratory activity in a metastasis model as well as enhanced 

mutant myocilin degradation in a glaucoma model compared to BnIm.
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INTRODUCTION

Molecular chaperones are responsible for the conformational maturation of nascent 

polypeptides into their bioactive conformations.1 One family of chaperones is the 90 kDa 

heat shock proteins (Hsp90), which has emerged as a promising therapeutic target for the 

treatment of many diseases.2–7 The Hsp90 family is responsible for the maturation of more 

than 200 client proteins, many of which belong to signaling pathways that are commonly 

hijacked in cancer. In fact, Hsp90 clients are directly associated with all ten hallmarks of 

cancer and thus represents a unique opportunity to simultaneously target multiple oncogenic 

pathways.8,9 Hsp90 exists as a homodimer within cells and consists of three domains: an N-

terminal domain, a middle domain, and a C-terminal dimerization domain. The N-terminal 

domain contains an ATP-binding pocket in which ATP hydrolysis provides the necessary 

energy for client protein maturation. The middle domain is responsible for client protein 

binding and interactions with cochaperones and partner proteins. The C-terminal domain 

contains a dimerization motif and is responsible for modulating client protein release.

The majority of Hsp90 research has focused on the development of N-terminal inhibitors, 

which compete with ATP within the binding site.10–12 N-terminal inhibitors have entered 

clinical studies for the treatment of various cancers.13–15 However, some concerns have been 

raised that must be addressed before new Hsp90 inhibitors are developed. A common factor 

among all clinical candidates is that they exhibit pan-Hsp90 inhibition, meaning they 

manifest similar affinities against all four Hsp90 isoforms: Hsp90α and Hsp90β are found in 

the cytosol, tumor necrosis factor receptor-associated protein 1 (Trap1) is localized to the 

mitochondria, and glucose regulated protein 94 (Grp94) resides in the endoplasmic 

reticulum (ER).

Many clients of the Hsp90-dependent protein folding process have been identified, however, 

clients with specific dependency on each isoform remain underinvestigated although some 

isoform-dependent substrates have been determined. For instance, maturation of the hERG 

channel and its trafficking to the cell surface was found to be solely dependent upon the 

Hsp90α isoform and suggests that inhibition of Hsp90α may contribute to some of the 

cardiotoxicity observed in clinical trials.16 It is also likely that other isoform-dependent 

client proteins contribute to other toxicities, which highlights the need to develop new 

strategies for Hsp90 inhibition. An alternative to pan-inhibition is the development of 

isoform-selective inhibitors. Such molecules would provide an opportunity to elucidate 

isoform-dependent client proteins associated with each isoform while simultaneously 
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reducing/derisking potential liabilities associated with pan-inhibition. Unfortunately, the 

development of isoform-selective inhibitors is challenging due to the fact that 85% identity 

is shared within the N-terminal ATP-binding site of all four Hsp90 isoforms. In fact, 

Hsp90α and Hsp90β are 95% identical within their N-terminal ATP-binding pocket, while 

Grp94 is least similar to only 85% identity.17–19

Grp94 is responsible for the maturation of proteins associated with cell-to-cell signaling and 

cell adhesion. Client proteins dependent upon Grp94 include many integrins (α-2, α-4, α-L, 

and β-4), Toll-like receptors (TLR1, TLR2, TLR4, and TLR9), insulin-like growth factor-I 

and -II, immunoglobulins, and mutant myocilin.5,20–22 Grp94 is essential only during 

embryonic development and therefore appears to represent a nontoxic drug target. However, 

overexpression of Grp94 is associated with tumor aggressiveness and poor clinical prognosis 

for cancer patients.23 In fact, Grp94 is responsible for the maturation and trafficking of 

proteins required for metastasis and cell migration and thus represents a nontoxic target for 

the development of antimetastatic agents. More recently, mutant myocilin has also been 

identified as a Grp94-dependent substrate and studies have shown that inhibition of Grp94 

leads to the disaggregation of mutant myocilin and consequently represents a novel target for 

the treatment of primary open-angle glaucoma (POAG).4,21,24 While Grp94 may represent 

an ideal target for cell migration and glaucoma, Grp94 has also been shown to be essential in 

multiple myeloma, which appears to possess increased ER stress. Inhibition of Grp94 has 

been shown to induce cell death in multiple myeloma, as disruption of interactions between 

Grp94 and LRP6 results in reduced cell-trafficking of LRP6 to the cell surface.3,5,25 LRP6 is 

a coreceptor of Frizzled in the Wnt pathway and reduction of these interactions leads to 

caspase 9 activation and apoptosis. Grp94 has also been shown to interact with Her2 and, 

consequently, disruption of these interactions leads to Her2 degradation via the lysosome 

and may represent an alternative mechanism to treat Her2 overexpressing breast 

cancers.26,27

Grp94 is least similar, in its N-terminal ATP-binding pocket, to other Hsp90 isoforms due to 

a five amino acid insertion (QEDGQ) into the primary sequence.22 This insertion results in 

the creation of a hydrophobic, secondary binding region within the N-terminal ATP-binding 

site of Grp94. As such, this unique pocket provides an opportunity to develop Grp94-

selective inhibitors.28,29 Prior studies via a high throughput screening method identified 

NECA (Figure 1) as a Grp94-selective inhibitor that bound to this secondary pocket.22,30 

Recently, a high throughput screen identified a series of Grp94-selective inhibitors based on 

the purine scaffold and subsequent optimization led to the development of 2.26 Co-

crystallization of 3 (Figure 1) with Grp94 showed this inhibitor to induce a conformational 

change within Grp94 that revealed an extended binding pocket distinct from the secondary 

pocket observed with NECA and RDA (4).26,27,30–32 Co-crystallization of the resorcinol 

containing pan-Hsp90 inhibitor, radamide (RDA, Figure 1) with canine Grp94 (cGrp94), 

revealed that the amide bond existed in both the cis- and trans-amide conformations.33 The 

cis-amide conformation projected the quinone moiety into the secondary binding pocket, 

while the trans-amide did not. On the basis of the RDA co-crystal structure, it was clear that 

a cis-amide conformation was required for selective Grp94 inhibition. The incorporation of a 

cis-amide bioisostere (e.g., imidazole) into the RDA scaffold predisposes the aryl ring into 
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the unique binding pocket found in Grp94 and ultimately led to the discovery of BnIm 

(Figure 1).28 BnIm demonstrates Grp94 selectivity in vitro as determined by inhibition of 

IGF-II secretion and the trafficking of Toll-like receptors at concentrations that did not result 

in cytosolic Hsp90-dependent client protein degradation. BnIm provided a lead compound 

for Grp94-selective inhibition, however, analysis of the unique binding pocket of Grp94 

revealed further interactions could be realized improving the selectivity and affinity of this 

scaffold for Grp94, reported herein.

GRP94-SELECTIVE INHIBITOR DESIGN, SYNTHESIS, AND BIOCHEMICAL 

SCREENING

The co-crystal structure of RDA with cGrp94 revealed the cis-amide to project the aryl side 

chain into the secondary binding pocket, which is surrounded by hydrophobic amino acids 

(Val82, Ile166, Ala167, Phe195, Val197, Phe199, Tyr200, and Trp223), suggesting that 

affinity may be increased through additional hydrophobic interactions (Figure 2a).33 In 

contrast, Hsp90β contains the backbone carbonyl of Asn92 and the ɛ-NH2 of Lys98, which 

blocks access to these hydrophobic residues and can be used as a paradigm to predict Grp94-

selective inhibition (Figure 2b). Docking of BnIm into the RDA co-crystal structure with 

Grp94 (PDB 2GFD) suggested that substitutions on the aryl side chain would provide 

additional interactions with the secondary pocket of Grp94, allowing for optimization of the 

aryl side chain for Grp94-selective inhibition. Nonpolar substitutions at the 4-position were 

proposed to extend further into the hydrophobic pocket and to produce increased affinity and 

selectivity. However, larger substitutions at this position would likely result in steric clash 

with Val82 and exhibit decreased affinity. Because of the close proximity of Tyr200 to the 3-

position of the aryl side chain, substitutions at this position appeared detrimental to Grp94 

affinity. Substitutions at the 2-position were likely to increase affinity through hydrophobic 

interactions with the secondary pocket. Furthermore, these substitutions have the potential to 

produce the conformational shift observed with the purine-based Grp94-selective inhibitor, 3 
(see Figure 4), and project into the extended binding pocket.26 On the basis of these 

observations, the aryl side chain of BnIm was investigated to probe the unique pocket 

present in Grp94 and to elucidate structure–activity relationships for optimal affinity and 

selectivity.

Because the cis-amide bioisostere, imidazole, could be prepared via a multicomponent 

cyclization reaction with an aromatic aldehyde, access to the desired analogues was achieved 

by varying the substitutions on the aryl amine component, which were either commercially 

available or readily accessible (Scheme 1). 4-Ethynylbenzylamine (6a) was synthesized 

from 4-iodobenzylamine following literature precedent.34 Aromatic nitriles were reduced 

using lithium aluminum hydride to produce the requisite amines (6b–e). The substituted 

benzoic acid was reduced to the corresponding benzyl alcohol, 8, using lithium aluminum 

hydride, and then converted to the corresponding azide, which was subsequently reduced to 

the desired amine, 6f, via Staudinger reduction. The basic amines were then cyclized with 

aldehyde 9 in the presence of ammonium bicarbonate and glyoxal, followed by desilylation 

with tetrabutylammonium fluoride to provide the desired analogues, 10–64 (Scheme 

2).28,35,36
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Once in hand, the analogues were screened via a competitive binding fluorescence 

polarization assay using Grp94 or Hsp90α and FITC-labeled geldanamycin (FITC-GDA). 

Geldanamcyin is a potent, natural product N-terminal pan-Hsp90 inhibitor that competes 

with Grp94 inhibitors for the N-terminal ATP-binding site.10 Analogues were originally 

screened at 25 μM to determine the percent of FITC-GDA (tracer) bound compared to 

vehicle control (0% tracer displaced, Table 1).

The 25 μM screen provided insight into the structural requirements for binding of the aryl 

side chain to the Grp94 secondary pocket. Substitutions at the 4-position typically 

maintained similar affinity as BnIm, but provided increased selectivity in several cases. As 

hypothesized, polar substitutions (17 and 21) manifested lower affinity due to the 

hydrophobic nature of the secondary binding pocket (Figure 2). Incorporation of a bicyclic 

system was not tolerated as the naphthyl (23 and 24) and quinoline (25) derivatives 

manifested decreased affinity for both Grp94 and Hsp90α. Substitutions at the 3-position 

were not beneficial, as all of the analogues resulted in decreased affinity for both isoforms 

compared to BnIm. Alternatively, substitutions at the 2-position typically increased Grp94 

affinity and improved selectivity versus Hsp90α.

Analogues that displaced ≥70% of the tracer when incubated with Grp94 at 25 μM were 

subsequently evaluated to determine their apparent Kd against Grp94 and Hsp90α. BnIm 

manifests an apparent Kd of 1.1 μM for Grp94 and 13.1 μM for Hsp90α. Substitutions at the 

4-position were designed to extend further into the hydrophobic pocket present in Grp94 and 

to increase selectivity over other isoforms. Modest increases in selectivity were observed 

with these compounds (11, 12, and 18), while increases in affinity were observed with 

analogues containing halogen substitutions. Incorporation of a larger methyl group (14) 

resulted in a substantial increase in selectivity for Grp94, as well as increased affinity. 

Extended alkyl chains (15 and 16) were too large for accommodation into the secondary 

pocket of Grp94 and resulted in decreased affinity.

As observed in the 25 μM screen, substitutions at the 3-position did not manifest improved 

affinity nor selectivity for Grp94 compared to BnIm (26–32). Alternatively, substitutions at 

the 2-position provided additional insights into the modes of binding for these analogues. 

Small substitutions at the 2-position were tolerated, however, such substitutions did not 

increase selectivity or affinity. Larger substitutions produced increased selectivity for Grp94 

versus other Hsp90 isoforms, as 38, 39, and 40 manifested >40-fold selectivity for Grp94 

over Hsp90α, which is likely due to induction of a conformational shift in the tertiary 

structure of Grp94. Patel and colleagues previously reported the co-crystallization of 3 with 

Grp94 (PDB 3O2F), in which a conformational shift was observed that resulted in an 

extended binding region within the Grp94 ATP-binding site.26,31 This pocket is distinct from 

the secondary pocket observed with NECA and RDA (Figure 3), as this region opens due to 

the migration of Phe199, which allows additional access to the binding pocket as observed 

with 3. Substitutions at the 2-position may also induce a similar conformational change in 

Grp94, which allows access to this region and increases selectivity for Grp94. In the case of 

40 (Grp94 apparent Kd = 0.2 μM; 41-fold selective), the increased selectivity was 

accompanied by a ~6-fold increase in affinity for Grp94 compared to BnIm. Extension or 

branching of the alkyl ether (41 and 42) improved affinity for Grp94, although a loss in 
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selectivity was observed. Larger alkyl ethers were not accommodated within the secondary 

binding pocket of Grp94 and likely push the benzyl side chain toward the solvent exposed 

region to form hydrogen bonds with polar amino acids. Such polar residues are present in 

both Grp94 and Hsp90 and provides an explanation for the loss of selectivity and an increase 

in affinity. 44 was synthesized in an attempt to combine beneficial substitutions observed 

with the 2- and 4-positions, however, affinity was compromised as compared to the parent 

compounds (14 and 38), suggesting the effects of these substitutions are not additive (Table 

1).

Because of the high density of aromatic amino acids within the unique secondary binding 

pocket of Grp94, the incorporation of heterocycles was proposed to improve both π–π 
interactions and affinity for Grp94.33 The requisite heterocyclic amines (6g–l) were 

synthesized from the corresponding aldehydes through conversion to the oximes (66a–e) 

followed by reduction via lithium aluminum hydride (Scheme 3). Chlorination of 

thiophen-2-ylmethanamine via sulfuryl chloride provided 6m (Scheme 4). Radical 

bromination of 5-methylisoxazole followed by conversion to the azide and subsequent 

reduction resulted in 6n. The aromatic carboxylic acid 68 was reduced to the corresponding 

alcohol using lithium aluminum hydride followed by conversion to the azide and then 

Staudinger reduction to yield 6o. Deprotonation of 3-chlorothiophene with n-butyllithium 

followed by the addition of CO2(g) provided a mixture of carboxylate regioisomers which 

were separable via flash chromatography after reduction to the corresponding alcohols (69b 
and 69c) with lithium aluminum hydride. These isomers were then converted to the 

corresponding azides, followed by Staudinger reduction to provide the requisite basic 

amines, 6p and 6q (Scheme 4). The desired analogues were obtained through the 

multicomponent reaction detailed in Scheme 2 to produce analogues 45–64.

As can be seen in Table 2, the incorporation of an electron poor (compared to benzene) 

pyridine ring (61–64) resulted in decreased selectivity and affinity for Grp94. In contrast, the 

incorporation of electron rich five-membered heterocycles proved beneficial for Grp94 

affinity. Converting the phenyl ring of BnIm to the bioisosteric replacement, thiophene (50), 

resulted in a significant increase in Grp94 affinity compared to BnIm. The furan and 

thiophene (46 and 50, respectively) analogues exhibited both increased affinity and 

selectivity and consequently, substitutions about these rings were explored. The energy 

minimized structures of BnIm and 46 were overlaid and revealed the 5-position of the 

heterocycle to align similar to the 4-position of the BnIm benzyl side chain (Figure 4). 

Therefore, substitutions at the 5-position of both the furan and thiophene rings were sought 

to achieve increased selectivity and affinity.

53 was shown to manifest improved selectivity for Grp94 compared to the 3- and 4-chloro 

substituted thiophene analogues (55 and 55), supporting the hypothesis that 5-substituents 

bind similar to the 4-substituted phenyl ring. Incorporation of a 5-chloro substitution on the 

smaller furan ring (48) resulted in increased affinity for Grp94 while maintaining selectivity. 

However, incorporation of an ethyl substitution at the 3-position of the thiophene to mimic 

the 2-position of the benzene ring resulted in both reduced affinity and selectivity.
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CO-CRYSTALLIZATION OF GRP94 WITH A GRP94-SELECTIVE INHIBITOR

The co-crystal structure of the N-terminal domain of Grp94 lacking the acidic linker (NΔ41, 

see Experimental Section) in complex with 48 (referred to as VC3 in the PBD file) was 

solved to 2.6 Å resolution to support the proposed docking interactions (Figure 5a, 

Supporting Information, Table 1). The structure reveals 48 in the ATP-binding site is 

stabilized by hydrogen bonding interactions with Asp149 (Figure 5b,c), similar to other 

resorcinol-based pan-Hsp90 inhibitors. There are few other direct interactions between 48 
and the NΔ41 ATP-binding site, which are mediated through conserved water molecules 

(Figure 5c). In contrast to RDA, 48 is bound to Grp94 in a single orientation, illustrating the 

effectiveness of the cis-amide bioisostere in reducing binding heterogeneity.

The electron density for 48 was largely continuous for the length of the molecule, with the 

notable exception of the chlorinated furan moiety (Figure 5d), which apparently samples 

multiple conformations within the ATP-binding site. It is possible that the chlorinated furan 

dwells in the extended hydrophobic region to increase selectivity (as predicted through 

modeling studies); however, the final binding mode modeled, based on optimal fit to 2Fo − 

Fc (Figure 5d) and Fo − Fc difference density (not shown), is one in which the chloride 

substituent is nestled in an ordered loop (residues 165–170) at the entry to the ATP-binding 

site (arrow, Figure 5a,b). Notably, this loop is disordered in the structure complexed with 

RDA. The furan moiety also appears to be involved in a cation–π interaction with Lys168 to 

stabilize this loop. In general, phenyl rings form stronger cation–π interactions due to a 

larger quadrapole moment compared to furan rings. However, modeling studies suggest that 

the phenyl ring of BnIm cannot orient in a manner that allows this interaction (data not 

shown) and therefore accounts for the increased affinity manifested by the smaller 

heterocycles (45–60). Taken together, 48, and by analogy other analogues described within 

this series, bind to the ATP-binding site of Grp94 in a mode that manifests increased 

selectivity over the other Hsp90 isoforms.

GRP94-SELECTIVE INHIBITION IN CANCER

Grp94 is responsible for the maturation and trafficking of several proteins associated with 

cell signaling and adhesion. One such client of Grp94 are the integrins, which are essential 

for cell adhesion and migration through promoting interactions between the intracellular 

actin cytoskeleton and the extracellular matrix.37–39 Integrins are dependent upon Grp94 for 

not only their maturation but also their transport to the cell surface. Therefore, inhibition of 

Grp94 leads to decreased trafficking of integrins to the cell surface and results in decreased 

integrin expression at the cell surface. As a result, decreased cell migration is observed and 

provides a new opportunity for the development of antimetastatic agents.29,40,41 For 

example, selective inhibition of Grp94 results in decreased migration of MDA-MB-231 

cells, an aggressive form of metastatic breast cancer. In a wound-healing scratch assay, 

Grp94-selective inhibitors, 40 and 48, produced decreased wound closing at 24 h compared 

to BnIm and vehicle control (70% and 73% closed at 500 nM, respectively, Figure 6). In 

fact, these analogues manifested superior antimigratory activity compared to BnIm at 10-

fold lower concentrations. Furthermore, these analogues were evaluated for antiproliferative 

activity against the same cell line and were found to manifest no antiproliferative activity up 
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to 100 μM (78% and 107% viable at 100 μM, respectively, Figure 6), confirming that the 

antimigratory activity is not linked to cell viability. These data are in agreement with the 

nonessential nature of Grp94 and provides a large therapeutic window for the development 

of Grp94-selective inhibitors as a new class of antimetastatic agents.

Recently, integrin α2 was determined to be dependent upon Grp94 for its maturation and 

trafficking to the cell surface through proteomic and Western blot analyses of Grp94 

knockdown cells.42 Similarly, selective inhibition of Grp94 resulted in the degradation of 

integrin α2 (Figure 7A,B). Integrin α2 forms a heterodimer with integrin β1 on the cell 

surface,38 which is responsible for binding to collagen in the extracellular matrix to promote 

metastasis and invasion. 40 and 48 both induced the degradation of integrin α2, providing 

evidence that the decrease in cell migration results from Grp94-selective inhibition. 

Furthermore, 40 and 48 do not result in the degradation of Akt (Figure 7C), a well-known 

client protein that is dependent upon the cytosolic isoforms of Hsp90. It should be noted that 

a slight induction of the pro-survival heat shock response was observed with 40 and 48 
(Figure 7D). However, this occurred at concentrations 10–50-fold higher than antimigratory 

activity was demonstrated.

PRIMARY OPEN ANGLE GLAUCOMA AND GRP94-SELECTIVE INHIBITION

Although POAG is characterized clinically by irreversible optic nerve damage and retinal 

ganglion cell death that leads to vision loss, the risk factor of elevated intraocular pressure 

typically results from decreased outflow of the aqueous humor through Schlemm’s canal of 

the trabecular meshwork (TM) extracellular matrix in the anterior segment of the eye. A 

contributor to TM dysfunction is TM cell death,24,43 which can be brought about by the 

aggregation of mutant myocilin.44 Nonsynonymous mutations in myocilin, localized to its 

olfactomedin domain, result in non-native tertiary structures, which promote facile 

aggregation and leads to TM cell death.43,45 Recently, it was demonstrated that Grp94 

associates with amyloid-like aggregates of mutant myocilin but cannot triage these 

aggregates for degradation through the ER-associated degradation (ERAD) pathway.4 Our 

prior studies showed that inhibition of Grp94 allows mutant myocilin degradation through 

autophagy, which decreases intracellular levels of myocilin and, ultimately, reduces 

toxicity.21 Therefore, these newly designed Gpr94-selective inhibitors were evaluated for 

their ability to promote mutant myocilin clearance in an inducible HEK model. Treatment 

with 48 resulted in a substantial decrease of mutant myocilin levels at 1 μM (Figure 8A,C), 

however, treatment with 40 only resulted in a slight decrease in myocilin levels. The 

difference in activity between 40 and 48 is not readily clear and is currently being 

investigated in our laboratory. As expected, 40 and 48 did not induce the degradation of the 

cytosolic Hsp90 isoform-dependent client, Akt (Figure 8B,D), nor was there any measurable 

induction of the pro-survival heat shock response, as monitored by Hsp70 induction (Figure 

8E). This is in contrast to Western blot analysis of the MDA-MB-231 cell line above (Figure 

7) and is due to the Hsp90 isoforms in cancer cells having a higher affinity for inhibitors 

(and ATP) compared to the Hsp90 isoforms in nontransformed cells.46
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CONCLUSION

Structure–activity relationship studies were performed on the aryl side chain of BnIm, which 

interacts with the unique secondary pocket of Grp94 (Figure 9). Substitutions at the 2-and 4-

positions were tolerated within this binding region. Incorporation of an ethoxy group at the 

2-position manifested a significant increase in affinity, as well as selectivity. 40 manifests 

nearly a 10-fold increase in affinity for Grp94 compared to BnIm and 40-fold selectivity for 

Grp94 over the cytosolic Hsp90 isoforms. Replacing the phenyl ring of the side chain with 

five-membered heterocycles also resulted in increased affinity for Grp94 as observed with 

48. A crystal structure of the N-terminal domain of Grp94 was solved revealing a cation–π 
interaction between the furan ring and Lys168, which accounts for the increased affinity 

observed with the five-membered heterocycles. Grp94-selective inhibition reduced cell 

migration of aggressive breast cancer cells without manifesting toxicity and thus provided a 

large therapeutic index. Additionally, Grp94 inhibition resulted in the degradation of 

myocilin aggregates and provides a nontoxic approach to the treatment of POAG. These data 

presented herein provide a strong foundation for the further development of rationally 

designed Grp94-selective inhibitors for the treatment of metastasis and POAG.

EXPERIMENTAL SECTION

Chemistry General
1H NMR were recorded at 400 (Bruker AVIIIHD 400 MHz NMR with a broadband X-

channel detect gradient probe) or 500 MHz (Avance AVIII 500 MHz spectrometer with a 

dual carbon/proton cryoprobe), and 13C were recorded at 125 MHz (Bruker AVIII 

spectrometer equipped with a cryogenically cooled carbon observe probe); chemical shifts 

are reported in δ (ppm) relative to the internal standard (CDCl3, 7.26 ppm or MeOD, 3.31 

ppm). HRMS spectra were recorded with a LCT Premier (Waters Cor., Milford, MA). The 

purity of compounds was determined by HPLC (Agilent 1100 series quaternary pump; 60% 

MeCN/40% water; Agilent C-18 column, 4.6 mm × 150 mm, 5 μM) with UV detection. All 

biologically tested compounds were determined to be >95% pure. TLC analysis was 

performed on glass backed silica gel plates and visualized by UV light. All solvents were 

reagent grade and used without further purification.

General Procedure for Multicomponent Cyclization Reaction

Basic amines (e.g., 6a–6q, 0.26 mmol) were added to a stirred solution of 9 (125 mg, 0.26 

mmol) in wet MeOH (2 mL) and stirring continued for 30 min at rt before the addition of 

NH4HCO3 (0.26 mmol) and glyoxal (0.26 mmol). After stirring for 12 h, 

tetrabutylammonium fluoride (0.52 mL of 1 M solution in THF, 0.52 mmol) was added and 

then stirred for 30 min before the reaction was quenched with saturated aqueous NH4Cl (10 

mL) and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried 

(Na2SO4), filtered, and concentrated. The residue was purified via flash chromatography 

(SiO2, 1:49 MeOH:DCM) to afford the desired product as amorphous solids.

Methyl 2-(2-(1-Benzyl-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate 
(5)—Yield 54 mg (54%), white amorphous solid. 1H NMR (500 MHz, CDCl3, MeOD) δ 
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7.28−7.23 (m, 3H), 7.01−6.97 (m, 2H), 6.95 (d, J = 1.5 Hz, 1H), 6.81 (d, J = 1.5 Hz, 1H), 

6.40 (s, 1H), 5.02 (s, 2H), 3.79 (s, 3H), 3.48−3.41 (m, 2H), 2.89−2.83 (m, 2H). 13C NMR 

(126 MHz, CDCl3, MeOD) δ 170.81, 162.06, 158.06, 147.65, 141.73, 136.17, 128.93, 

127.99, 126.91, 126.53, 120.10, 114.76, 105.88, 102.46, 52.45, 49.38, 30.77, 26.08. HRMS 

(ESI) m/z [M –H]− C20H19ClN2O4 385.0955, found 385.0953. tR = 5.062 min, 99.0%.

(4-Ethynylphenyl)methanamine (6a)—6a was synthesized from 4-iodobenzylamine 

hydrochloride following procedures detailed in ref 34. Yield 93 mg (78%) as a dark-yellow 

oil. 1H NMR (500 MHz, MeOD) δ 7.54 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 4.13 

(s, 2H), 3.60 (s, 1H). 13C NMR (126 MHz, MeOD) δ 133.56, 132.27 (2C), 128.71 (2C), 

123.34, 82.10, 78.58, 42.51. HRMS (ESI) m/z [M + H]+ for C9H10N 132.0813, found 

132.0809.

General Procedure for Reduction of Aromatic Nitriles

Benzonitriles (e.g., 7a–7c, 0.7 M in THF, 1 equiv) were added dropwise to a stirred solution 

of LiAlH4 (0.5 M in dry THF, 5 equiv) at 0 °C. The reaction mixture warmed to rt and 

stirred for 12 h. H2O (1 mL/g of LiAlH4) was added dropwise to quench the excess hydride, 

followed by 4 M NaOH (1 mL/g of LiAlH4) and EtOAc (3 mL/g of LiAlH4). The resulting 

suspension was filtered through a pad of Celite and the Celite washed with warm EtOAc (30 

mL) and the eluent concentrated. The residue was purified via flash chromatography (SiO2, 

1:49, MeOH:DCM to 1:20, MeOH:DCM) to afford the desired product as oils.

(2-Ethylphenyl)methanamine (6b)—Yield 653 mg (79%) as a colorless oil. 1H NMR 

(400 MHz, MeOD) δ 6.77−6.69 (m, 1H), 6.63−6.56 (m, 2H), 6.58−6.48 (m, 1H), 4.51 (s, 

2H), 2.07 (q, J = 7.6 Hz, 2H), 0.60 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, MeOD) δ 
143.24, 129.80, 129.39, 129.10, 127.47, 126.97, 42.31, 26.37, 15.96. HRSM (ESI) m/z [M + 

NH4]+ for C9H17N2 153.1392, found 153.1395.

(2-Ethoxyphenyl)methanamine (6c)—Yield 215 mg (59%) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 7.25−7.16 (m, 2H), 6.90 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 

4.07 (q, J = 7.6, 7.1 Hz, 2H), 3.82 (s, 2H), 1.73 (br s, 2H), 1.44 (t, J = 7.0 Hz, 3H). 13C NMR 

(126 MHz, CDCl3) δ 156.82, 131.81, 128.52, 128.05, 120.37, 111.07, 63.33, 42.88, 14.98. 

HRMS (ESI) m/z [M + H]+ for C9H14NO 152.1075, found 152.1077.

(2-Isopropoxyphenyl)methanamine (6d)—Yield 243 mg (59%) as a colorless oil. 1H 

NMR (400 MHz, CDCl3) δ 7.19 (t, J = 6.6 Hz, 2H), 6.92−6.83 (m, 2H), 4.59 (hept, J = 6.0 

Hz, 1H), 3.79 (s, 2H), 1.74 (br s, 2H), 1.36 (d, J = 6.1 Hz, 6H). 13C NMR (126 MHz, 

CDCl3) δ 155.74, 132.68, 128.74, 127.95, 120.24, 112.53, 69.73, 43.07, 22.23 (2C). MS 

(EI) m/z [M]+ for C10H15NO 165.1, found 165.2.

(2-Propoxyphenyl)methanamine (6e)—Yield 265 mg (67%) as a colorless oil. 1H 

NMR (400 MHz, CDCl3) δ 7.24−7.16 (m, 2H), 6.90 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.5 Hz, 

1H), 3.96 (t, J = 6.4 Hz, 2H), 3.83 (s, 2H), 1.90−1.78 (m, 4H), 1.06 (t, J = 7.4 Hz, 3H). 13C 

NMR (126 MHz, CDCl3) δ 156.94, 131.72, 128.50, 128.08, 120.33, 111.02, 69.26, 42.85, 

22.70, 10.78. MS (EI) m/z [M]+ for C10H15NO 165.1, found: 165.2.
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General Procedure for Staudinger Reduction

PPh3 (1.1 equiv) was added to a stirred solution of the benzyl azide (1 equiv) in THF:H2O 

(0.1 M, 10:1) and stirred at rt for 12 h. The reaction mixture was concentrated, and the 

residue was purified via flash chromatography (SiO2, 1:49, MeOH:DCM to 1:20, 

MeOH:DCM) to afford the desired product as oils.

(2-Methoxy-4-methylphenyl)methanamine (6f)—Yield 99 mg (73%) as a colorless 

oil. 1H NMR (500 MHz, CDCl3) δ 7.08 (d, J = 7.4 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 6.69 (s, 

1H), 3.83 (s, 3H), 3.77 (s, 2H), 2.34 (s, 3H), 1.87 (br s, 2H). 13C NMR (126 MHz, CDCl3) δ 
157.32, 138.16, 128.47, 120.96, 111.24, 74.80, 55.12, 42.39, 21.55. HRMS (ESI) m/z [M + 

H]+ for C9H14NO 152.1075, found 152.1076.

General Procedure for Oxime Reduction

Aryl oximes (e.g., 66a–66e, 0.7 M in THF, 1 equiv) were added dropwise to a stirred 

solution of LiAlH4 (0.5 M in dry THF, 5 equiv) at 0 °C. The reaction mixture warmed to rt 

and stirred for 12 h. H2O (1 mL/g of LiAlH4) was added dropwise to quench the excess 

hydride, followed by 4 M NaOH (1 mL/g of LiAlH4) and EtOAc (3 mL/g of LiAlH4). The 

resulting suspension was then filtered through a pad of Celite and the Celite washed with 

warm EtOAc (30 mL), and the eluent was concentrated. The residue was purified via flash 

chromatography (SiO2, 1:49, MeOH:DCM to 1:20, MeOH:DCM) to afford the desired 

products as oils.

(5-Chlorofuran-2-yl)methanamine (6g)—Yield 93 mg (47%), yellow oil. 1H NMR 

(500 MHz, CDCl3) δ 6.12 (d, J = 3.2 Hz, 1H), 6.06 (d, J = 3.2 Hz, 1H), 3.76 (d, J = 0.8 Hz, 

2H), 1.58 (br s, 2H). 13C NMR (126 MHz, CDCl3) δ 156.24, 156.23, 135.05, 107.49, 

106.62, 39.35. HRMS (ESI) m/z [M + H]+ for C5H7ClNO 132.0216, found 132.0221.

Thiazol-2-ylmethanamine (6h)—Yield 42 mg (9%) as a red oil. 1H NMR (400 MHz, 

CDCl3) δ 7.72 (d, J = 3.1 Hz, 1H), 7.26 (d, J = 3.2 Hz, 1H), 4.20 (s, 2H), 1.80 (br, s, 

2H). 13C NMR (126 MHz, CDCl3) δ 174.02, 142.60, 118.56, 44.04. HRMS (ESI) m/z [M + 

H]+ for C4H7N2S 115.0330, found 115.0331.

(5-Methylthiophen-2-yl)methanamine (6i)—Yield 72 mg (16%) as a yellow oil. 1H 

NMR (500 MHz, CDCl3) δ 6.70 (d, J = 3.4 Hz, 1H), 6.57 (dd, J = 3.3, 1.3 Hz, 1H), 3.96 (s, 

2H), 2.72 (br s, 2H), 2.44 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 143.88, 138.89, 124.79, 

124.03, 41.20, 15.40. HRMS (ESI) m/z [M + H]+ for C6H10NS 128.0534, found 128.0532.

(3-Vinylthiophen-2-yl)methanamine (6j)—Yield 152 mg (42%) as a yellow oil. 1H 

NMR (400 MHz, CDCl3) δ 7.20−7.07 (m, 1H), 6.73 (dd, J = 17.5, 11.0 Hz, 1H), 5.54 (dd, J 
= 17.4, 1.3 Hz, 1H), 5.24 (dd, J = 11.0, 1.3 Hz, 1H), 4.07 (s, 1H), 2.03 (s, 1H). 13C NMR 

(126 MHz, CDCl3) δ 142.46, 135.23, 128.76, 125.43, 123.24, 114.19, 38.92. HRMS (ESI) 

m/z [M + H]+ for C7H10NS 140.0534, found 140.0531.

(3-Vinylfuran-2-yl)methanamine (6k)—Yield 57 mg (24%) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.29 (dd, J = 2.0, 0.7 Hz, 1H), 6.57 (dd, J = 17.3, 10.7 Hz, 1H), 6.50 
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(d, J = 2.0 Hz, 1H), 5.42 (dd, J = 17.4, 1.4 Hz, 1H), 5.14 (dd, J = 10.8, 1.4 Hz, 1H), 3.85 (s, 

2H), 1.67 (br s, 2H). 13C NMR (126 MHz, CDCl3) δ 152.77, 141.68, 126.24, 119.34, 

113.23, 107.72, 37.05. HRMS (ESI) [M + H]+ for C7H10NO 124.0762, found 124.0768.

(3-Ethylthiophen-2-yl)methanamine (6l)—Pd/C 10% (5 mol %) was added to a stirred 

solution of (3-vinylthiophen-2-yl)methanamine (6k, 50 mg, 0.36 mmol) in MeOH (5 mL) 

and stirred at rt under a hydrogen atmosphere for 12 h. The reaction mixture was filtered 

through a pad of Celite, and the eluent was concentrated to produce the title compound 

which was used without further purification. Yield 45 mg (89%) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.16 (d, J = 5.1 Hz, 1H), 6.87 (d, J = 5.2 Hz, 1H), 4.56 (s, 2H), 4.05 (s, 

2H), 2.61 (q, J = 7.6 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 
141.48, 134.90, 128.62, 123.84, 37.77, 21.46, 15.29. HRMS (ESI) m/z [M + H]+ for 

C7H12NS 147.0690, found 147.0692.

(5-Chlorothiophen-2-yl)methanamine (6m)—A solution of thiophene-2-

ylmethanamine (1 mL, 9.7 mmol, 1 equiv) in AcOH:Et2O (9:1, 0.5 M) was cooled to 5 °C 

followed by the dropwise addition of SO2Cl2 (1.18 mL, 14.6 mmol, 1.5 equiv), maintaining 

the reaction temperature under 20 °C. The reaction was stirred at rt for 1 h, at which time 

Et2O (20 mL) was added and stirred for an additional 30 min. The precipitate (hydrochloride 

salt of desired product) was filtered and the solid washed with Et2O. The isolated solid was 

dissolved in DCM (25 mL) and washed with sat’d NaHCO3 (2 × 30 mL). The organic layer 

was separated, dried (Na2SO4), and concentrated. The residue was purified via flash 

chromatography (SiO2, 1:49 MeOH:DCM to 1:20 MeOH:DCM) to provide the title 

compound. Yield 658 mg (37%) as a yellow oil. 1H NMR (400 MHz, MeOD) δ 5.51 (d, J = 

3.0 Hz, 1H), 5.40 (d, J = 3.8 Hz, 1H), 2.69 (s, 2H), 1.73 (br s, 2H). 13C NMR (126 MHz, 

MeOD) δ 134.70, 132.71, 130.62, 127.93, 38.70. HRMS (ESI) m/z [M + H]+ for C5H6ClNS 

148.9990, found 148.9988.

Isoxazol-5-ylmethanamine (6n)—Yield 159 mg (77%) as a colorless oil. 1H NMR (400 

MHz, CDCl3) δ 8.17 (s, 1H), 6.13 (s, 1H), 4.00 (s, 2H), 1.53 (br, s, 2H). 13C NMR (126 

MHz, CDCl3) δ 172.47, 150.28, 100.04, 37.62. MS (EI) m/z [M]+ for C4H6N2O 98.0, found 

98.1.

(3,5-Dimethylfuran-2-yl)methanamine (6o)—Yield 98 mg (65%) as a yellow oil. 1H 

NMR (400 MHz, MeOD) δ 5.78 (s, 1H), 3.70 (s, 2H), 2.17 (s, 3H), 1.92 (s, 3H). 13C NMR 

(126 MHz, MeOD) δ 152.01, 147.87, 118.48, 110.06, 36.39, 13.41, 9.78. HRMS (ESI) m/z 
[M + H]+ for C7H12NO 126.0919, found 126.0924.

(3-Chlorothiophen-2-yl)methanamine (6p)—Yield 113 mg (59%) as a yellow oil. 1H 

NMR (400 MHz, CDCl3) δ 7.15 (dd, J = 5.2, 1.2 Hz, 1H), 6.86 (dd, J = 5.3, 1.1 Hz, 1H), 

3.98 (s, 2H), 1.79 (br s, 2H). 13C NMR (126 MHz, CDCl3) δ 148.24, 124.45, 123.90, 

118.33, 41.51. HRMS (ESI) m/z [M + H]+ for C5H7ClNS 147.9988, found 147.9990.

(4-Chlorothiophen-2-yl)methanamine (6q)—Yield 79 mg (67%) as a yellow oil. 1H 

NMR (400 MHz, CDCl3) δ 6.96 (s, 1H), 6.78 (s, 1H), 3.99 (s, 2H), 1.71 (br s, 2H). 13C 
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NMR (126 MHz, CDCl3) δ 148.24, 124.45, 123.90, 118.33, 41.51. HRMS (ESI) m/z [M + 

H]+ for C5H7ClNS 147.9988, found 147.9995.

General Procedure for Alkylation of 2-Hydroxybenzonitrile

Alkyl iodides (3.7 mmol, 1.1 equiv) and K2CO3 (930 mg, 6.7 mmol, 2 equiv) were added to 

a stirred solution of 2-hydroxybenzonitrile (400 mg, 3.4 mmol) in DMF (20 mL) at rt and 

stirred for 4 h. The reaction was quenched with the addition of H2O (20 mL) and EtOAc (40 

mL). The organic layer was washed with water (5 × 40 mL), dried (Na2SO4), filtered, and 

concentrated. The residue was purified by column chromatography (SiO2, 4:1 Hex:EtOAc) 

to afford the desired alkyl ethers as colorless oils.

2-Ethoxybenzonitrile (7a)—Yield 360 mg (71%) as a colorless oil. 1H NMR (400 MHz, 

CDCl3) δ 7.63−7.45 (m, 2H), 7.04−6.89 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 1.48 (t, J = 7.0 

Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 161.02, 134.65, 134.17, 120.91, 116.99, 112.49, 

102.36, 64.99, 14.91. MS (EI) m/z [M]+ for C9H9NO 147.1, found 147.1; [M + H]+ for 

C9H10NO 148.1, found 148.1.

2-Isopropoxybenzonitrile (7b)—Yield 405 mg (71%) as a colorless oil. 1H NMR (400 

MHz, CDCl3) δ 7.57 (dt, J = 7.7, 1.5 Hz, 1H), 7.52 (td, J = 7.9, 7.3, 1.5 Hz, 1H), 6.99 (dd, J 
= 8.2, 5.2 Hz, 2H), 4.68 (hept, J = 6.1 Hz, 1H), 1.43 (d, J = 6.1 Hz, 6H). 13C NMR (126 

MHz, CDCl3) δ 159.92, 134.11, 133.94, 120.45, 116.77, 113.64, 102.99, 71.78, 21.86 (2C). 

MS (EI) m/z [M]+ for C10H11NO 161.1, found 161.1; [M + H]+ for C10H12NO 162.1, found 

162.1.

2-Propoxybenzonitrile (7c)—Yield 385 mg (71%) as a colorless oil. 1H NMR (400 

MHz, CDCl3) δ 7.55 (d, J = 7.8 Hz, 1H), 7.50 (td, J = 8.1, 7.4, 1.5 Hz, 1H), 7.00−6.93 (m, 

2H), 4.03 (t, J = 6.5 Hz, 2H), 1.88 (h, J = 7.0 Hz, 2H), 1.08 (t, J = 7.4 Hz, 3H). 13C NMR 

(126 MHz, CDCl3) δ 160.83, 134.27, 133.76, 120.52, 116.56, 112.19, 102.00, 70.45, 22.33, 

10.46. MS (EI) m/z [M]+ for C10H11NO 161.1, found 161.1; [M + H]+ for C10H12NO 162.1, 

found 162.1.

General Procedure for the Reduction of Carboxylic Acids

The aromatic carboxylic acids (e.g., 68, 0.7 M in THF, 1 equiv) were added dropwise to a 

stirred solution of LiAlH4 (0.5 M in THF, 5 equiv) at 0 °C. The reaction warmed to rt and 

stirred for 12 h. H2O (1 mL/g of LiAlH4) was added, to quench the excess hydride, then 4 M 

NaOH (1 mL/g of LiAlH4) and EtOAc (3 mL/g of LiAlH4). The resulting suspension was 

filtered through a pad of Celite then the Celite was washed with warm EtOAc and the eluent 

concentrated. The residue was purified via flash chromatography (SiO2, 3:10 

EtOAc:hexanes to 3:5 EtOAc:hexanes) to provide the desired alcohol as colorless oils:

(2-Methoxy-4-methylphenyl)methanol (8)—Yield 187 mg (50%), colorless oil. 1H 

NMR (400 MHz, CDCl3) δ 7.14 (d, J = 7.5 Hz, 1H), 6.78 (dd, J = 7.5, 0.8 Hz, 1H), 6.75 (s, 

1H), 4.32 (s, 2H), 3.86 (s, 3H), 2.38 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 157.58, 140.13, 

130.11, 121.13, 120.80, 111.52, 55.33, 50.01, 21.71. HRSM (ESI) m/z [M]+ for C9H12O2 

152.0837, found 152.0846.
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Methyl 4,6-Bis((tert-butyldimethylsilyl)oxy)-3-chloro-2-(3-oxopropyl)benzoate 
(9)—9 was synthesized following procedures detailed in refs 28 and 35. Yield 1.8 g (68%), 

white amorphous solid. 1H NMR (500 MHz, chloroform-d) δ 9.80 (s, 1H), 6.31 (s, 1H), 3.84 

(s, 3H), 2.96−2.92 (m, 2H), 2.80−2.74 (m, 2H), 1.02 (s, 9H), 0.95 (s, 9H), 0.23 (s, 6H), 0.21 

(s, 6H). 13C NMR (126 MHz, CDCl3) δ 201.47, 168.36, 153.48, 151.94, 138.10, 121.44, 

118.81, 110.15, 109.97, 52.69, 43.83, 26.00 (3C), 25.83 (3C), 18.74, 18.43, −3.96 (2C), 

−4.00 (2C). HRMS (ESI) m/z [M + H]+ for C23H40ClO5Si2 487.2103, found 487.2120.

Methyl 3-Chloro-2-(2-(1-(4-fluorobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-
dihydroxybenzoate (10)—Yield 22 mg (21%), white amorphous solid. 1H NMR (500 

MHz, MeOD) δ 7.07−6.94 (m, 5H), 6.86 (d, J = 1.4 Hz, 1H), 6.29 (s, 1H), 5.00 (s, 2H), 3.69 

(s, 3H), 3.22−3.19 (m, 2H), 2.84 (m, 2H). 13C NMR (126 MHz, MeOD) δ 171.22, 164.76, 

162.81, 160.69, 158.81, 148.82, 141.37, 134.18, 130.01, 129.94, 127.28, 121.71, 116.75, 

116.58, 112.63 (d, J = 558.4 Hz), 103.34, 52.85, 31.45, 27.26. HRMS (ESI) m/z [M + H] for 

C20H19ClFN2O4 405.1017, found 405.1009.

Methyl 3-Chloro-2-(2-(1-(4-chlorobenzyl)-1H-imidazol-2-yl)-ethyl)-4,6-
dihydroxybenzoate (11)—Yield 28 mg, (25%), white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 7.24 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 1.4 Hz, 1H), 6.90 (d, J = 8.4 

Hz, 2H), 6.78 (d, J = 1.4 Hz, 1H), 6.40 (s, 1H), 4.97 (s, 2H), 3.81 (s, 3H), 3.46−3.40 (m, 

2H), 2.89−2.80 (m, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 170.63, 162.31, 157.66, 

147.56, 141.56, 134.60, 134.02, 129.19 (2C), 127.92 (2C), 127.05, 120.00, 114.57, 106.08, 

102.68, 52.59, 30.87, 29.69, 26.04 HRMS (ESI) m/z [M + H] for C20H19Cl2N2O4 421.0722, 

found 421.0714.

Methyl 2-(2-(1-(4-Bromobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-
dihydroxybenzoate (12)—Yield 45 mg (38%), off-white amorphous solid. 1H NMR (400 

MHz, CDCl3, MeOD) δ 7.36 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 1.4 Hz, 1H), 6.82 (d, J = 8.5 

Hz, 2H), 6.77 (d, J = 1.5 Hz, 1H), 6.35 (s, 1H), 4.93 (s, 2H), 3.78 (s, 3H), 3.42−3.34 (m, 

2H), 2.84−2.77 (m, 2H). 13C NMR (101 MHz, CDCl3, MeOD) δ 170.23, 161.42, 157.64, 

147.25, 141.09, 134.83, 131.69 (2C), 127.85 (2C), 126.55, 121.59, 119.68, 114.27, 102.14, 

99.99, 52.03, 30.38, 25.69. HRMS (ESI) m/z [M + H]+ for C20H19BrClN2O4 465.0217, 

found 465.0237. tR = 4.17 min, 95.3%.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(4-iodobenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (13)—Yield 22 mg (35%), white amorphous solid. 1H NMR (400 

MHz, CDCl3, MeOD): δ 7.59−7.57 (dd, J = 11.6 Hz, 2H), 7.14−7.11 (dd, J = 10.0 Hz, 2H), 

7.05 (s, 1H), 6.86 (s, 1H), 6.44 (s, 1H), 5.14 (s, 2H), 3.87 (s, 3H), 3.48−3.44 (t, J = 16.8, 

2H), 2.91−2.87 (t, J = 18.4 Hz, 2H.). 13C NMR (125 MHz, CDCl3, MeOD): δ 170.6, 162.4, 

157.6, 147.6, 141.5, 138.1, 128.4, 127.2, 120.0, 114.6, 106.1, 102.7, 93.6, 52.6, 52.2, 49.0, 

30.9, 26.1, 25.2, 20.1. HRMS (ESI) m/z [M + H]+ for C20H18ClIN2O4 513.0020, found 

513.0070.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(4-methylbenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (14)—Yield 44 mg (43%), off-white amorphous solid. 1H NMR (500 

MHz, MeOD) δ 7.15 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 1.4 Hz, 1H), 7.00−6.96 (m, 2H), 6.94 
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(d, J = 1.5 Hz, 1H), 6.39 (s, 1H), 5.05 (s, 2H), 3.77 (s, 3H), 3.37−3.30 (m, 2H), 2.97−2.89 

(m, 2H), 2.31 (s, 3H). 13C NMR(125 MHz, MeOD) δ 171.3, 160.9, 159.0, 148.8, 141.5, 

138.9, 135.1, 130.5 (2C), 127.9 (2C), 127.1, 121.8, 115.0, 110.1, 103.3, 52.8, 50.1, 31.5, 

27.3, 21.1. HRMS (ESI) m/z [M + H]+ for C21H22ClN2O4 401.1268, found 401.1266.

Methyl 3-Chloro-2-(2-(1-(4-ethylbenzyl)-1H-imidazol-2-yl)ethyl)-4,6-
dihydroxybenzoate (15)—Yield 37 mg (39%), off white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 7.14 (d, J = 8.1 Hz, 2H), 7.11−7.08 (m, 1H), 6.98−6.91 (m, 2H), 

6.85 (d, J = 1.5 Hz, 1H), 6.44 (s, 1H), 4.96 (s, 3H), 3.54−3.45 (m, 2H), 3.04 (t, J = 7.9 Hz, 

2H), 2.59 (q, J = 7.6 Hz, 2H), 1.17 (td, J = 7.6, 1.0 Hz, 3H). 13C NMR (125 MHz, CDCl3, 

MeOD) δ 170.6, 162.1, 158.2, 147.2, 145.0, 140.9, 132.1, 128.8 (2C), 127.2 (2C), 124.2, 

120.6, 114.9, 106.2, 103.0, 50.0, 49.9, 30.7, 28.6, 25.6, 15.6. HRMS (ESI) m/z [M + H]+ for 

C22H24ClN2O4 415.1425, found 415.1432.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(4-isopropylbenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (16)—Yield 25 mg (22%), white amorphous solid. 1H NMR (500 

MHz, CDCl3) δ 7.13 (d, J = 8.1 Hz, 2H), 7.03 (s, 1H), 6.90 (d, J = 8.2 Hz, 2H), 6.80 (d, J = 

1.5 Hz, 1H), 6.49 (s, 1H), 4.95 (s, 2H), 3.79 (s, 3H), 3.50 (t, J = 7.9 Hz, 2H), 3.00−2.92 (m, 

2H), 2.82 (hept, J = 6.9 Hz, 1H), 1.16 (d, J = 7.0 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ 
170.63, 162.91, 157.32, 149.25, 147.18, 127.20 (2C), 126.81 (2C), 120.19, 114.50, 106.24, 

103.00, 99.98, 52.76, 49.56, 33.81, 30.77, 29.72, 23.93 (2C). HRMS (ESI) m/z [M + H]+ for 

C23H26ClN2O4 429.1581, found 429.1588.

Methyl 3-Chloro-2-(2-(1-(4-cyanobenzyl)-1H-imidazol-2-yl)-ethyl)-4,6-
dihydroxybenzoate (17)—Yield 37 mg (39%), off white amorphous solid. 1H NMR (500 

MHz, CDCl3) δ 7.79 (q, J = 7.8, 6.0 Hz, 2H), 7.61−7.36 (m, 2H), 7.20−7.12 (m, 1H), 7.05 

(s, 1H), 6.57 (s, 1H), 5.44−5.25 (m, 2H), 4.00 (s, 3H), 3.57 (q, J = 7.7 Hz, 2H), 3.02 (t, J = 

7.9 Hz, 2H). 13C NMR (125 MHz, CDCl3): 170.4, 161.5, 158.0, 147.8, 142.0, 141.2, 132.8, 

(2C), 127.7, 127.4, 127.0 (2C), 120.2, 118.2, 114.5, 111.6, 102.4, 52.4, 52.3, 30.8, 26.0. 

HRMS (ESI) m/z [M + H]+ for C21H19ClN3O4 412.1064, found 412.1049.

Methyl 3-Chloro-2-(2-(1-(4-ethynylbenzyl)-1H-imidazol-2-yl)-ethyl)-4,6-
dihydroxybenzoate (18)—Yield 37 mg (35%), tan amorphous solid. 1H NMR (500 MHz, 

CDCl3) δ 7.46 (d, J = 8.3 Hz, 1H), 7.06 (d, J = 1.4 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.86 (d, 

J = 1.4 Hz, 1H), 6.48 (s, 1H), 5.12 (s, 1H), 3.84 (s, 2H), 3.50 (dd, J = 9.3, 6.7 Hz, 1H), 3.09 

(s, 1H), 2.94 (dd, J = 9.0, 7.0 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 170.71, 162.73, 

158.41, 147.66, 141.27, 136.69, 132.78, 129.10, 126.79, 126.61, 126.52, 122.09, 120.19, 

120.15, 114.98, 105.65, 102.81, 82.85, 52.61, 49.28, 30.86, 26.01. HRMS (ESI) m/z [M + 

H]+ for C22H20ClN2O4 411.1112, found 411.1121.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(4-(trifluoromethyl)-benzyl)-1H-
imidazol-2-yl)ethyl)benzoate (19)—Yield 24 mg (36%), white amorphous solid. 1H 

NMR (400 MHz, CDCl3, MeOD): δ 7.56−7.55 (dd, J = 9.7 Hz, 2H), 7.15 (s, 1H), 7.10−7.08 

(dd, J = 11.3 Hz, 2H), 6.86 (s, 1H), 6.44 (s, 1H), 5.06 (s, 2H), 3.86 (s, 3H), 3.47−3.43 (t, J = 

16.3 Hz, 2H), 3.04−3.00 (t, J = 16.3 Hz, 2H). 13C NMR (125 MHz, CDCl3, MeOD) δ 170.2, 

162.1, 157.8, 147.3, 140.3, 138.7, 131.1, 130.8, 127.1, 126.3, 126.2, 124.7, 122.6, 120.5, 
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114.6, 111.4, 106.1, 103.1, 52.9, 30.6, 25.3. HRMS (ESI) m/z [M + H+] for 

C21H18ClF3N2O4 455.0937, found 455.0972.

Methyl 2-(2-(1-([1,1′-Biphenyl]-4-ylmethyl)-1H-imidazol-2-yl)-ethyl)-3-
chloro-4,6-dihydroxybenzoate (20)—Yield 35 mg (29%), tan amorphous solid. 1H 

NMR (500 MHz, CDCl3, MeOD) δ 7.54−7.48 (m, 4H), 7.39 (ddd, J = 8.0, 7.0, 1.7 Hz, 2H), 

7.31 (td, J = 7.2, 1.4 Hz, 1H), 7.07 (dd, J = 8.3, 1.6 Hz, 2H), 6.98 (s, 1H), 6.86 (s, 1H), 6.41 

(s, 1H), 5.07 (s, 2H), 3.83 (s, 3H), 3.52−3.45 (m, 2H), 2.92−2.87 (m, 2H). 13C NMR (126 

MHz, CDCl3) δ 170.80, 162.08, 157.84, 147.65, 141.83, 140.99, 140.24, 135.21, 128.81 

(2C), 127.62 (2C), 127.52, 127.16, 127.00 (2C), 126.98 (2C), 120.08, 114.67, 106.06, 

102.49, 52.50, 49.64, 30.89, 26.17. HRMS (ESI) m/z [M + H]+ for C26H23ClN2O4 

463.1425, found 463.1447.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(4-methoxybenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (21)—Yield 25 mg (23%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3, MeOD) δ 6.86−6.84 (m, 1H), 6.82 (d, J = 1.4 Hz, 1H), 6.74−6.69 (m, 4H), 6.31 (s, 

1H), 4.85 (s, 2H), 3.72 (s, 3H), 3.65 (s, 3H), 3.38−3.32 (m, 2H), 2.82−2.76 (m, 2H). 13C 

NMR (126 MHz, CDCl3, MeOD) δ 174.64, 165.64, 163.22, 162.05, 151.40, 145.46, 135.37, 

132.06 (2C), 132.02, 130.37, 123.92, 118.20 (2C), 110.16, 106.36, 99.99, 59.12, 56.29, 

34.61, 30.03. HRMS (ESI) m/z [M–H]− for C21H21ClN2O5 415.1061, found 415.1061.

Methyl 3-Chloro-2-(2-(1-(3,4-dichlorobenzyl)-1H-imidazol-2-yl)-ethyl)-4,6-
dihydroxybenzoate (22)—Yield 27 mg (23%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3, MeOD) δ 7.30 (d, J = 8.3 Hz, 1H), 7.05 (d, J = 1.9 Hz, 2H), 6.92 (d, J = 1.7 Hz, 1H), 

6.81 (dd, J = 8.3, 2.2 Hz, 1H), 6.32 (s, 1H), 4.94 (s, 2H), 3.76 (s, 3H), 3.36−3.29 (m, 2H), 

2.95 (t, J = 7.8 Hz, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 173.55, 164.94, 161.93, 

141.26, 137.43, 135.20, 133.07, 130.90, 130.47, 125.31 (2C), 118.43, 116.40, 110.96, 

107.00 (2C), 56.54, 53.05, 33.98, 28.86. HRMS (ESI) m/z [M + H]+ for C20H18Cl3N2O4 

455.0332, found 455.0354.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(naphthalen-1-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (23)—Yield 32 mg (28%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3, MeOD) δ 7.79 (dd, J = 6.8, 2.5 Hz, 1H), 7.71 (dd, J = 8.0, 3.9 Hz, 2H), 7.48−7.40 

(m, 2H), 7.28 (d, J = 1.2 Hz, 1H), 6.93 (d, J = 1.4 Hz, 1H), 6.72 (d, J = 1.5 Hz, 1H), 

6.71−6.67 (m, 1H), 6.32 (s, 1H), 5.43 (s, 2H), 3.73 (s, 3H), 3.45−3.35 (m, 2H), 2.94−2.84 

(m, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 170.58, 161.56, 158.02, 147.88, 141.47, 

133.57, 131.62, 130.34, 128.92, 128.68, 126.80 (2C), 126.15, 125.35, 123.93, 121.99, 

120.36, 114.62, 106.32, 102.38, 52.29, 47.31, 30.74, 26.17. HRMS (ESI) m/z [M + H]+ for 

C24H21ClN2O4 437.1268, found 437.1250.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(naphthalen-2-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (24)—Yield 28 mg (25%), tan amorphous solid. 1H NMR (400 MHz, 

DMSO-d6) δ 7.88 (dd, J = 9.1, 4.0 Hz, 2H), 7.83−7.78 (m, 1H), 7.51−7.46 (m, 1H), 7.25 

(dd, J = 8.4, 1.9 Hz, 1H), 7.18 (d, J = 1.3 Hz, 1H), 6.85 (d, J = 1.3 Hz, 1H), 6.42 (s, 1H), 

5.29 (s, 2H), 3.57 (s, 3H), 2.92−2.86 (m, 2H), 2.77−2.71 (m, 2H). 13C NMR (126 MHz, 

DMSO-d6) δ 167.86, 155.00, 154.47, 146.42, 137.73, 135.17, 132.79, 132.21, 128.35, 
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127.60 (2C), 127.54, 126.80, 126.43 (2C), 126.04, 124.94, 124.84, 120.56, 113.74, 110.78, 

101.68, 51.80, 48.38, 29.92, 26.18. HRMS (ESI) m/z [M + H]+ for C24H21ClN2O4 

437.1268, found 437.1280.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(quinolin-5-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (25)—Yield 29 mg (25%), white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 8.87 (dd, J = 4.3, 1.6 Hz, 1H), 8.20−8.16 (m, 1H), 8.00 (d, J = 8.5 

Hz, 1H), 7.60 (dd, J = 8.5, 7.2 Hz, 1H), 7.49−7.44 (m, 1H), 6.99 (s, 1H), 6.86−6.83 (m, 1H), 

6.76 (s, 1H), 6.36 (s, 1H), 5.48 (s, 2H), 3.83 (s, 3H), 3.48−3.44 (m, 2H), 2.95−2.89 (m, 

2H). 13C NMR (126 MHz, CDCl3) δ 170.55, 161.86, 157.87, 150.21, 147.86, 141.56, 

132.32, 131.06, 129.45, 129.37, 127.44, 125.58, 124.79, 121.64, 120.13, 114.59, 106.08, 

102.48, 99.99, 52.49, 46.63, 30.93, 26.20. HRMS (ESI) m/z [M + H]+ for C23H21ClN3O4 

438.1221, found 438.1207.

Methyl 3-Chloro-2-(2-(1-(3-fluorobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-
dihydroxybenzoate (26)—Yield 26 mg (25%), pale-yellow amorphous solid. 1H NMR 

(500 MHz, CDCl3) δ 7.29−7.20 (m, 1H), 7.01 (d, J = 1.4 Hz, 1H), 6.92 (m, 1H), 6.82 (d, J = 

1.4 Hz, 1H), 6.75 (m, 1H), 6.70−6.58 (m, 1H), 6.46 (s, 1H), 5.01 (s, 2H), 3.80 (s, 3H), 

3.52−3.40 (m, 2H), 2.88−2.74 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 157.05, 147.61, 

141.78, 130.85, 127.79, 122.12, 120.22 (2C), 115.28, 115.12, 113.69, 113.51, 106.66, 

102.98 (2C), 100.13, 53.58, 48.96, 31.01, 26.26. HRMS (ESI) m/z [M + H] for 

C20H19ClFN2O4 405.1017, found 405.1009.

Methyl 3-Chloro-2-(2-(1-(3-chlorobenzyl)-1H-imidazol-2-yl)-ethyl)-4,6-
dihydroxybenzoate (27)—Yield 47 mg (44%), pale-yellow amorphous solid. 1H NMR 

(500 MHz, CDCl3, MeOD) δ 7.25−7.20 (m, 2H), 7.03 (d, J = 1.6 Hz, 1H), 6.99−6.96 (m, 

1H), 6.91−6.84 (m, 2H), 6.40 (s, 1H), 5.00 (s, 2H), 3.82 (s, 3H), 3.49−3.33 (m, 2H), 

3.01−2.83 (m, 2H). 13C NMR (125 MHz, CDCl3, MeOD) δ 170.6, 161.9, 158.2, 147.5, 

141.1, 137.7, 135.1, 130.5, 128.5, 126.8, 125.9, 124.9, 120.5, 114.8, 106.2, 102.7, 52.6 (2C), 

30.6, 25.8. HRMS (ESI) m/z [M + H]+ for C20H19Cl2N2O4 421.0722, found 421.0728.

Methyl 2-(2-(1-(3-Bromobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-
dihydroxybenzoate (28)—Yield 23 mg (19%), white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 7.38 (m, 1H), 7.19−7.09 (m, 2H), 6.99 (d, J = 1.5 Hz, 1H), 6.91 (m, 

1H), 6.84 (d, J = 1.5 Hz, 1H), 6.40 (s, 1H), 5.00 (s, 2H), 3.83 (s, 3H), 3.46−3.38 (m, 2H), 

2.92−2.79 (m, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 168.02, 159.25, 155.49, 145.00, 

138.77, 135.70, 128.71, 128.01, 126.95, 124.05, 122.60, 120.52, 117.64, 112.15, 103.58, 

100.01, 49.95, 46.22, 28.09, 23.35. HRMS (ESI) m/z [M + H] for C20H19BrClN2O4 

465.0217, found 465.0225.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(3-iodobenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (29)—Yield 4 mg (11%), white amorphous solid. 1H NMR (400 MHz, 

DMSO-d6): δ 7.67−7.64 (dd, J = 7.05 Hz, 1H), 7.43 (s, 1H), 7.18−7.14 (m, 2H), 7.08−7.06 

(dd, J = 9.24 Hz, 1H), 6.86 (s, 1H), 6.47 (s, 1H), 5.14 (s, 2H), 3.68 (s, 3H), 2.92−2.88 (t, J = 

16.3 Hz, 2H), 2.73−2.67 (t, J = 18.2 Hz, 2H). 13C NMR (125 MHz, DMSO-d6, MeOD): δ 
167.9, 155.0, 154.5, 146.4, 140.2, 137.7, 136.2, 135.1, 130.9, 126.0, 120.6, 113.8, 110.8, 
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101.8, 99.5, 95.2, 52.0, 47.4, 29.8, 26.1. HRMS (ESI) m/z [M + H+] for C20H18ClIN2O4 

513.0023, found 513.0065.

Methyl 2-(2-(1-(3-Methoxybenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-
dihydroxybenzoate (30)—Yield 32 mg (31%), white amorphous solid. 1H NMR (400 

MHz, CDCl3) δ 7.06 (s, 1H), 6.88 (s, 1H), 6.82 (d, J = 9.0 Hz, 1H), 6.62 (d, J = 7.7 Hz, 1H), 

6.55 (s, 1H), 6.53 (s, 1H), 5.04 (s, 2H), 3.85 (s, 3H), 3.76 (s, 3H), 3.59−3.51 (m, 2H), 

2.95−2.89 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 170.68, 162.88, 160.13, 157.00, 147.45, 

141.62, 137.81, 130.13, 127.12, 120.17, 118.69, 114.33, 113.03, 112.49, 106.43, 102.82, 

55.26, 52.64, 49.34, 30.90, 26.09. HRMS (ESI) m/z [M + H]+ for C21H22ClN2O5 417.1217, 

found 417.1221.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(3-methylbenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (31)—Yield 18 mg (17%), tan amorphous solid. 1H NMR (500 MHz, 

CDCl3, MeOD) δ 7.06 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.85 (d, J = 1.5 Hz, 1H), 

6.75 (d, J = 1.5 Hz, 1H), 6.72−6.66 (m, 2H), 6.30 (s, 1H), 4.87 (s, 2H), 3.69 (s, 3H), 

3.36−3.30 (m, 2H), 2.81 (dd, J = 9.2, 6.9 Hz, 2H), 2.16 (s, 3H). 13C NMR (126 MHz, 

CDCl3, MeOD) δ 174.49, 165.52, 161.99, 151.39, 145.16, 142.73, 139.62, 132.79 (2C), 

131.28, 129.76, 127.67, 124.32, 118.57, 110.31, 106.43, 56.27, 53.48, 34.48, 29.85, 25.07. 

HRMS (ESI) m/z [M + H]+ for C21H22ClN2O4 401.1268, found 401.1255.

Methyl 2-(2-(1-([1,1′-Biphenyl]-3-ylmethyl)-1H-imidazol-2-yl)-ethyl)-3-
chloro-4,6-dihydroxybenzoate (32)—Yield 46 mg (39%), pale-yellow amorphous 

solid. 1H NMR (400 MHz, CDCl3, MeOD) δ 7.53−7.47 (m, 3H), 7.41 (dd, J = 9.1, 7.3 Hz, 

3H), 7.38−7.33 (m, 1H), 7.23 (s, 1H), 7.03 (d, J = 1.3 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.89 

(d, J = 1.4 Hz, 1H), 6.46 (s, 1H), 5.12 (s, 2H), 3.82 (s, 3H), 3.56−3.46 (m, 2H), 2.97−2.89 

(m, 2H). 13C NMR δ (100 MHz, CDCl3): 170.8, 163.0, 157.9, 147.7, 142.4, 141.5, 140.5, 

136.6, 129.8 (3C), 129.1(2C), 128.0, 127.3, 127.3, 125.7, 125.6, 120.5, 114.9, 106.3, 103.2, 

52.8, 49.9, 31.1, 26.2. HRMS (ESI) m/z [M − H]− for C26H22ClN2O4 461.1268, found 

461.1259.

Methyl 3-Chloro-2-(2-(1-(2-fluorobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-
dihydroxybenzoate (33)—Yield 23 mg (22%), white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 7.27−7.23 (m, 1H), 7.06−6.98 (m, 2H), 6.94 (d, J = 1.4 Hz, 1H), 

6.81 (d, J = 1.4 Hz, 1H), 6.78 (dd, J = 7.5, 1.7 Hz, 1H), 6.40 (s, 1H), 5.05 (s, 2H), 3.82 (s, 

3H), 3.64−3.38 (m, 2H), 3.05−2.68 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 170.80, 

162.21, 157.79, 147.67, 141.77, 130.04, 128.42, 127.27, 124.63, 123.62, 123.50, 119.93, 

115.60 (d, J = 21.0 Hz), 114.66, 106.02, 102.55, 52.51, 43.46, 30.83, 26.04. HRMS (ESI) 

m/z [M + H] for C20H18ClFN2O4 405.1029, found 405.1017.

Methyl 2-(2-(1-(2-Chlorobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-
dihydroxybenzoate (34)—Yield 23 mg (21%), white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 7.27 (s, 1H), 7.24−7.16 (m, 2H), 7.01 (d, J = 1.6 Hz, 1H), 6.94 (dd, 

J = 1.9, 1.0 Hz, 1H), 6.84 (m, 2H), 6.38 (s, 1H), 4.98 (s, 2H), 3.80 (s, 3H), 3.45−3.35 (m, 

2H), 2.94−2.85 (m, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 170.58, 162.43, 157.43, 

147.63, 141.17, 133.48, 132.58, 129.83, 129.62, 127.72, 127.52, 126.18, 120.16, 114.51, 
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106.20, 102.85, 52.73, 47.48, 30.89, 25.78. HRMS (ESI) m/z [M + H]+ for C20H19Cl2N2O4 

421.0722, found 421.0714.

Methyl 2-(2-(1-(2-Bromobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-
dihydroxybenzoate (35)—Yield 26 mg (22%), white amorphous solid. 1H NMR (500 

MHz, CDCl3) δ 7.54 (dd, J = 8.0, 1.3 Hz, 1H), 7.24−7.20 (m, 1H), 7.15 (td, J = 7.7, 1.7 Hz, 

1H), 7.10 (d, J = 1.6 Hz, 1H), 6.78 (d, J = 1.6 Hz, 1H), 6.67−6.57 (m, 1H), 6.48 (s, 1H), 5.06 

(s, 2H), 3.85 (s, 3H), 3.48−3.33 (m, 2H), 3.06−2.89 (m, 2H). 13C NMR (126 MHz, CDCl3) 

δ 170.47, 162.64, 157.77, 147.55, 140.60, 133.23 (2C), 130.08, 128.23 (2C), 122.57, 120.27 

(2C), 114.71, 105.94, 103.08, 52.85, 50.15, 30.78, 25.58. HRMS (ESI) m/z [M + H] for 

C20H19BrClN2O4 465.0217, found 465.0231.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(2-methylbenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (36)—Yield 32 mg (31%), tan amorphous solid. 1H NMR (500 MHz, 

CDCl3, MeOD) δ 7.25 (s, 1H), 7.08−7.02 (m, 2H), 6.88−6.83 (m, 1H), 6.66−6.58 (m, 1H), 

6.47 (t, J = 6.7 Hz, 1H), 6.29 (s, 1H), 4.87 (s, 2H), 3.72 (s, 3H), 3.35−3.25 (m, 2H), 2.81 (dd, 

J = 10.9, 5.1 Hz, 2H), 2.10 (s, 3H). 13C NMR (126 MHz, CDCl3, MeOD) δ 174.43, 165.45, 

161.97, 151.53, 145.12, 139.32, 137.71, 134.49, 132.09, 130.45, 130.31, 129.87, 124.09, 

118.52, 110.38, 106.41, 56.28, 51.65, 34.50, 29.86, 22.59. HRMS (ESI) m/z [M + H]+ for 

C21H22ClN2O4 401.1268, found 401.1261.

Methyl 2-(2-(1-(2-Aminobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-
dihydroxybenzoate (37)—Yield 20 mg (19%), white amorphous solid. 1H NMR (500 

MHz, MeOD) δ 7.07 (td, J = 7.8, 1.6 Hz, 1H), 6.98 (dd, J = 7.8, 1.4 Hz, 2H), 6.78 (dd, J = 

8.0, 1.2 Hz, 1H), 6.65 (td, J = 7.5, 1.2 Hz, 1H), 6.52 (dd, J = 7.6, 1.5 Hz, 1H), 6.39 (s, 1H), 

5.03 (s, 2H), 3.79 (s, 3H), 3.37−3.33 (m, 2H), 3.01−2.96 (m, 2H). 13C NMR (126 MHz, 

MeOD) δ 169.90, 159.44, 157.47, 147.55, 145.00, 140.02, 128.56, 127.00, 125.07, 120.41, 

120.32, 117.92, 116.00, 113.55, 108.77, 101.92, 51.46, 45.78, 29.89, 25.71. HRMS (ESI) 

m/z [M + H] for C20H20ClN3O4 402.1221, found 402.1230.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(2-methoxybenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (38)—Yield 46 mg (42%), tan amorphous solid. 1H NMR (500 MHz, 

CDCl3) δ 7.26−7.23 (m, 1H), 6.97 (d, J = 1.4 Hz, 1H), 6.89−6.84 (m, 2H), 6.83 (d, J = 1.4 

Hz, 1H), 6.70 (dd, J = 7.8, 1.7 Hz, 1H), 6.44 (s, 1H), 5.03 (s, 2H), 3.84 (s, 3H), 3.81 (s, 3H), 

3.49−3.44 (m, 2H), 2.94−2.90 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 170.96, 162.35, 

157.84, 156.56, 147.74, 141.91, 129.33, 127.59, 126.69, 124.66, 120.72, 120.13, 114.71, 

110.27, 105.90, 102.51, 55.27, 52.50, 44.85, 30.85, 26.04. HRMS (ESI) m/z [M + H]+ for 

C21H22ClN2O5 417.1217, found 417.1211.

Methyl 3-Chloro-2-(2-(1-(2-ethylbenzyl)-1H-imidazol-2-yl)ethyl)-4,6-
dihydroxybenzoate (39)—Yield 33 mg (31%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3, MeOD) δ 7.43 (d, J = 2.1 Hz, 1H), 7.40 (d, J = 3.0 Hz, 1H), 7.32−7.28 (m, 1H), 7.26 

(d, J = 7.7 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.79 (s, 1H), 6.55 (s, 1H), 4.98 (s, 2H), 4.02 (s, 

3H), 3.68 (t, J = 7.3 Hz, 2H), 3.45 (t, J = 7.1 Hz, 3H), 2.52 (q, J = 7.5 Hz, 3H), 1.19 (t, J = 

7.6 Hz, 3H). 13C NMR (126 MHz, CDCl3, MeOD) δ 169.85, 161.95, 158.20, 146.18, 

145.33, 142.11, 138.91, 129.92, 129.32, 128.17, 127.04, 120.75, 119.05, 114.84, 106.28, 
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103.49, 53.17, 30.86, 30.04, 25.20, 24.25, 14.49. HRMS (ESI) m/z [M + H]+ for 

C22H24ClN2O4 415.1425, found 415.1419. tR = 4.27 min, 95.3%.

Methyl 3-Chloro-2-(2-(1-(2-ethoxybenzyl)-1H-imidazol-2-yl)-ethyl)-4,6-
dihydroxybenzoate (40)—Yield 44 mg (39%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3, MeOD) δ 7.18 (t, J = 8.0 Hz, 1H), 6.88 (d, J = 1.9 Hz, 1H), 6.83−6.76 (m, 3H), 6.67 

(d, J = 7.6 Hz, 1H), 6.38 (s, 1H), 4.99 (s, 2H), 3.97 (q, J = 7.7, 6.8 Hz, 2H), 3.80 (s, 3H), 

3.45−3.39 (m, 2H), 2.88 (t, J = 8.1 Hz, 2H), 1.32 (t, J = 6.8 Hz, 3H). 13C NMR (126 MHz, 

CDCl3, MeOD) δ 170.97, 162.15, 157.97, 155.99, 147.73, 141.95, 129.25, 127.68, 126.65, 

124.63, 120.46, 120.13, 114.73, 111.01, 105.90, 102.43, 63.51, 52.45, 44.95, 30.86, 26.12, 

14.69. HRMS (ESI) m/z [M + H]+ for C22H24ClN2O5 431.1374, found 431.1378. tR = 2.71 

min, 98.3%.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(2-isopropoxybenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (41)—Yield 18 mg (16%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3, MeOD) δ 7.21 (t, J = 8.0 Hz, 1H), 6.95 (s, 1H), 6.86−6.78 (m, 3H), 6.72 (d, J = 7.5 

Hz, 1H), 6.44 (s, 1H), 5.00 (s, 2H), 4.56 (hept, J = 10.8, 5.3 Hz, 1H), 3.85 (s, 3H), 3.52−3.45 

(m, 2H), 2.97−2.87 (m, 2H), 1.27 (d, J = 6.0 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ 
170.97, 162.15, 157.97, 156.00, 147.73, 141.95, 129.25, 127.68, 126.65, 124.63, 120.46, 

120.13, 114.73, 111.01, 105.90, 102.43, 99.99, 63.51, 52.45, 44.95, 30.86, 26.12, 14.69. 

HRMS (ESI) m/z [M + H]+ for C23H26ClN2O5 445.1530, found 445.1521. tR = 2.70 min, 

97.7%.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(2-propoxybenzyl)-1H-imidazol-2-
yl)ethyl)benzoate (42)—Yield 34 mg (29%), tan amorphous solid. 1H NMR (500 MHz, 

CDCl3) δ 7.29−7.26 (m, 1H), 7.02 (d, J = 1.4 Hz, 1H), 6.90−6.85 (m, 3H), 6.76−6.73 (m, 

1H), 6.49 (s, 1H), 5.10 (s, 2H), 3.95 (t, J = 6.5 Hz, 2H), 3.84 (s, 3H), 3.56−3.50 (m, 2H), 

3.03−2.96 (m, 2H), 1.80 (qt, J = 7.4, 6.5 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H). 13C NMR (126 

MHz, CDCl3) δ 170.91, 162.91, 157.83, 156.11, 147.58, 141.58, 129.36, 127.76, 126.49, 

124.55, 120.56, 120.15, 114.73, 111.04, 105.90, 102.72, 69.53, 52.55, 45.00, 30.85, 26.04, 

22.57, 10.61. HRMS (ESI) m/z [M + H]+ for C23H26ClN2O5 445.1530, found 445.1539. tR 

= 2.73 min, 98.0%.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(2-(trifluoromethyl)-benzyl)-1H-
imidazol-2-yl)ethyl)benzoate (43)—Yield 25 mg (21%), white amorphous solid. 1H 

NMR (400 MHz, CDCl3, MeOD) δ 7.65 (d, J = 7.7 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.36 (t, 

J = 7.7 Hz, 1H), 7.02 (s, 1H), 6.79 (s, 1H), 6.57 (d, J = 7.8 Hz, 1H), 6.39 (s, 1H), 5.25 (s, 

2H), 3.85 (s, 3H), 3.50−3.41 (m, 2H), 2.93−2.79 (m, 2H). 13C NMR (126 MHz, CDCl3, 

MeOD) δ 170.72, 162.08, 157.95, 148.07, 141.52, 134.95, 132.62, 127.97, 127.61, 126.91, 

126.26 (q, J = 5.6 Hz), 125.20, 123.03, 120.21, 114.70, 105.88, 102.50, 52.46, 45.88, 30.87, 

25.83. HRMS (ESI) m/z [M + H]+ for C21H19ClF3N2O4 455.0985, found 455.0979.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(2-methoxy-4-methylbenzyl)-1H-
imidazol-2-yl)ethyl)benzoate (44)—Yield 45 mg (40%), tan amorphous solid. 1H NMR 

(400 MHz, CDCl3, MeOD) δ 7.28 (d, J = 2.1 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.85 (d, J = 

2.1 Hz, 1H), 6.76 (d, J = 7.3 Hz, 1H), 6.69 (s, 1H), 6.56 (s, 1H), 4.81 (s, 2H), 3.99 (s, 3H), 
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3.74 (s, 3H), 3.63 (t, J = 7.4 Hz, 2H), 3.44 (t, J = 7.4 Hz, 2H), 2.34 (s, 3H). 13C NMR (126 

MHz, CDCl3) δ 169.87, 161.98, 157.11, 151.39, 145.68, 142.01, 140.11, 129.96, 129.53, 

121.73, 121.63, 120.51, 118.55, 112.14, 111.93, 55.44, 54.21, 46.62, 30.48, 29.73, 23.96, 

21.75. HRMS (ESI) m/z [M + H]+ for C22H24ClN2O5 431.1374, found 431.1370.

Methyl 3-Chloro-2-(2-(1-(furan-3-ylmethyl)-1H-imidazol-2-yl)-ethyl)-4,6-
dihydroxybenzoate (45)—Yield 40 mg (41%), off-white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 7.30 (d, J = 1.6 Hz, 1H), 7.20 (s, 1H), 6.84 (dd, J = 2.7, 1.4 Hz, 

1H), 6.78 (d, J = 1.4 Hz, 1H), 6.36 (d, J = 2.0 Hz, 1H), 6.15 (d, J = 1.9 Hz, 1H), 4.80 (s, 2H), 

3.78 (d, J = 1.9 Hz, 3H), 3.39 (tt, J = 8.9, 2.5 Hz, 2H), 2.95−2.80 (m, 2H). 13C NMR (125 

MHz, CDCl3, MeOD): δ 170.8, 161.8, 158.1, 147.3, 144.1, 141.6, 141.6, 140.1, 126.7, 

121.0, 119.6, 114.7, 109.4, 106.2, 102.5, 52.4, 41.0, 30.8, 26.1. HRMS (ESI) m/z [M + H]+ 

for C18H18ClN2O5 377.0904, found 377.0905.

Methyl 3-Chloro-2-(2-(1-(furan-2-ylmethyl)-1H-imidazol-2-yl)-ethyl)-4,6-
dihydroxybenzoate (46)—Yield 44 mg (45%), off-white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 7.31 (dt, J = 2.4, 1.2 Hz, 1H), 6.87 (dd, J = 2.4, 1.4 Hz, 1H), 6.83 

(d, J = 1.5 Hz, 1H), 6.40 (d, J = 1.8 Hz, 1H), 6.26 (dt, J = 3.5, 1.7 Hz, 1H), 6.18 (d, J = 3.3 

Hz, 1H), 4.94 (d, J = 1.6 Hz, 2H), 3.82 (d, J = 1.9 Hz, 3H), 3.46 (ddd, J = 10.2, 6.1, 2.0 Hz, 

2H), 2.95 (ddd, J = 9.8, 5.9, 1.5 Hz, 2H). 13C NMR (125 MHz, CDCl3, MeOD) δ 170.9, 

162.0, 158.2, 149.1, 147.4, 143.2, 141.8, 126.9, 119.7, 114.8, 110.6, 108.8, 106.2, 102.6, 

52.6, 42.6, 30.8, 26.1. HRMS (ESI) m/z [M + H]+ for C18H18ClN2O5 377.0904, found 

377.0911.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-((5-methylfuran-2-yl)-methyl)-1H-
imidazol-2-yl)ethyl)benzoate (47)—Yield 46 mg (46%), off white amorphous solid. 1H 

NMR (400 MHz, CDCl3, MeOD) δ 6.87 (d, J = 1.4 Hz, 1H), 6.84 (d, J = 1.4 Hz, 1H), 6.41 

(s, 1H), 6.08 (d, J = 3.1 Hz, 1H), 5.84 (dd, J = 3.0, 1.2 Hz, 1H), 4.88 (s, 2H), 3.84 (s, 3H), 

3.49−3.42 (m, 2H), 3.08−2.93 (m, 2H), 2.18 (d, J = 1.0 Hz, 3H). 13C NMR (125 MHz, 

CDCl3, MeOD) δ 171.0, 162.2, 158.3, 153.1, 147.3, 147.1, 141.9, 126.7, 119.7, 114.9, 

109.7, 106.5, 106.1, 102.6, 52.6, 42.7, 30.9, 26.2, 13.5. HRMS (ESI) m/z [M + H]+ for 

C19H20ClN2O5 391.1061, found 391.1066. tR = 3.05 min, 95.1%.

Methyl 3-Chloro-2-(2-(1-((5-chlorofuran-2-yl)methyl)-1H-imidazol-2-
yl)ethyl)-4,6-dihydroxybenzoate (48)—Yield 50 mg (47%), white amorphous solid. 1H 

NMR (400 MHz, CDCl3, MeOD) δ 6.91 (s, 2H), 6.31 (s, 1H), 6.23 (d, J = 3.4 Hz, 1H), 5.98 

(d, J = 3.3 Hz, 1H), 4.87 (s, 2H), 3.73 (s, 3H), 3.37−3.27 (m, 2H), 2.99 (t, J = 7.9 Hz, 

2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 173.88, 165.00, 161.93, 151.08, 150.68, 

143.82, 141.62, 124.59, 118.45, 116.26, 111.28 (2C), 106.80 (2C), 56.40, 46.86, 34.09, 

29.14. HRMS (ESI) m/z [M + H]+ for C18H17Cl2N2O5 411.0515, found 411.0527. tR = 4.15 

min, 95.5%.

Methyl 3-Chloro-2-(2-(1-((3,5-dimethylfuran-2-yl)methyl)-1H-imidazol-2-
yl)ethyl)-4,6-dihydroxybenzoate (49)—Yield 36 mg (25%), off-white amorphous solid. 

1H NMR (400 MHz, CDCl3, MeOD) δ 7.28 (d, J = 2.0 Hz, 1H), 6.92 (s, 1H), 6.44 (s, 1H), 

5.77 (s, 1H), 4.80 (s, 2H), 3.89 (s, 3H), 3.59−3.48 (m, 2H), 3.37 (t, J = 7.1 Hz, 2H), 2.11 (s, 
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3H), 1.92 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 169.87, 161.98, 157.11, 151.39, 145.68, 

140.11, 129.96, 121.63, 120.51, 118.85, 118.55, 112.14, 111.93, 55.44, 54.21, 46.62, 30.48, 

29.73, 23.96, 21.75. HRMS (ESI) m/z [M + H]+ for C20H22ClN2O5 405.1217, found 

405.1210. tR = 3.24 min, 95.5%.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(thiophen-2-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (50)—Yield 37 mg (37%), yellow amorphous solid. 1H NMR (400 

MHz, CDCl3, MeOD) δ 7.23 (dd, J = 5.1, 1.3 Hz, 1H), 6.95 (d, J = 1.5 Hz, 1H), 6.92 (dd, J 
= 5.1, 3.5 Hz, 1H), 6.87 (dd, J = 3.5, 1.9 Hz, 2H), 6.43 (s, 1H), 5.17 (d, J = 0.9 Hz, 2H), 3.84 

(s, 3H), 3.56−3.44 (m, 2H), 3.01−2.92 (m, 2H). 13C NMR (125 MHz, CDCl3, MeOD) δ 
170.9, 162.1, 158.2, 147.3, 141.7, 138.5, 127.2, 126.9, 126.4, 126.2, 119.7, 114.9, 106.2, 

102.7, 52.6, 44.7, 30.9, 26.2. HRMS (ESI) m/z [M + H]+ for C18H18ClN2O4S 393.0676, 

found 393.0674.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(thiophen-3-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (51)—Yield 28 mg (27%), yellow amorphous solid. 1H NMR (400 

MHz, CDCl3, MeOD) δ 7.25 (d, J = 4.8 Hz, 1H), 6.98−6.92 (m, 2H), 6.83 (d, J = 1.5 Hz, 

1H), 6.81−6.78 (m, 1H), 6.37 (s, 1H), 4.97 (s, 2H), 3.79 (s, 3H), 3.43−3.37 (m, 2H), 

2.95−2.88 (m, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 174.48, 165.67, 162.02, 151.06, 

145.03, 140.31, 131.26, 130.04, 129.39, 126.69, 124.00, 118.61, 110.15, 106.53, 56.40, 

49.27, 34.49, 29.68. HRMS (ESI) m/z [M + H]+ for C18H18ClN2O4S 393.0676, found 

393.0693.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-((5-methylthiophen-2-yl)-methyl)-1H-
imidazol-2-yl)ethyl)benzoate (52)—Yield 23 mg (22%), off-white amorphous solid. 1H 

NMR (400 MHz, CDCl3, MeOD) δ 7.34 (d, J = 1.8 Hz, 1H), 7.02−6.96 (m, 1H), 6.79 (d, J = 

4.1 Hz, 1H), 6.60 (d, J = 2.7 Hz, 1H), 6.48 (s, 1H), 5.03 (s, 2H), 3.95 (s, 3H), 3.58 (t, J = 7.2 

Hz, 2H), 3.39 (t, J = 7.2 Hz, 2H), 2.41 (s, 3H). 13C NMR (126 MHz, CDCl3, MeOD) δ 
169.83, 161.87, 158.19, 145.63, 138.77, 131.10, 129.14 (2C), 125.60 (2C), 120.60, 119.05, 

106.34, 103.54, 53.15, 46.03, 30.05, 24.21, 15.28. HRMS (ESI) m/z [M + H]+ for 

C19H20ClN2O4S 407.0832, found 407.0839.

Methyl 3-Chloro-2-(2-(1-((5-chlorothiophen-2-yl)methyl)-1H-imidazol-2-
yl)ethyl)-4,6-dihydroxybenzoate (53)—Yield 20 mg (18%), yellow amorphous 

solid. 1H NMR (500 MHz, CDCl3, MeOD) δ 6.95 (s, 1H), 6.87 (s, 1H), 6.68 (d, J = 3.5 Hz, 

1H), 6.63 (d, J = 3.5 Hz, 1H), 6.37 (s, 1H), 5.03 (s, 2H), 3.81 (s, 3H), 3.47−3.37 (m, 2H), 

3.02−2.92 (m, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 174.29, 165.57, 162.00, 150.88, 

144.73, 140.23, 134.89, 130.21, 130.09, 129.35, 123.74, 118.59, 110.29, 106.65, 56.47, 

48.84, 34.48, 29.63. HRMS (ESI) m/z [M + H]+ for C18H17Cl2N2O4S 427.0286, found 

427.0292.

Methyl 3-Chloro-2-(2-(1-((4-chlorothiophen-2-yl)methyl)-1H-imidazol-2-
yl)ethyl)-4,6-dihydroxybenzoate (54)—Yield 23 mg (21%), tan amorphous solid. 1H 

NMR (400 MHz, CDCl3, MeOD) δ 6.97 (s, 1H), 6.90 (s, 1H), 6.83 (s, 1H), 6.67 (s, 1H), 

6.38 (s, 1H), 5.07 (s, 2H), 3.81 (s, 3H), 3.45−3.39 (m, 2H), 2.88 (t, J = 8.2 Hz, 2H). 13C 

NMR (126 MHz, CDCl3, MeOD) δ 170.61, 161.82, 158.12, 147.29, 141.48, 139.55, 127.34, 
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126.18, 125.05, 120.14, 119.50, 114.71, 106.03, 102.51, 52.44, 44.42, 30.76, 26.05. HRMS 

(ESI) m/z [M + H]+ for C18H17Cl2N2O4S 427.0286, found 427.0290.

Methyl 3-Chloro-2-(2-(1-((3-chlorothiophen-2-yl)methyl)-1H-imidazol-2-
yl)ethyl)-4,6-dihydroxybenzoate (55)—Yield 17 mg (15%), tan amorphous solid. 1H 

NMR (400 MHz, CDCl3, MeOD) δ 7.21 (dd, J = 5.9, 2.3 Hz, 1H), 6.90 (d, J = 2.1 Hz, 1H), 

6.86 (dt, J = 5.2, 1.8 Hz, 2H), 6.41 (s, 1H), 5.09 (s, 2H), 3.84 (s, 3H), 3.54−3.45 (m, 2H), 

2.96 (dd, J = 11.9, 5.4 Hz, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 170.79, 162.08, 

158.04, 147.22, 141.70, 131.26, 127.92, 127.32, 125.17, 124.20, 119.32, 114.80, 105.96, 

102.55, 52.52, 42.02, 30.79, 26.15. HRMS (ESI) m/z [M + H]+ for C18H16Cl2N2O4S 

427.0286, found 427.0278.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(isoxazol-5-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (56)—Yield 15 mg (15%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3, MeOD) δ 8.17 (s, 1H), 6.96 (s, 1H), 6.89 (s, 1H), 6.42 (s, 1H), 6.04 (s, 1H), 5.17 (s, 

2H), 3.88 (s, 3H), 3.50−3.41 (m, 2H), 2.97−2.89 (m, 2H). 13C NMR (126 MHz, CDCl3, 

MeOD) δ 170.55, 166.32, 157.95, 150.41, 147.60, 141.46, 127.82, 119.70, 114.64, 106.11, 

102.64, 102.47, 102.14, 52.57, 41.22, 30.85, 25.99. HRMS (ESI) [M + H]+ for 

C17H17ClN3O5 378.0857, found 378.0866.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(thiazol-2-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (57)—Yield 41 mg (40%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3, MeOD) δ 7.72 (d, J = 3.2 Hz, 1H), 7.30 (d, J = 3.3 Hz, 1H), 6.99 (s, 1H), 6.95 (s, 

1H), 6.43 (s, 1H), 5.35 (s, 2H), 3.87 (s, 3H), 3.51−3.46 (m, 2H), 2.98−2.91 (m, 2H). 13C 

NMR (126 MHz, CDCl3, MeOD) δ 170.72, 165.84, 162.13, 157.91, 147.63, 143.06, 141.59, 

127.84, 120.27, 119.78, 114.71, 106.01, 102.63, 52.57, 46.84, 30.83, 26.06. HRMS (ESI) 

m/z [M + H]+ for C17H17ClN3O4S 394.0628, found 394.0630.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-((3-vinylthiophen-2-yl)-methyl)-1H-
imidazol-2-yl)ethyl)benzoate (58)—Yield 35 mg (32%), tan amorphous solid. 1H NMR 

(400 MHz, CDCl3, MeOD) δ 7.19 (d, J = 5.3 Hz, 1H), 7.15 (d, J = 5.3 Hz, 1H), 7.01 (s, 1H), 

6.77 (s, 1H), 6.58 (dd, J = 17.3, 10.9 Hz, 1H), 6.45 (s, 1H), 5.56 (d, J = 17.3 Hz, 1H), 5.31 

(d, J = 11.0 Hz, 1H), 5.11 (s, 2H), 3.87 (s, 3H), 3.58−3.49 (m, 2H), 3.07 (t, J = 7.8 Hz, 

2H). 13C NMR (126 MHz, CDCl3) δ 170.94, 163.17, 156.14, 142.75, 140.72, 139.77, 

138.46, 130.54, 128.69, 128.46, 126.69, 126.54, 126.04, 113.85, 106.68, 102.61, 52.59, 

38.44, 33.98, 32.45. HRMS (ESI) m/z [M + H]+ for C20H20ClN2O4S 419.0832, found 

419.0844.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-((3-vinylfuran-2-yl)-methyl)-1H-
imidazol-2-yl)ethyl)benzoate (59)—Yield 35 mg (33%), off-white amorphous solid. 1H 

NMR (400 MHz, CDCl3, MeOD) δ 7.30 (d, J = 2.0 Hz, 1H), 6.84 (d, J = 1.8 Hz, 1H), 6.51 

(d, J = 2.0 Hz, 1H), 6.49 (s, 1H), 6.48−6.41 (m, 1H), 5.50 (d, J = 17.3 Hz, 1H), 5.26 (d, J = 

11.0 Hz, 1H), 4.94 (s, 2H), 3.91 (s, 3H), 3.59 (t, J = 7.6 Hz, 2H), 3.22 (t, J = 7.7 Hz, 

2H). 13C NMR (126 MHz, CDCl3) δ 170.35, 162.14, 157.96, 146.62, 143.64 (2C), 124.53 

(2C), 123.65, 119.92 (2C), 116.57, 114.78, 108.33 (2C), 108.24, 106.19, 103.08, 52.84, 
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41.07, 30.43, 25.17. HRMS (ESI) m/z [M + H]+ for C20H20ClN2O5 403.1061, found 

403.1069.

Methyl 3-Chloro-2-(2-(1-((3-ethylthiophen-2-yl)methyl)-1H-imidazol-2-
yl)ethyl)-4,6-dihydroxybenzoate (60)—Yield 43 mg (39%), tan amorphous solid. 1H 

NMR (500 MHz, CDCl3, MeOD) δ 7.16 (d, J = 5.2 Hz, 1H), 6.91 (d, J = 1.4 Hz, 1H), 6.86 

(d, J = 5.2 Hz, 1H), 6.73 (d, J = 1.5 Hz, 1H), 6.45 (s, 1H), 5.04 (s, 2H), 3.86 (s, 3H), 

3.56−3.50 (m, 2H), 3.00−2.95 (m, 2H), 2.53 (q, J = 7.6 Hz, 2H), 1.12 (t, J = 7.6 Hz, 

3H). 13C NMR (126 MHz, CDCl3) δ 170.80, 162.20, 157.88, 147.06, 142.21, 141.84, 

130.82, 128.69, 126.96, 124.60, 119.11, 114.70, 106.03, 102.57, 52.57, 42.34, 30.78, 26.25, 

21.49, 14.92. HRMS (ESI) m/z [M + H]+ for C20H22ClN2O4S 421.0989, found 421.0995.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(pyridin-2-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (61)—Yield 15 mg (15%), tan amorphous solid. 1H NMR (400 MHz, 

CDCl3) δ 8.57 (d, J = 5.0 Hz, 1H), 7.68 (td, J = 7.7, 1.9 Hz, 1H), 7.13 (d, J = 1.5 Hz, 1H), 

6.99 (d, J = 1.6 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.51 (s, 1H), 5.23 (s, 2H), 3.89 (s, 3H), 

3.52 (t, J = 7.9 Hz, 2H), 3.05 (t, J = 8.0 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 170.50, 

162.80, 157.65, 149.98 (2C), 147.44, 137.50 (3C), 123.42, 121.11, 120.70, 114.63, 106.01, 

103.24, 52.94, 51.53, 30.62, 25.40. HRMS (ESI) m/z [M–H]− for C19H18ClN3O4 386.0908, 

found 386.0899.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(pyridin-3-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (62)—Yield 25 mg (25%), yellow amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 8.44 (d, J = 4.3 Hz, 1H), 8.30 (s, 1H), 7.32 (d, J = 6.0 Hz, 1H), 

7.31−7.24 (m, 1H), 6.98 (s, 1H), 6.83 (s, 1H), 6.38 (s, 1H), 5.06 (s, 2H), 3.83 (s, 3H), 

3.48−3.37 (m, 2H), 2.90−2.84 (m, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 174.42, 

165.67, 162.04, 152.92, 152.83, 151.54, 145.18, 138.88, 136.30, 131.13, 128.14, 123.84, 

118.57, 110.07, 106.52, 56.40, 50.83, 34.70, 29.95. HRMS (ESI) m/z [M – H]− 

C19H18ClN3O4 386.0908, found 386.0903.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(pyridin-4-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (63)—Yield 32 mg (30%), yellow amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 8.44−8.29 (m, 2H), 6.95 (d, J = 1.4 Hz, 1H), 6.88−6.82 (m, 2H), 

6.81 (d, J = 1.5 Hz, 1H), 6.30 (s, 1H), 5.03 (s, 2H), 3.78 (s, 3H), 3.40−3.28 (m, 2H), 

2.78−2.71 (m, 2H). 13C NMR (126 MHz, CDCl3, MeOD) δ 170.39, 161.48, 157.93, 149.56 

(2C), 147.76, 146.40, 141.07, 127.39, 121.31 (2C), 120.18, 114.46, 106.24, 102.43, 52.34, 

30.70, 25.91, 25.11, 19.88. HRMS (ESI) m/z [M–H]− C19H18ClN3O4 386.0908, found 

386.0912.

Methyl 3-Chloro-4,6-dihydroxy-2-(2-(1-(pyrimidin-5-ylmethyl)-1H-imidazol-2-
yl)ethyl)benzoate (64)—Yield 45 mg (45%), white amorphous solid. 1H NMR (500 

MHz, CDCl3, MeOD) δ 9.09 (s, 1H), 8.46 (s, 2H), 7.05 (s, 1H), 6.92 (s, 1H), 6.40 (s, 1H), 

5.12 (s, 2H), 3.86 (s, 3H), 3.52−3.36 (m, 2H), 3.00−2.79 (m, 2H). 13C NMR (126 MHz, 

CDCl3, MeOD) δ 174.09, 165.38, 161.94, 159.48, 159.42, 159.38, 151.44, 144.71, 134.07, 

130.84, 123.84, 118.47, 110.37, 106.66, 56.46, 48.81, 34.66, 29.80. HRMS (ESI) m/z [M – 

H]− C18H17ClN4O4 387.0860, found 387.0861.
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5-Chlorofuran-2-carbaldehyde (65)—5-Nitrofuran-2-carbaldehyde (730 mg, 5.1 mmol) 

was stirred in conc HCl (40 mL) at 40 °C for 15 h. The reaction was poured into H2O (80 

mL) and extracted with EtOAc (3 × 50 mL). The organic layers were combined, dried 

(Na2SO4), and concentrated. The residue was purified via flash chromatography (SiO2, 1:4 

EtOAc:hexanes) to provide the title compound. Yield 266 mg (40%), yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 9.53 (s, 1H), 7.23 (d, J = 3.6 Hz, 1H), 6.42 (d, J = 3.6 Hz, 1H). 13C 

NMR (126 MHz, CDCl3) δ 176.37, 152.03, 144.15, 122.67, 109.77. HRMS (ESI) m/z [M + 

H]+ for C5H4ClO2 130.9900, found 130.9900.

General Procedure for Oxime Formation

NH2OH·HCl (3 equiv) and NaOAc (3 equiv) were added to a stirred solution of aromatic 

aldehydes (1 equiv) in MeOH (0.2 M) and stirred for 8 h at rt. The reaction was quenched 

with the addition of H2O (20 mL) and EtOAc (20 mL). The organic layer was washed with 

H2O (2 × 20 mL), separated, dried (Na2SO4), and concentrated. The residue was purified via 

flash chromatography (1:10 EtOAc:hexanes to 1:3 EtOAc:hexanes) to provide the desired 

products as amorphous solids:

5-Chlorofuran-2-carbaldehyde Oxime (66a)—Yield 225 mg (75%) as a white 

amorphous solid, 1:1 mixture of isomers. 1H NMR (400 MHz, CDCl3) δ 7.91 (s, 1H), 7.46 

(s, 1H), 7.35 (d, J = 3.5 Hz, 1H), 6.61 (d, J = 3.4 Hz, 1H), 6.36 (d, J = 3.5 Hz, 1H), 6.26 (d, J 
= 3.4 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 146.42, 144.40, 139.54, 139.11, 135.93, 

121.19, 114.68, 109.78, 109.37, 108.45. HRMS (ESI) m/z [M + H]+ for C5H5ClNO2 

146.0009, found 146.0003.

Thiazole-2-carbaldehyde Oxime (66b)—Yield 510 mg (91%), white amorphous 

solid. 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 7.86 (d, J = 3.2 Hz, 1H), 7.33 (dd, J = 3.3, 

0.9 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 144.69, 143.24, 142.28, 140.70, 123.45, 

119.96. HRMS (ESI) m/z [M + H]+ for C4H5N2OS 129.0123, found 129.0124.

5-Methylthiophene-2-carbaldehyde Oxime (66c)—Yield 491 mg (76%), white 

amorphous solid. 1H NMR (500 MHz, CDCl3) δ 7.62 (s, 1H), 7.21 (d, J = 3.7 Hz, 1H), 6.77 

(dd, J = 3.6, 1.1 Hz, 1H), 2.53 (d, J = 1.0 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 146.84, 

141.47, 132.33, 128.93, 124.83, 15.32. HRMS (ESI) m/z [M + H]+ for C6H8NOS 142.0327, 

found 142.0330.

3-Vinylthiophene-2-carbaldehyde oxime (66d)—Yield 407 mg (95%), white 

amorphous solid, 2:1 mixture of isomers. 1H NMR (400 MHz, CDCl3) δ 8.45 (s, 1H), 8.36 

(s, 2H), 7.92 (s, 2H), 7.87 (s, 1H), 7.30 (d, J = 5.3 Hz, 2H), 7.25 (d, J = 5.4 Hz, 2H), 7.20 (d, 

J = 5.3 Hz, 1H), 7.01 (d, J = 5.4 Hz, 2H), 6.84 (dd, J = 17.4, 10.9 Hz, 1H), 5.65 (d, J = 17.3 

Hz, 1H), 5.38 (d, J = 11.0 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 144.35, 143.69, 140.75, 

130.66, 130.27, 130.16, 128.09, 127.53, 127.10, 125.61, 116.88, 113.85. HRMS (ESI) m/z 
[M + H]+ for C7H8NOS 154.0327, found 154.0331.

3-Vinylfuran-2-carboxaldehyde Oxime (66e)—Yield 105 mg (48%), white amorphous 

solid. 1H NMR (400 MHz, CDCl3) δ 8.14 (s, 1H), 7.40 (d, J = 1.6 Hz, 1H), 6.76 (dd, J = 
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17.4, 10.9 Hz, 1H), 6.62 (d, J = 1.9 Hz, 1H), 5.59 (dd, J = 17.5, 1.2 Hz, 1H), 5.32 (dd, J = 

10.8, 1.2 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 144.28, 143.04, 139.55, 126.52, 125.37, 

116.55, 108.93. HRMS (ESI) m/z [M + H]+ for C7H8NO2 138.0555, found 138.0549.

5-(Bromomethyl)isoxazole (67)—N-Bromosuccinimide (2.14 g, 12 mmol, 1 equiv) and 

benzoyl peroxide (290 mg, 1.2 mmol, 0.1 equiv) were added to a stirred solution of 5-

methylisoxazole (1 g, 12 mmol) in CCl4 (50 mL). The reaction was heated to 80 °C for 5 h 

then concentrated. The resulting residue was redissolved in EtOAc (30 mL) and washed with 

H2O (3 × 20 mL). The organic layer was separated, dried (Na2SO4), and concentrated. The 

residue was purified via flash chromatography (SiO2, 1:10 EtOAc:hexanes to 3:10 

EtOAc:hexanes) to provide the title compound. Yield 725 mg (38%) as a colorless oil. 1H 

NMR (400 MHz, CDCl3) δ 8.22 (d, J = 1.6 Hz, 1H), 6.33 (d, J = 1.7 Hz, 1H), 4.49 (s, 

2H). 13C NMR (126 MHz, CDCl3) δ 166.90, 150.56, 103.07, 18.34. MS (EI) m/z [M]+ for 

C4H4BrNO 160.9, found 161.0; [M – Br]+ for C4H4NO 82.0, found 82.0.

3,5-Dimethylfuran-2-carboxylic Acid (68)—A solution of 3-methylfuran-2-carboxylic 

acid (1 g, 8 mmol, 1 equiv) in THF (3 mL) was added to a stirred solution of LDA (1 M in 

THF, 16 mmol, 2.1 equiv) at −78 °C and stirred at this temperature for 15 min followed by 

the addition of iodomethane (1 mL, 16 mmol, 2 equiv). The reaction was stirred for an 

additional 15 min at −78 °C before removal of the ice bath and slowly warming to room 

temperature. The reaction was quenched with the addition of saturated NH4Cl (50 mL). The 

organic layer was separated, and the aqueous layer was extracted with EtOAc (2 × 40 mL). 

The organic layers were combined, dried (Na2SO4), and concentrated. The residue was 

purified via flash chromatography (SiO2, 3:10 EtOAc:hexanes to 3:5 EtOAc:hexanes) to 

provide the title compound. Yield 774 mg (69%) as a white amorphous solid. 1H NMR (400 

MHz, CDCl3) δ 12.35 (br s, 1H), 6.00 (s, 1H), 2.31 (s, 3H), 2.30 (s, 3H). 13C NMR (126 

MHz, CDCl3) δ 164.38, 157.04, 138.03, 135.34, 112.39, 13.97, 11.83. HRMS (ESI) m/z [M 

+ H]+ for C7H9O3 141.0552, found 141.0551.

(3,5-Dimethylfuran-2-yl)methanol (69a)—Yield 575 mg (82%), colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 5.80 (s, 1H), 4.52 (s, 2H), 2.24 (s, 3H), 1.99 (s, 3H), 1.62 (br s, 

1H). 13C NMR (126 MHz, CDCl3) δ 145.18, 124.22, 115.31, 108.96, 61.40, 13.55, 9.68. 

MS (EI) m/z [M + H]+ for C7H11O2 127.1, found 127.1.

(3-Chlorothiophen-2-yl)methanol (69b)—Yield 240 mg (36%), yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.25 (dd, J = 5.4, 1.1 Hz, 1H), 6.90 (dd, J = 5.4, 1.1 Hz, 1H), 4.81 (dd, 

J = 6.1, 1.3 Hz, 2H), 2.04 (br s, 1H). 13C NMR (126 MHz, CDCl3) δ 135.98, 127.80, 

124.60, 123.00, 57.60. MS (EI) m/z [M]+ for C5H5ClOS 148.0, found 148.0.

(4-Chlorothiophen-2-yl)methanol (69c)—Yield 165 mg (25%), yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.05 (s, 1H), 6.88 (s, 1H), 4.77 (d, J = 5.8 Hz, 2H), 1.92 (br s, 1H). 13C 

NMR (126 MHz, CDCl3) δ 144.73, 125.54, 124.79, 119.88, 60.09. MS (EI) m/z [M]+ for 

C5H5ClOS 148.0, found 148.0; [M + H]+ for C5H6ClOS 149.0, found 149.0.
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Fluorescence Polarization

Assay was performed in 96-well format in black, flat bottom plates (Santa Cruz 

Biotechnology) with a final volume of 100 μL. 25 μL of assay buffer (20 mM HEPES, pH 

7.3, 50 mM KCl, 5 mM MgCl2, 20 mM Na2MoO4, 2 mM DTT, 0.1 mg/mL BGG, and 

0.01% NP-40) containing 6 nM FITC-GDA (fluorescent tracer, stock in DMSO and diluted 

in assay buffer) and 50 μL of assay buffer containing 10 nM of either Grp94 or Hsp90α 
were added to each well. Compounds were tested in triplicate wells (1% DMSO final 

concentration). For each plate, wells containing buffer only (background), tracer in buffer 

only (low polarization control), and protein and tracer in buffer with 1% DMSO (high 

polarization control) were included. Plates were incubated at 4 °C with rocking for 24 h. 

Polarization values (in mP units) was measured at 37 °C with an excitation filter at 485 nm 

and an emission filter at 528 nm. Polarization values were correlated to % tracer bound and 

compound concentrations. The concentration at which the tracer was 50% displaced by the 

inhibitor was determined using Graphpad Prism.

X-ray Crystallography

The gene for the truncated N-terminal domain of cGrp94, NΔ41 (amino acid residues 69–

337, with residues 287–327 substituted with GGGG, as in Dollins et al.47) was synthesized 

and codon-optimized by DNA2.0 (Menlo Park, CA). The construct was designed with an N-

terminal maltose binding protein (MBP) fusion, which is cleavable by tobacco etch virus 

(TEV) protease. Fidelity of the finalized MBR-TEV-NΔ41 plasmid was confirmed by 

Eurofins MWG Operon. The plasmid for MBP-TEV-NΔ41 was transformed in Escherichia 
coli BL21(DE3). Cells were grown in Luria–Bertani broth supplemented with 100 mg/L 

ampicillin (Amresco) at 37 °C with shaking at 225 rpm. Once cells reached an OD600 = 0.6–

0.8, they were induced with 0.5 mM isopropyl-β-D-1-thiogalactopyranoside (Calbiochem) 

and were harvested by centrifugation after an additional 4 h of growth with shaking. Cells 

were solubilized in phosphate buffer (PBS, 10 mM Na2HPO4, 10 mM KH2PO4, 0.2 M 

NaCl, pH 7.2) containing protease inhibitor cocktail (Complete EDTA-free tablets, Roche), 

lysed with passage through a French Press, and the resulting lysate was clarified by ultra-

centrifugation. The MBP-TEV-NΔ41 fusion protein was purified using a 20 mL column 

packed with amylose resin (New England BioLabs) equilibrated with PBS. Protein was 

eluted with a buffer containing PBS supplemented with 1 mM EDTA and 10 mM maltose. 

MBP-TEV-NΔ41 was further fractionated with a prep grade Superdex 75 column (GE 

Healthcare) equilibrated with PBS. MBP-TEV-NΔ41 was cleaved by TEV protease 

(prepared in house using pRK793 plasmid48), and the protease was removed by passing the 

mixture over a 5 mL HisTrap HP column (GE Healthcare) equilibrated with 50 mM Tris 

buffer with 0.5 M NaCl at pH 8.0. The mixture of MBP and NΔ41 were separated by 

amylose affinity purification, followed by a Superdex 75 polishing step, as above. Any 

fractions of NΔ41 containing trace amounts of MBP were subjected to a final round of 

amylose affinity purification. The NΔ41 protein purity was assessed by SDS-PAGE 

concentrated to 30 mg/mL in a 100 mM Tris buffer at pH 7.5, as quantified by the Bradford 

assay (reagents from Amresco) using BSA as a standard. Crystals of NΔ41 were grown by 

the handing drop method by equilibration against a reservoir solution containing 35% 

PEG400, 100 mM Tris at pH 7.5, and 120 mM MgCl2. Crystals were soaked for ~30 min in 
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a solution of mother liquor containing 10 mM compound 48 (diluted from a 100 mM stock 

prepared in DMSO). After soaking, 100% glycerol was added to the drop containing the 

crystals (to a total concentration of 25%) and the crystals were cryocooled in liquid nitrogen. 

Diffraction data were collected at the Advanced Photon Source, Argonne National 

Laboratories Beamline Southeast Region Collaborateve Access Team (SER-CAT) 22-BM. 

Data were processed using XDS/XSCALE.49 The initial model was obtained by molecular 

replacement using the polypeptide chain of the Grp94-RDA structure (PDB 2GFD) the 

search model in Phaser.50 The model was iteratively built and refined suing Coot and Phenix 

refine.51 PEG 400 and glycerol ligand models were prepared by inputting the corresponding 

SMILES string, and additional restraints were generated with eLBOW in Phenix refine.50 

The model of 48 was prepared using the PRODRG2 server, with additional restraints 

generated using eLBOW.52 The structure has been deposited in the Protein Data Bank with 

the PDB accession code 5IN9.

Wound-Healing Scratch Assay

MDA-MB-231 cells (ATCC) were grown to confluence and seeded at 200,000 cells/well/mL 

in a 12-well plate and grown to confluence. Each well was scratched twice with a 20–200 μL 

pipet tip. Compounds were then added (0.25% DMSO final concentration) and 0 h pictures 

were taken with an Olympus IX-71 microscope (10× objective) and the plates were returned 

to the incubator until 24 h pictures were taken. Images were processed and % wound closure 

was determined using ImageJ. All experiments were performed in quadruplicate.

Anti-Proliferative Assay

MDA-MB-231 cells were grown to confluence and seeded at 2000 cells/well/0.1 mL in a 96-

well plate and placed back in the incubator for 24 h. Compounds or vehicle were 

administered at the desired concentrations (1% DMSO final concentration) and incubated 

for 72 h. The % viable cells was determined using the MTS/PMS cell proliferation kit 

(Promega) per the manufacturer’s instructions. Cells treated with vehicle were normalized to 

100% proliferation and values adjusted accordingly.

Western Blot Analysis

MDA-MB-231 cells were grown to confluence and seeded at 200,000 cells/mL in a 10 cm 

dish and placed back in the incubator for 24 h. Compounds or vehicle were administered at 

the desired concentrations (0.25% DMSO final concentration) and incubated for 24 h. Cells 

were then harvested in cold PBS and lysed using MPER (Thermo Scientific) supplemented 

with protease inhibitors (Roche) according to the manufacturer’s instructions. Cell lysates 

were obtained by centrifugation at 14000g for 15 min at 4 °C. Protein concentrations for 

each sample were determined using the Pierce BCA assay kit following the manufacturer’s 

directions. Equal amounts of proteins (20 μg) were separated using gel electrophoresis under 

reducing conditions (10% acrylamide gels) then transferred to PVDF membranes and 

immunoblotted with the corresponding primary antibodies. Membranes were then incubated 

with the correct HRP-labeled secondary antibody, developed with a chemiluminescent 

substrate, and visualized.
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

Grp94 glucose-regulated protein 94

Hsp90 and Hsp70 heat shock protein 90 and 70

ER endoplasmic reticulum

TLR toll-like receptor

IGF insulin-like growth factor

NECA N-ethylcarboxamideadenosine

RDA radamide

GDA geldanamycin

POAG primary open angle glaucoma

ERAD endoplasmic reticulum associated degradation

TM trabecular meshwork
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Figure 1. 
Purine-based Grp94-selective inhibitors (1, 2, and 3). Resorcinol-based pan-Hsp90 (4) and 

Grp94-selective (5) inhibitors.
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Figure 2. 
Co-crystal structures of RDA with Hsp90 isoforms. cGrp94 (A, PDB 2GFD) highlights the 

hydrophobic and π-rich nature of the unique secondary binding pocket of Grp94. Only cis-

RDA shown for clarity. yHsp82 (B, PDB 2FXS) highlights the hydrogen bonding network 

present and restricted access to the aromatic residues. Residues are numbered as in their 

respective proteins. BnIm docked in to Gpr94 (C) highlighting substitution positions on the 

aryl side chain.
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Figure 3. 
(A) Tertiary structure of RDA bound to Grp94 (PDB 2GFD) showing the open conformation 

of the N-terminal domain of Grp94. (B) Tertiary structure of 3 bound to Grp94 (PDB 3O2F) 

showing the conformational shift (blue, green, and orange helices) of the N-terminal domain 

induced by the inhibitor binding to Grp94 revealing the extended binding pocket.
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Figure 4. 
Overlay of the minimized structures of BnIm (cyan) and 46 (green) highlighting the 

overlapping 4- and 5-positions, respectively.
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Figure 5. 
Crystal structure of 48 bound to Grp94. (a) Surface representation of ATP-binding pocket 

with 48 as ball and stick. Arrow points to a well-ordered loop at the mouth of the active site. 

(b) Cartoon representation of the structure as in (a) highlighting H-bonding interactions 

(≤3.5 Å) and loop configuration. (c) Zoomed view of 48 in active site with H-bonding 

interactions as in (b). (d) Final 2Fo – Fc electron density contoured at 1 σ (gray mesh) 

superimposed with initial Fo – Fc density contoured at 3 σ (green) after molecular 

replacement (see Experimental Section).
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Figure 6. 
Wound-healing scratch assay results after 24 h treatment with BnIm, 40, 48, or vehicle. 

Antiproliferative activity given is relative to vehicle control (n = 4). ND = not determined.
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Figure 7. 
(A) Western blot analysis of MDA-MB-231 cells treated with Grp94-selective inhibitors, 

geldanamycin (GDA, a pan-Hsp90 inhibitor), or vehicle control (DMSO, 0.25% final 

concentration). Ratio of Integrin α2 (B), Akt (C), and Hsp70 (D) normalized to actin for 

each compound concentration.
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Figure 8. 
Western blot analysis of HEK cells overexpressing the I477N myocilin mutant and treated 

with 1 μM of indicated Grp94-selective inhibitors illustrating (A) myocilin degradation and 

(B) lack of AKT degradation and Hsp70 induction. Ratio of myocilin (C), AKT (D), and 

Hsp70 (E) normalized to actin for each compound. Vehicle = DMSO and 17-AAG = 17-

(allylamino)-17-demethoxygeldanamycin (pan-Hsp90 N-terminal inhibitor).
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Figure 9. 
Summary of structure–activity relationships for the BnIm series of Grp94-selective 

inhibitors.
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Scheme 1. 
aConditions: (a) LiAlH4, THF, 0–25 °C, 12 h; (b) DBU, DPPA, toluene, 0–25 °C, 12 h; (c) 

PPh3, THF:H2O (10:1), 25 °C, 12 h.
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Scheme 2. 
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Scheme 3. Synthesis of Amines from Aromatic Aldehydesa

aConditions: (a) HNO3, H2SO4, Ac2O, 0 °C, 1 h; (b) 50% H2SO4 (aq), 110 °C, 5 min; (c) 

conc HCl, 40 °C, 12 h; (d) NH2OH·HCl, NaOAc, MeOH, 25 °C, 8 h; (e) LiAlH4, THF, 0–

25 °C, 12 h; (f) potassium vinyltrifluoroborate, Pd(dppf)Cl2, iPr2EtN, toluene, 110 °C, 14 h; 

(g) H2, 10% Pd/C, EtOH, 25 °C, 6 h.

Crowley et al. Page 44

J Med Chem. Author manuscript; available in PMC 2016 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 4. 
aConditions: (a) SO2Cl2, 15 °C, AcOH:Et2O (9:1), 1 h; (b) NBS, AIBN, CCl4, 80 °C, 4 h; 

(c) NaN3, MeOH:H2O (10:1), 25 °C, 12 h; (d) PPh3, THF:H2O (10:1), 25 °C, 12 h; (e) 

LiOH, THF:MeOH:-H2O (9:1:1), 25 °C, 10 h; (f) LDA, MeI, THF, −40 °C, 3 h; (g) LiAlH4, 

THF, 0–25 °C, 12 h; (h) DBU, DPPA, toluene, 25 °C, 12 h; (i) n-BuLi, CO2(g), THF, 

−78 °C, 2 h.
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