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Abstract
Human exposure to environmental chemicals as persistent organic pollutants (POPs) is

usually assessed considering each pollutant individually, with little attention to concentra-

tions of mixtures in individuals or social groups. Yet, it may be relatively common for

humans to have low and high concentrations of numerous POPs. The study objectives

were to analyze the number of POPs detected per person at high concentrations in the U.S.

population, and the associations between such type of indicators and socioeconomic fac-

tors as gender, race / ethnicity, education, and poverty level. From 91 POPs analyzed in

serum samples of 4,739 individuals in three subsamples of the National Health and Nutrition

Examination Survey (NHANES) 2003–2004 (the last period with valid updated individual

data for the compounds considered in the present study), we computed the number of

POPs whose serum concentrations were above selected cutoff points. POPs included were

13 organochlorine compounds (OCs), 10 polybrominated diphenyl ethers (PBDEs), the

polybrominated biphenyl (PBB) 153, 38 polychlorinated biphenyls (PCBs), 17 polychlori-

nated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs), and 12 perfluorinated compounds

(PFCs). Over 13% of participants had�10 of the 37 most detected POPs each at a concen-

tration in the top decile (P90). Over 30% of subjects with total toxic equivalency (TEQ)

�P75, had�10 of 24 POPs not included in TEQ calculations at concentrations�P90. Com-

pared to non-Hispanic whites, the adjusted odds ratio of having�10 of the 37 POPs at P90

was 9.2 for non-Hispanic blacks and 0.18 for Mexican Americans. Poverty, body mass

index, age, and gender were also independently associated with having�10 POPs in the

top decile. More than one tenth of the US population may have�10 POPs each at concen-

trations in the top decile. Such pattern is nine times more frequent in Non-Hispanic blacks

and four times less frequent in Mexican Americans than in non-Hispanic whites.

PLOS ONE | DOI:10.1371/journal.pone.0160432 August 10, 2016 1 / 16

a11111

OPEN ACCESS

Citation: Pumarega J, Gasull M, Lee D-H, López T,
Porta M (2016) Number of Persistent Organic
Pollutants Detected at High Concentrations in Blood
Samples of the United States Population. PLoS ONE
11(8): e0160432. doi:10.1371/journal.pone.0160432

Editor: Cheryl S. Rosenfeld, University of Missouri,
UNITED STATES

Received: January 15, 2016

Accepted: July 19, 2016

Published: August 10, 2016

Copyright: © 2016 Pumarega et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All NHANES data files
are available from: http://www.cdc.gov/nchs/nhanes/
nhanes_questionnaires.htm.

Funding: The work was supported in part by
research grants from Instituto de Salud Carlos III –
FEDER (FIS PI13/00020 and CIBER de
Epidemiología y Salud Pública − CIBERESP),
Government of Spain; Fundació La Marató de TV3
(20132910); and Government of Catalonia (2014
SGR 1012). The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0160432&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm


Introduction
There is abundant evidence worldwide on lifelong human contamination from mixtures of
environmental chemicals as persistent organic pollutants (POPs) [1–7]; yet, the vast majority
of studies report each pollutant individually, with little attention to concentrations of mixtures
in individual persons or social groups. Thus, the complex features of such internal, body con-
tamination remain unsatisfactorily characterized. Biomonitoring surveys, for instance, do not
integrate the number of compounds detected per person and the concentration of each com-
pound [1,4–6,8–12]. Possible health effects of POPs include a variety of developmental, meta-
bolic, neurodegenerative, and neoplastic disorders [5,8,9,10,12–24]. Reasonable concerns exist
about such effects at low concentrations; such issues can be integrated with the fact that it is
common for humans to have mixtures of POPs at low and high concentrations [6,8,12].

Approaches to these issues include ‘Environment-Wide Association Studies’ (EWAS), and
analyses of concentrations of POPs combined, using estimates of total body burden, or differ-
ent sums of concentrations [24–27]. Efforts to improve exposure assessment must continue:
not only to advance etiologic studies and risk assessment, but also to foster knowledge on the
characteristics of human chemical contamination itself. Such knowledge is a recognized right
of citizens in democratic societies; it is also essential to evaluate the impacts of health, indus-
trial, and related policies [1,5,8,10,28,29]. Indeed, the sources and pathways of exposure to
pollutants are socioeconomic and cultural. Thus, strong relationships exist between concentra-
tions of individual POPs and social factors, including income, education, and race / ethnicity
[1,30–39]. Unfortunately, such relationships have seldom been analyzed integrating several
compounds and their concentrations.

Recently, a set of indicators that integrate the number of compounds detected per person
and their corresponding concentrations was proposed, including the number of compounds
detected at high concentrations. The analyses were based on the general population of Catalo-
nia, Spain [12]. Because studies in the U.S. on combinations of POPs and other chemicals
raised relevant questions about the levels and effects of such mixtures [8,9,16,40–44], and
because of the relatively large size of the U.S. population, we aimed at applying the methodol-
ogy [8] to the U.S. general population.

Therefore, the objectives of the present study were to analyze the number of POPs detected
per person at high concentrations (nPhc) in the U.S. National Health and Nutrition Examina-
tion Survey (NHANES), and to analyze the associations between such indicator and main
socioeconomic factors. Our main hypotheses were that most of the U.S. population would have
POPs at low and high concentrations, and that sociodemographic factors (such as age, gender,
body mass index (BMI), parity, or income) that are often related with POP concentrations
when each compound is analyzed individually [2,12,13,30,34,35] would continue to show simi-
lar relationships when the POPs are jointly analyzed [12].

Materials and Methods

Data
Conducted by the Centers for Disease Control and Prevention’s (CDC) National Center for
Health Statistics (NCHS), the National Health and Nutrition Examination Survey (NHANES)
collects nationally representative environmental biomonitoring data from about 5,000 annual
participants in each two-year cycle [2,45–48]. NHANES is a publicly available data set, and all
participants provide written informed consent, consistent with approval by the NCHS Institu-
tional Review Board. Ethical approval for use of NHANES data is not required as it is anon-
ymized. We examined data from NHANES laboratory and demographic files corresponding to
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2003–2004, which is the last period with valid updated individual data for compounds consid-
ered in the present study [45,47]. Except for perfluorinated compounds (PFCs), in NHANES
2005–2006 and 2007–2008 serum concentrations of POPs were measured using weighted
pooled-samples, and no data for POPs have been published for NHANES 2009–2010 and
2011–2012 [47]. Therefore, it is not possible to calculate the number of POPs detected per per-
son at high concentrations in more recent periods.

In each NHANES, most chemicals or their metabolites were measured in serum samples
from random subsamples of about 2,500 participants aged 12 years and older. The chemicals’
concentrations were analyzed by CDC’s Environmental Health Laboratory using mass spec-
trometry and related methods [2,46]. Data for 91 POPs were analyzed, including: 13 organo-
chlorine compounds (OCs) and their respective metabolites; 10 polybrominated diphenyl
ethers (PBDEs); the polybrominated biphenyl (PBB) 153; 29 non-dioxin-like polychlorinated
biphenyls (PCBs); 3 dioxin-like coplanar PCBs; 6 dioxin-like mono-ortho-substituted PCBs; 10
polychlorinated dibenzofurans (PCDFs); 7 polychlorinated dibenzo-p-dioxins (PCDDs); and
12 PFCs [46] (S1 Table). Thus, serum concentrations of lipophilic chemicals (e.g., dioxins and
PCBs) are presented per gram of total lipid (better reflecting the amount stored in body fat)
[1,2,12,31,46]; results of analyses per whole weight of serum were similar and are not presented.
Concentrations of PFCs, non-lipophilic POPs, are shown per liter of serum. Limits of detection
(LOD) for whole weight POP concentrations were different for each serum sample of each per-
son [45,46], while LODs for lipid-adjusted concentrations were the same values for all samples
and individuals (values ranged from 3.8 pg/g of lipid and 7.8 ng/g of lipid) [2,45,46]. Finally,
LODs for PFCs ranged from 0.1 to 1.0 μg/L [46].

We considered important covariates as age, sex, race/ethnicity (non-Hispanic white, hence-
forth ‘White’; Mexican American; non-Hispanic black, henceforth ‘Black’; other Hispanic; and
other), education (categorized to less than high school diploma, high school diploma, and greater
than high school diploma), and body mass index (BMI) in kg/m2. To estimate the participants'
income we used the family’s total income divided by the family size-specific poverty threshold
income ratio (PIR), with two categories: “Low” income (PIR< 2), and “High” income (PIR� 2)
[43,45]. In women, we also considered the number of pregnancies resulting in live births, and the
number of children breastfed�1 month (henceforth, ‘breastfeeding’) [45].

Statistical analyses
The present study included 4,739 participants �20 years old (for all adults 85 years and older,
age was coded at 85 years to reduce the risk of disclosure) [45]. They came from three subsam-
ples (S2 Table). There were no significant differences between the 1,610, 1,585 and 1,544 partic-
ipants of each subsample in a broad range of sociodemographic variables (including sex, race/
ethnicity, educational level, PIR, BMI, number of pregnancies or breastfeeding) (S2 Table).

We imputed the unmeasured POP values by the median serum concentration of each POP
according to age, sex, race/ethnicity, PIR, BMI, and, in women, number of pregnancies [49,50].
In 79 POPs the imputation was performed using concentrations adjusted by lipids, and in 12
PFCs, in μg/L. We calculated the total toxic equivalency (TEQ) [51,52] for 26 POPs: 3 dioxin-
like coplanar PCBs, 6 dioxin-like mono-ortho-substituted PCBs, 10 PCDFs, and 7 PCDDs
[45,46]. To compare POP concentrations in the present study and pooled concentrations in
NHANES 2005–2006 and 2007–2008 we computed concentrations of POPs by sex, race/eth-
nicity and age groups [46,47]. We also compared PFC serum concentrations in the present
study and concentrations in NHANES of 2005–2006, 2007–2008, 2009–2010 and 2011–2012
[46,47]. Descriptive values for POP concentrations imputed are summarized in S1 Table,
sorted from the highest to the lowest percentage of detection.
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Based on previous work by Porta et al. (2012) [12], we calculated the number of POPs
detected in each person at high concentrations (nPhc) as follows: for each subject we added the
number of POPs whose serum concentrations were equal to or greater than a selected cutoff
point [12]. To be conservative, in the main analyses we included only 37 POPs that had been
detected (each) in>85% of the study subjects (henceforth called the most prevalent POPs).
Such 37 POPs were: 2 OCs, 3 PBDEs, PBB 153, 23 non-dioxin-like PCBs, 3 dioxin-like PCBs,
one PCDD [1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)], and 4 PFCs (S1 Table).
Ancillary analyses included 50 compounds detected in>50% of subjects. Finally, other analy-
ses included all 91 POPs, with quartiles, quintiles and deciles defined after the imputation of
concentrations (S1 Table) [12]. As usual, serum concentrations of POPs did not follow a nor-
mal distribution [31], and the increment of concentrations in the highest percentiles was very
strong (e.g., for p,p’-DDE the increment of concentrations between P75 and P90 was of 2.14
times, and between P90 and the maximum it was 14.5 times; for PCB 153 the corresponding
figures were 53% and 12.36 times, respectively) (S1 Table).

We defined ‘high concentrations’ using compound- and population-specific percentiles,
based on actual POP distributions, as cutoff points [12,43,44]. In the main statistical analyses
the cutoff point used was percentile 90 (P90), the upper decile (S1 Table).

Univariate statistics were computed as customary [53,54]. The highest correlations were
observed between PCB congeners 170 and 180, 138 and 153, 146 and 153 (all Spearman’s
ρ>0.982 and p’s<0.001). Fisher’s exact test for homogeneity was applied to assess the relation-
ship between two categorical variables. For comparisons between continuous variables
ANOVA, Kruskal-Wallis, and Mann-Whitney’s U tests were used. When a tendency was
observed, Mantel–Haenszel’s χ2 test and Jonckheere-Terpstra test for linear trend were used.

To estimate the magnitude of associations between the socioeconomic factors and the num-
ber of most prevalent POPs with concentrations in the upper decile, multivariate-adjusted
odds ratios (ORs) and their corresponding 95% confidence intervals (CI) were calculated by
unconditional logistic regression with progressive degrees of adjustment [55]. The main effects
of all predictors were independently explored in the base models, and final models were
adjusted for age, gender, BMI, race/ethnicity and poverty income, in accordance with the
nature of the variables and the study objectives. The number of POPs with concentrations in
the upper decile was tested in different regression models using 3 different categorizations (all
dichotomous):�1 POP (vs. no Phc),�6 POPs (vs.<6 POPs) and�10 POPs (vs.<10 POPs).
Categorical ordinal variables were analyzed for a linear dose–response relation through the
multivariate analogue of Mantel’s extension test; when a linear trend was not apparent, the
probability test was used. Analyses were conducted using SPSS version 18 (SPSS, Armonk, NY,
USA, 2009).

Results
Over 67% of the 4,739 participants (73.8% of men and 61.1% of women) had one or more of
the 37 most prevalent POPs at concentrations equal to or greater than the 90th percentile
(�P90), while 38.0% had�3 POPs, and over 13% had�10 POPs each in such top decile
(Table 1 and Table 2). Over 37% of subjects had�10 compounds each at concentrations in the
top quartile (�P75) (S3 Table). The number of POPs detected per person ranged between 23
and 74, with an average of 49.7. Over 57% of participants had�50 POPs detected (S1 Fig).

In over 45% of participants who had only one POP at high concentrations (Phc) (�P90),
this chemical was an OC, a PBDE or PBB 153. By contrast, among subjects with numerous
Phc, the majority of such compounds were PCBs. For instance, when the nPhc was�3, more
than 40% of these compounds were PCBs and HpCDD.

High Blood Concentrations of POPs in the U.S. Population

PLOS ONE | DOI:10.1371/journal.pone.0160432 August 10, 2016 4 / 16



The median age of participants with�10 POPs at high concentrations (Phc) was 70 years,
while for participants with<10 Phc it was 45 years, and for participants without any Phc, 39
years. Over 11% of Whites, 2.2% of Mexican Americans, and 29.2% of Blacks had�10 Phc
(p<0.001) (Table 1). Subjects with�10 Phc had a slightly lower median BMI than subjects
with<10 Phc (26.7 Kg/m2 and 27.6 Kg/m2, respectively, p for trend = 0.004) (Table 1).

Table 1. Characteristics of subjects with and without ten or more POPs with concentrations in the upper decile.

�10 POPs with concentrations in the upper decile

Characteristics Total Yes No

N (%) N (%) N (%) p-value

Total 4,739 (100) 619 (13.1) 4,120 (86.9)

Gender <0.001

Women 2,467 (52.1) 271 (11.0) 2,196 (89.0)

Men 2,272 (47.9) 348 (15.3) 1,924 (84.7)

Age (years) 49.0 70.0 45.0 <0.001a

Race/ethnicity <0.001

Non-Hispanic white 2,539 (53.6) 282 (11.1) 2,257 (88.9)

Mexican American 951 (20.1) 21 (2.2) 930 (97.8)

Non-Hispanic black 948 (20.0) 277 (29.2) 671 (70.8)

Other Hispanic 140 (3.0) 19 (13.6) 121 (86.4)

Other 161 (3.4) 20 (12.4) 141 (87.6)

Educational level <0.001

College or above 2,138 (45.2) 243 (11.4) 1,895 (88.6)

High school 1,193 (25.2) 140 (11.7) 1,053 (88.3)

< High school 1,399 (29.6) 232 (16.6) 1,167 (83.4)

Poverty income ratio 0.036

>2 2,394 (53.6) 289 (12.1) 2,105 (87.9)

�2 2,075 (46.4) 295 (14.2) 1,780 (85.8)

Body mass index (kg/m2) 27.4 26.7 27.6 0.004a

Underweight (<18.5) 70 (1.5) 10 (14.3) 60 (85.7) <0.001b

Normal weight (18.5–24.9) 1,406 (30.3) 193 (13.7) 1,213 (86.3)

Overweight (25.0–29.9) 1,630 (35.1) 248 (15.2) 1,382 (84.8)

Obese (�30) 1,538 (33.1) 154 (10.0) 1,384 (90.0)

Pregnancyc 0.741

No 93 (5.0) 12 (12.9) 81 (87.1)

Yes 1,768 (95.0) 208 (11.8) 1,560 (88.2)

No. of pregnancies resulting in live birthsc 2.00 3.00 2.00 <0.001a

Breastfeedingd,e 0.450

No 78 (7.4) 6 (7.7) 72 (92.3)

Yes 975 (92.6) 106 (10.9) 869 (89.1)

No. of children breastfedd,e 2.00 2.00 2.00 0.144a

Values for age, body mass index, number of pregnancies resulting in live births and number of children breastfed are median.

Unless otherwise specified, p-Value derived from Fisher’s exact test (two-tail).
a Mann-Whitney’s U test.
b Without participants <18.5 kg/m2 of body mass index.
c Women only.
d Only women with�1 pregnancies resulting in live births.
e Breastfed�1 month.

doi:10.1371/journal.pone.0160432.t001
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Women with�10 Phc had a higher number of pregnancies resulting in live births than women
with<10 Phc (age-unadjusted medians: 3.0 and 2.0, respectively, p for trend<0.001). There
were significant differences in the nPhc by sex, age, BMI, race/ethnicity, educational level, PIR,
and, in women, by number of pregnancies, and breastfeeding (Table 2).

Multivariate analyses adjusted by age, gender and BMI showed that, as compared to Whites,
Blacks had an odds ratio (OR) = 10.1 of having�10 Phc, whilst for Mexican Americans the
OR was 0.2 (both p’s<0.001) (Table 3). When further adjusted by poverty income the OR for
Blacks decreased to 9.2, and for Mexican Americans to 0.18 (both p’s<0.001). Differences

Table 2. Characteristics of the individuals with one or more POPs with concentrations in the upper decile.

No. of POPs with concentrations in the upper decile

Characteristics Total �10 6 to 9 3 to 5 2 1

N (%) N (%) N (%) N (%) N (%) N (%) p-value

Total 3,184 (67.2) 619 (19.4) 375 (11.8) 807 (25.3) 560 (17.6) 823 (25.8)

(Cumulative %) (19.4) (31.2) (56.6) (74.2) (100)

Gender <0.001

Women 1,507 (47.3) 271 (18.0) 135 (9.0) 406 (26.9) 272 (18.0) 423 (28.1)

Men 1,677 (52.7) 348 (20.8) 240 (14.3) 401 (23.9) 288 (17.2) 400 (23.9)

Age (years) 57.0 70.0 60.0 64.0 46.0 43.0 <0.001a

Race/ethnicity <0.001b

Non-Hispanic white 1,780 (55.9) 282 (15.8) 233 (13.1) 530 (29.8) 270 (15.2) 465 (26.1)

Mexican American 581 (18.2) 21 (3.6) 76 (13.1) 159 (27.4) 154 (26.5) 171 (29.4)

Non-Hispanic black 629 (19.8) 277 (44.0) 40 (6.4) 76 (12.1) 93 (14.8) 143 (22.7)

Other Hispanic 79 (2.5) 19 (24.1) 11 (13.9) 17 (21.5) 16 (20.3) 16 (20.3)

Other 115 (3.6) 20 (17.4) 15 (13.0) 25 (21.7) 27 (23.5) 28 (24.3)

Educational level <0.001

College or above 1,403 (44.2) 243 (17.3) 168 (12.0) 339 (24.2) 248 (17.7) 405 (28.9)

High school 790 (24.9) 140 (17.7) 103 (13.0) 210 (26.6) 144 (18.2) 193 (24.4)

< High school 984 (31.0) 232 (23.6) 103 (10.5) 256 (26.0) 168 (17.1) 225 (22.9)

Poverty income ratio 0.002

>2 1,608 (53.4) 289 (18.0) 189 (11.8) 389 (24.2) 295 (18.3) 446 (27.7)

�2 1,406 (46.6) 295 (21.0) 175 (12.4) 365 (26.0) 240 (17.1) 331 (23.5)

Body mass index (kg/m2) 27.2 26.7 28.1 26.8 27.6 27.8 0.084a

Pregnancyc 0.447b

No 51 (4.4) 12 (23.5) 4 (7.8) 9 (17.6) 8 (15.7) 18 (35.3)

Yes 1,106 (95.6) 208 (18.8) 97 (8.8) 306 (27.7) 193 (17.5) 302 (27.3)

No. of pregnancies resulting in live birthsc 3.00 3.00 2.00 3.00 3.00 2.00 <0.001a

Breastfeedingd,e 0.067

No 47 (7.4) 6 (12.8) 3 (6.4) 11 (23.4) 7 (14.9) 20 (42.6)

Yes 592 (92.6) 106 (17.9) 42 (7.1) 180 (30.4) 104 (17.6) 160 (27.0)

No. of children breastfedd,e 2.00 2.00 2.00 2.00 2.00 2.00 0.001a

Values for age, body mass index, number of pregnancies resulting in live births and number of children breastfed are median.

Unless otherwise specified, p-Value derived from Mantel–Haenszel’s χ2 test for linear trend.
a Jonckheere-Terpstra test for linear trend.
b Fisher’s exact test (two-tail).
c Women only.
d Only women with�1 pregnancies resulting in live births.
e Breastfed�1 month.

doi:10.1371/journal.pone.0160432.t002
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between Blacks andWhites were larger in the older age groups / birth cohorts, and null in the
younger ones (p for interaction<0.001) (Fig 1).

For PIR�2, or “Low” income (vs. PIR>2 or “High” income) the OR of having�10 Phc was
1.13 (p>0.05) when the model was adjusted by age, gender and BMI, and 1.24 (p = 0.045)
when further adjusted by race/ethnicity. The OR for obesity (vs. normal weight) was 0.74 (p for
trend = 0.015) in the model adjusted by age and gender, and, when further adjusting by race/

Table 3. Associations between sociodemographic characteristics and having ten or more POPs with concentrations in the upper decile.

Model 1 Model 2 Model 3

Characteristics ORa (95% CI) ORa (95% CI) ORa (95% CI)

Gender

Women 1.00 1.00 1.00

Men 1.54*** (1.28, 1.85) 1.74*** (1.42, 2.13) 1.73*** (1.40, 2.13)

Age (years) 1.06*** (1.05, 1.07) 1.08*** (1.07, 1.09) 1.08*** (1.07, 1.09)

Race/ethnicity

Non-Hispanic white 1.00 -- 1.00

Mexican American 0.22*** (0.14, 0.35) 0.18*** (0.11, 0.30)

Non-Hispanic black 10.11*** (7.82, 13.1) 9.18*** (7.05, 12.0)

Other Hispanic 3.17*** (1.78, 5.63) 2.64** (1.43, 4.85)

Other 1.94* (1.11, 3.37) 1.55 (0.84, 2.88)

Educational level

College or above 1.00 1.00 1.00

High school 0.91 (0.72, 1.15) 0.96 (0.75, 1.24) 0.96 (0.74, 1.25)

< High school 1.04 (0.84, 1.28) 1.22 (0.95, 1.55) 1.14 (0.88, 1.49)

Poverty income ratio

>2 1.00 1.00 --

�2 1.13 (0.94, 1.37) 1.24* (1.00, 1.53)

Body mass index (kg/m2)

Normal weight 1.00 1.00 1.00

Overweight 0.96 (0.77, 1.20) 0.96 (0.75, 1.22) 1.02 (0.79, 1.30)

Obese 0.74* (0.58, 0.94) 0.57*** (0.44, 0.75) 0.58*** (0.44, 0.77)

Pregnancyb

No 1.00 1.00 1.00

Yes 0.48* (0.24, 0.99) 0.57 (0.24, 1.38) 0.60 (0.25, 1.46)

No. of pregnancies resulting in live birthsb 0.99 (0.92, 1.06) 0.97 (0.89, 1.06) 0.97 (0.88, 1.06)

Breastfeedingc,d

No 1.00 1.00 1.00

Yes 1.15 (0.46, 2.87) 1.36 (0.48, 3.84) 1.30 (0.46, 3.68)

No. of children breastfedc,d 0.88 (0.76, 1.01) 0.97 (0.82, 1.14) 0.96 (0.81, 1.13)

Model 1: adjusted by age, gender and body mass index.

Model 2: adjusted by age, gender, body mass index and race/ethnicity.

Model 3: adjusted by age, gender, body mass index, race/ethnicity and poverty income.
a p-Value derived fromWald’s test.
b Women only.
c Only among women with�1 pregnancies resulting in live births and, in the three models, further adjusted by such number of pregnancies.
d Breastfed�1 month.

* p �0.05

** p�0.01

*** p �0.001.

doi:10.1371/journal.pone.0160432.t003
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ethnicity and poverty income, it was 0.58 (p for trend<0.001) (Table 3). In women, pregnancy
halved the probability of having�10 Phc when adjusting by age and body mass index
(OR = 0.48, p = 0.048) (Table 3).

In models assessing the relationship between sociodemographic factors and the probability
of having�1 POPs at concentrations�P90 (vs. not having POPs with concentrations�P90),
adjusted by age, gender and BMI, the OR for Blacks (vs. Whites) was 1.10 (p = 0.266) and for
Mexican Americans, 0.74 (p<0.001). When further adjusted by race/ethnicity, the OR for
PIR�2 (vs. PIR>2) was 1.17 (p = 0.026); and for obesity (vs. normal weight), 0.73 (p for trend
<0.001 for BMI) (S4A Table). The corresponding figures for the probability of having�6
POPs at concentrations�P90 were 3.37 for Blacks and 0.51 for Mexican Americans (both
p<0.001), 1.24 for PIR�2 (p<0.01), and 0.91 for obesity (vs. normal weight) (p for
trend = 0.353).

Because of the influence of PCBs in the previous results, we also analyzed associations
among sociodemographic factors and the likelihood of having�1 of 6 POPs other than PCBs
(i.e., OCs, PBDEs, and PBB 153 detected�85% of subjects) at high concentrations (S4B
Table). Contrary to what was observed when all compound families were considered, for Blacks
(vs. Whites) the OR of having�1 of such POPs was 0.76, and for Mexican Americans, 1.41,
adjusting by age, gender and BMI (both p’s<0.01). The corresponding OR for PIR�2 was 1.19
(p = 0.011), and for obesity, 0.82 (p for trend = 0.013). When further adjusting by race/

Fig 1. Median number of POPs with concentrations in the upper decile by age/birth cohort and race/ethnicity.

doi:10.1371/journal.pone.0160432.g001
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ethnicity, the OR for PIR�2 was 1.15 (p = 0.038), and for obesity, 0.80 (p for trend = 0.006)
(S4B Table).

The geometric mean (GM) of nPhc doubled when the cutoff P75 was used instead of P90
(see S3 Table). For the cutoff P75 the percentage of subjects with�10 Phc was 37.5 for POPs
detected in�85% of participants, and 45.2 for POPs detected in�50% of participants. How-
ever, the percentage of subjects without any Phc decreased slightly when the number of POPs
included in the analyses increased.

In the 1,183 participants with the highest total TEQ concentrations (�P75 of the distribu-
tion of total TEQ concentrations [i.e.,�26.68 pg WHO-TEQ/g of lipid]), the percentage of
subjects with�10 Phc was about twice the corresponding figure observed when all 4,739 par-
ticipants were considered. Over 90% of the 1,183 subjects had�1 POPs a) not included in
TEQ calculations, and b) with concentrations�P90. Over 30% had�10 such POPs, and
almost 7% had�20 such POPs. Spearman’s ρ coefficient between the total TEQ concentration
and nPhc (considering the 24 POPs not included in TEQ calculations, and the P90 in all partic-
ipants for high concentrations) was 0.475 (p<0.001).

Over 43% of participants had TEQ concentrations�21 pg WHO-TEQ/g of lipid, a biomo-
nitoring equivalent value (see Discussion). Taking into account health-based guidelines for
other compounds, less than 1% of participants had concentrations of hexachlorobenzene�47
ng/g of lipid, and concentrations for the sum of p,p’-DDT and p,p’-DDE�5,000 ng/g of lipid.
Two subjects had concentrations of BDE 99�520 ng/g of lipid; 2 participants (aged<40 years)
had concentrations�700 ng/g of lipid for the sum of 35 PCBs (without dioxin-like coplanar
PCBs), and 6 participants (aged�40 years) had concentrations�1,800 ng/g of lipid. 10% of
participants had concentrations for the sum of PCBs 138, 153 and 180�216 ng/g of lipid. Only
4 participants had concentrations for the sum of these three PCBs�900 ng/g of lipid.

We also compared the concentrations of POPs detected in�85% of the participants in the
present study (2003–2004), and their respective pooled concentrations for the NHANES peri-
ods 2005–2006 and 2007–2008. The concentrations of some POPs in the present study were
only slightly higher than in subsequent periods; they were not higher or not statistically signifi-
cant in the case of p,p’-DDE, PBB 153 and some PBDEs compounds (S5A Table). For 3 PFCs,
concentrations in 2003–2004 were similar to concentrations in 2005–2010, and slightly higher
than concentrations in 2011–2012 (S5B Table).

Discussion
More than half of the study population had concentrations in the top decile of�1 of the most
commonly detected POPs, 38% had�3, and over 13% had�10 POPs each in their respective
top decile. Findings are thus partly in contrast with the notion that human POP concentrations
are low in the vast majority of the population [5,12]: such view holds only when each individual
compound is looked at separately, but not when the individual human is of concern.

Median age of participants with�10 of most prevalent POPs at high concentrations was 70
years, while median age of participants without any Phc was 39 years. This could be due to bio-
logical aging effects or to birth cohort effects. Furthermore, the median age of participants
without any Phc was near the median age of participants with 1 or 2 Phc. There were also sig-
nificant differences in the nPhc by gender, race/ethnicity, educational level, PIR, BMI, parity,
and breastfeeding. These results are in accordance with our main hypotheses (most of the U.S.
population had POPs at low and high concentrations; sociodemographic factors related with
each POP concentration showed similar relationships for the joint analysis of POPs).

Race/ethnicity was the sociodemographic factor most associated with a higher nPhc: Blacks
had 9 times a greater chance of having�10 Phc than Whites, and Mexican Americans over 4
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times a lower chance. The nPhc indicator not only shows that Blacks have higher body concen-
trations of POPs than Whites (or Mexican Americans lower concentrations), but it also quanti-
fies how many POPs are in a specific high concentration range. The NHANES questionnaires
had a large number of sociodemographic items; in this study, we used the sociodemographic
factors that were available and related with body concentrations of POPs [12,32,35,39,45,46].

Results of unconditional logistic regression models for�1 Phc,�6 Phc, and�10 Phc (vs.
no Phc,<6 Phc, and<10 Phc, respectively) in the subsample without imputations and PCBs,
PCDDs/Fs analyzed by the sociodemographic factors (to assess the possible biases of imputa-
tions), were similar to results of models with imputations, except in some models for gender,
which was not statistically significant, although ORs were similar.

Most studies found an inverse association between PCB levels in blood and BMI [56–58], as
in the present analyses for all participants and 37 POPs.

Also rarely if ever noted before: high percentages of subjects with TEQ�P75 (�26.68 pg
WHO-TEQ/g of lipid) had numerous POPs not included in TEQ calculations, at high concen-
trations. Findings suggest that studies using TEQ measures could be even more relevant if they
additionally assessed subgroups with high nPhc. Results do not imply that nPhc and related
exposure indicators are preferable to other indicators to evaluate associations between POP
mixtures and clinical outcomes; nPhc indicators just provide a different and complementary
approach to indicators such as the sum of concentrations of PCBs [48,59–64], or the sum of
orders of POPs [65].

Our goal was not to evaluate whether individuals have increased health risks due to multiple
compounds at high concentrations, nor to assess the role of modes and mechanisms of action,
but to propose a new and useful approach for exposure assessment. However, severe adverse
health effects have been reported for concentrations similar to or lower than P90 in the present
study [5,9,11,15,16,66–69]; e.g., in an NHANES study the OR of having diabetes for a concen-
tration of�60.2 ng/g lipid of PCB 153 was 5.9 (95% CI = 3.0–11.9) [66]; in the present study
the P90 for PCB 153 was 79.8 ng/g lipid. P90 of concentrations of individual PCBs in NHANES
is as high or higher than in other countries with population-based surveys as Canada and Aus-
tralia [6,70]. For p,p’-DDE and β-hexachlorocyclohexane (β-HCH), it is also as high or higher
than in Canada, Australia and Germany [6,70].

In this study, over 43% of participants had TEQ concentrations�21 pg WHO-TEQ/g of
lipid, which is the biomonitoring equivalent value published for dioxin TEQ, a health-risk
based screening guideline [71]. Also, in the present study 10% of participants had concentra-
tions for the sum of PCBs 138, 153 and 180 equal to or greater than the Human Biomonitoring
level-I (HBM-I), which is 3 μg/L plasma or, when accounting for lipids, 216 ng/g lipid for the
present study. HBM-I is a health-related exposure limit recommended for PCBs by the German
Human Biomonitoring Commission [59–62]. For compounds considered in the present study,
other biomonitoring equivalents values are only available for hexachlorobenzene, the arithme-
tic sum of p,p’-DDT and p,p’-DDE, the sum of 35 PCBs, and BDE 99 [59,71,72]; for these com-
pounds very few subjects had concentrations above the corresponding biomonitoring
equivalents in this study. To our knowledge, no current health-related limit values are available
for the rest of PBDEs or for PFCs [59–61,71,72]. Although there are regulations and guidelines
for other pollutants (e.g. lead, mercury, cadmium and other metals) and for POPs in air, soil,
water and food (e.g., tolerable daily intakes), there are hardly any other guidelines for human
POP concentrations to define levels of concern than the ones mentioned above [59–62,71].

Beyond findings on concentrations of individual compounds, the indicators illuminate a
crucial–and usually overlooked–feature of human contamination by POPs: the frequency of
mixtures of POPs at high concentrations. The approach could naturally be developed to inte-
grate other pollutants of concern.
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Importantly, 2003–2004 is the last period of NHANES in which the individual concentra-
tion of each compound is available for each individual subject. In 2005–2006 and 2007–2008
serum concentrations of POPs (except PFCs) were measured in weighted pooled-samples (not
in individual samples); no data were published for 2009–2010 and 2011–2012. Therefore, data
to calculate the number of POPs detected per person at high concentrations in more recent
periods are not available.

Concentrations of most POPs in 2003–2004 were only slightly higher than in more recent
periods (Tables in S5 File). Virtually all major contemporary health effects of POPs will be
influenced by concentrations experienced by human cohorts during several decades, not just
by recent exposures. Furthermore, the nPhc can be fruitfully applied to analyze data from
many periods and settings.

Different POPs were analyzed in participants of the three NHANES 2003–2004 subsamples;
even in two of the three subsamples all selected POPs were not analyzed in all participants.
Each sample, however, is valid; and it is efficient not to analyze all POPs in all participants
[2,46]. For PFCs, the LODs were constant for each sample analyzed [46]. For the other 55 com-
pounds, the LOD for the whole weight concentrations was different for each serum sample of
each person [2]. When PCDD/Fs, PCBs, OCs, PBDEs, and PBB 153 concentrations were mea-
sured in serum lipid, LOD calculations were performed using the chemical concentration
expressed per amount of lipid, and the LOD concentration expressed per amount of lipid was
the highest LOD among all the individual samples analyzed [2,46]. LODs for lipid adjusted
concentrations were highest compared to the LODs for the whole weight concentrations, and
rates of detection were lower, than for whole weight concentrations; as a consequence, lipid
adjusted results are more conservative (e.g., because there were less compounds detected in
�85% of participants).

In the present study, some associations between nPhc and sociodemographic factors are
quite influenced by the predominance of PCBs and HpCDD at high concentrations among
subjects with�3 nPhc. The cutoff point for nPhc should be chosen with this issue in mind,
while also avoiding a too high nPhc (e.g., because of lower detection rates of some POPs) [12].

Serum concentrations of POPs do not follow a normal distribution [31]. Values for P90 can
be much higher than the P75 (e.g., for p,p’-DDE the P90 value was 2.14 times greater than P75,
and for PCB 153 it was 53%). Such differences between highest concentrations minimize a pos-
sible misclassification of concentrations in�P90 or<P90 due to laboratory measurement
errors [46]. The minimum percentage of participants with concentrations in the top decile of
�1 POPs will be 10%, but such percentage will not necessarily, linearly, or indefinitely increase
(nor approach 100%) as the number of compounds considered increases: the percentage of
participants with concentrations of�1 POPs in the top decile is only partly positively influ-
enced by the number of compounds considered; it is also inversely influenced by the magni-
tude of the correlations between the pairs of compounds, being highest when POPs are
completely uncorrelated (for details see Suppl. Material of Porta et al., 2012) [12]. Therefore,
the nPhc follows a distribution that is influenced by all the correlations between the pairs of
compounds, and results may not be due to chance. Figure 1 of Supplemental Material of Porta
et al., 2012 [12] shows different values for�1 by the number of POPs considered, and the val-
ues when the POPs were completely uncorrelated. For�10 POPs at high concentrations
(rather than�1 POP) this situation is even more restrictive; when we focused on�10 POPs at
high concentrations, it was statistically possible for the minimum percentage of participants
with�10 POPs at high concentrations to be 0% (i.e., it was not statistically inevitable for that
percentage to be 10%), since it is possible that highly-correlated sets of POPs comprise 9 or less
POPs. Furthermore, such minimum percentage also depends on the number of POPs analyzed,
the number of POPs in the top decile, and the number of participants included.
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Conclusion
In summary, more than 13% of the US population may have�10 POPs each at concentrations
in the top decile. This finding is not to be expected just on statistical grounds. High percentages
of subjects with TEQ�P75 have numerous POPs not included in TEQ calculations, at high
concentrations. The nPhc is related to race/ethnicity, age, and BMI. It is also likely to be related
to other relevant social, environmental, and individual factors. The study findings foster
knowledge on previously unknown characteristics of human chemical contamination in the
US population. Such knowledge is a right of citizens, and could also be considered when evalu-
ating the impacts of relevant public and private policies.
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