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Abstract

Impaired emotion regulation contributes to the development and severity of substance use
disorders (substance disorders). This review summarizes the literature on alterations in emotion
regulation neural circuitry in substance disorders, particularly in relation to disorders of negative
affect (without substance disorder), and it presents promising areas of future research. Emotion
regulation paradigms during functional magnetic resonance imaging are conceptualized into four
dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and
behavioral control. The neural circuitry associated with impaired emotion regulation is compared
in individuals with and without substance disorders, with a focus on amygdala, insula, and
prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the
rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most
consistent finding across studies, dimensions, and clinical populations (individuals with and
without substance disorders). The same pattern is evident for regions in the cognitive control
network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive
modulation and behavioral control. These congruent findings are possibly related to attenuated
functional and/or structural connectivity between the amygdala and insula and between the rACC/
vmPFC and cognitive control network. Although increased amygdala and insula activation is
associated with impaired emotion regulation in individuals without substance disorders, it is not
consistently observed in substance disorders. Emotion regulation disturbances in substance
disorders may therefore stem from impairments in prefrontal functioning, rather than excessive
reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance
disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders
than treatments that dampen reactivity.

The ability to monitor and control affect, or “emation regulation,” refers to the processes by
which individuals influence which emotions they have, when they have them, and how they
experience and express these emotions (1). Impairments in emotion regulation contribute to
substance use disorder (substance disorder) development, persistence, and severity. In
adolescence, difficulties in emotion regulation may increase the likelihood of initiating, or
perpetuating, substance use (2, 3), and adults with substance disorders have more emotion
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regulation difficulties than comparison subjects (see review in reference 4). Individuals who
use substances to relieve negative affect develop addictive patterns of drug use more quickly
(2, 5), and emotion regulation difficulties are associated with greater substance use severity
in individuals in whom a substance disorder has already developed (6, 7). As impaired
emotion regulation would render an individual with a substance disorder more vulnerable to
cue-induced cravings or impulsive responding (1), it is not surprising that impaired emotion
regulation predicts poor response to treatment (8, 9) and accentuates the risk of relapse
during negative affect (10).

Although several well-established pharmacologic treatments for anxiety disorders,
depressive disorders, and other disorders associated with impaired emotion regulation have
been tested in substance disorders (11), most show little or no effect on substance use.
Identifying the neural circuitry underlying impaired emotion regulation, and how it differs
from the neural circuitry in those with emotion regulation difficulties without substance
disorders, may help identify important treatment targets for substance disorders. Once
identified, normalization of the neural underpinnings of impaired emotion regulation in
individuals with substance disorders could serve as a proximal marker of the substance
disorder’s treatment response.

To provide a framework for identifying these alterations in neural circuitry, this review will
first present different components of emotion regulation, the imaging tasks used to assess
each component, and their associated neural circuitry. We will focus on studies that used
task-based functional magnetic resonance imaging (fMRI) to examine functional
connectivity (particularly resting state functional connectivity) and structural connectivity.
The neural circuitry associated with impaired emotion regulation in individuals with
dysregulated emotion without substance disorders (particularly anxiety, depressive, and
borderline personality disorders) will be compared with the circuitry in people with
substance disorders, with a focus on the amygdala, insula, and prefrontal cortex and
associated networks. The review concludes with treatment implications and targets,
limitations of the studies to date, and suggested future directions of research.

FOUR DIMENSIONS UNDERLYING EMOTION REGULATION

A number of conceptual approaches have been posited for emotion regulation (see reviews
in references 1, 12-15). Although an in-depth discussion of these approaches is outside the
scope of this review, we posit four dimensions of emotion regulation that are consistent with
previous conceptual approaches. These dimensions—affect intensity/reactivity, affective
modulation, cognitive modulation, and behavioral control—will provide an organizational
schema to categorize the broad array of fMRI paradigms described (see reference 4).
Commonly used self-report scales measuring emotion regulation can also be categorized
into these four dimensions (see Table S1 in the data supplement accompanying the online
version of this article), and impairments in all four of these dimensions are observed in
substance disorders (4).
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Affect Intensity/Reactivity

The initial affective response may occur outside of conscious awareness and prior to the
engagement of most top-down modulatory processes (15, 16). Individuals with higher
intensity (magnitude) and reactivity (degree of changeability) of affect may be more likely to
suffer from emotional instability, especially if modulatory processes (described below) are
not intact. Affect intensity/reactivity is tested by the rapid presentation (i.e., less than 2
seconds) of stressful, disturbing, or emotional cues. The short stimulus presentation timing
induces intense affect but does not allow for a prominent regulatory response (17-22).

Affective Modulation and Cognitive Modulation

Two modulatory processes are involved in emotion regulation, each testable by distinct
functional approaches and thus considered separately. These two strategies (affective
modulation and cognitive modulation) roughly correspond to hot and cold executive
functioning (23), implicit and explicit emotion regulation (14), and automatic and voluntary
cognitive/behavioral emotion control (24), respectively. Affective modulation automatically
engages processes that evaluate reward salience, assess environmental cues for potential
threats, help with social and emotional functioning, and produce motivational biases in
emotionally significant contexts. Cognitive modulation voluntarily engages processes
involved in problem solving, strategic planning, and the conscious efforts to modulate
internal affective states (13, 15, 16, 23).

Affective modulation tasks utilize paradigms exposing participants to prolonged (up to 2
minutes) exposure to negative cues, allowing for engagement of regulatory responses. Such
tasks include reading a personalized stress script (25, 26) or a social stress task (Montreal
Imaging Stress Task) (27), multiple negative stimuli presented over blocks of time (28), and
cue conditioning, in which a neutral conditioned stimulus is paired with an unpleasant
unconditioned stimulus, evoking a negative emotional response (29). Cognitive modulation
tasks, which include “cognitive reappraisal” (16) and “reinterpretation” (30), require
participants to use cognitive reframing techniques (reappraisal) to alter their emotional
response to a stimulus (16, 30-35). For example, individuals may be shown negative images
and asked to lessen the intensity of their emotional response (31).

Behavioral Control

Impulsivity refers to difficulties in regulating behavior. The behavioral control dimension is
a subfacet of impulsivity related to engaging in a (maladaptive) behavior in the context of or
in response to an intense emotion. Individuals with poor behavioral control are more likely
to have a strong emotion “take over” their actions, corresponding to “negative urgency” (36)
or “regulation” (16).

These tasks assess the effects of distracting affective stimuli. Examples include emotional
go/no-go tasks (inhibition of prepotent responses are tested in the presence of emotionally
distracting cues) (37), emotional oddball tasks (the ability to respond to an infrequent target
is assessed in the setting of a disturbing cue) (38), emotional distractor tasks (threat-related
distractors are presented during performance of simple cognitive tasks) (20, 39), conflict
tasks (categorizing facial affect while ignoring overlaid affect label words) (40), and tasks of
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expressive suppression (participants are asked to “keep their face still” while watching
negative images) (30, 32).

NEURAL CIRCUITRY OF EMOTION REGULATION

Selected Regions of Focus

In the following sections, the neural circuitry of emotion regulation in psychiatric
populations with and without substance disorders is reviewed. We focus on five brain
regions or groups of regions based on their essential roles in evaluating threatening stimuli,
emotional processing, emotion regulation, and behavioral control (15, 16, 41-44). These
regions roughly fall within two functional categories—emotion-generating or emotion-
processing regions, i.e., amygdala and insula—and three emotion regulatory regions—1) the
dorsomedial PFC (dmPFC), including the dorsal anterior cingulate cortex (dACC) and the
presupplementary and supplementary motor area; 2) the lateral PFC (IPFC), including the
lateral orbitofrontal cortex (IOFC) and ventrolateral PFC (VIPFC); and 3) the rostral ACC/
ventromedial PFC (rACC/vmPFC), including the perigenual ACC, subgenual ACC, and
medial OFC (mOFC)] (Table 1, Figure 1A) (15, 16, 41-44). Two general characteristics of
intact emotion regulation processes are that emotion-generating/processing regions are
activated by negative emotional stimuli and that this neural response is dampened by
emotion regulatory regions, automatically by the rACC/vmPFC and voluntarily by the
dmPFC and IPFC (15, 16, 24, 42).

These brain areas are also components of neural “networks,” defined by the strength of the
temporal correlation of low-frequency fMRI blood oxygen labeled dependent (BOLD)
fluctuations between discrete anatomical regions (45). This review focuses on the described
regions rather than networks because some regions in the network overlap and some regions
may be activated in isolation of a network (Table 1). The dmPFC and IPFC are considered
part of the cognitive (or executive) control network (35, 41), which plays a critical role in
“the internal representation, maintenance, and updating of context information in the service
of exerting control over thoughts and behavior” (42, 46). The dmPFC and insula are
components of the “salience network™ (42, 43), which activates in response to and integrates
information concerning salient stimuli during cognitive control (41). (The dmPFC is
considered part of both the cognitive control and salience networks.) The rACC/vmPFC is
an integral component of the “default mode network,” which is actively engaged during rest,
mind wandering, and self-referential introspective states and is deactivated when executive
control is engaged (45, 47-49).

Connections between regions and/or networks can be assessed with functional or structural
connectivity; the former assesses temporal coherence between regions, and the latter uses
diffusion tensor imaging to assess white matter connection. Although measures of functional
and structural connectivity are frequently correlated, the strength of correlation varies with
the network examined (50). Connectivity between regions may occur via indirect pathways,
and consequently, functional connectivity may be observed in the absence of structural
connectivity. Functional, relative to structural, connectivity also varies more across time
(50). Higher levels of fractional anisotropy and lower levels of mean diffusivity are both
markers of greater white matter integrity.
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Neural Circuitry of Emotion Regulation During fMRI Tasks

The rACC/vmPFC and dmPFC (dACC) are activated during tasks of all four dimensions of
emotion regulation, consistent with rACC/vmPFC involvement in automatic regulation and
inhibition of intense affect (15, 16, 24, 51) and the dmPFC dual role of responding to salient
stimuli (dACC, in particular) and mediating cognitive control (41, 42). Activation of the
IPFC is most notable during tasks of the latter three dimensions (27, 29, 31-35, 37, 39, 52).
Emotion-generating/processing regions (amygdala and insula) are activated during tasks of
affect intensity or reactivity (18-22), but inconsistently or rarely during affective or
cognitive modulation tasks (27,29,31-35,52). The absence of consistent amygdala/insula
activation during affective/cognitive modulation may result from down-regulation by
regulatory regions (15, 16, 24, 35) or habituation to the repeated presentation of emotional
stimuli (21, 53, 54). In contrast, the amygdala is often activated during behavioral control
(32, 37, 40), presumably due to the effort required to control behavior, diminishing the
availability of neural resources to attenuate emotional reactivity (32).

NEURAL CIRCUITRY IN DISORDERS OF NEGATIVE AFFECT

fMRI Tasks of Emotion Regulation

Affect intensity/reactivity—Anxiety and borderline personality disorders are associated
with insula/amygdala hyperactivation during tasks of affect intensity/reactivity, and
amygdala/insula activation is positively associated with self-reported negative valence of
task stimuli (18, 21, 44, 53, 55, 56). In contrast, hypo-activation in the rACC/vmPFC and
dmPFC is described in these disorders, with possibly greater hypoactivation in some
diagnoses (generalized anxiety disorder, posttraumatic stress disorder [PTSD]) relative to
others (panic and social phobia) (18, 21, 53, 55).

Affective modulation—Anxiety and depressive disorders are associated with greater
amygdala and insula activation during tasks of affective modulation (21, 44, 51, 57). When
participants recall unresolved life events, amygdala/insula hyperactivation is also observed
in individuals with borderline personality (58). With respect to regulatory regions, PTSD is
associated with lower activation in all regulatory regions in most (21, 57, 59), but not all
(44), studies during these tasks. Depression, by contrast, is associated with hyperactivation
in regulatory regions (59).

Cognitive modulation—Cognitive modulation tasks consistently reveal that individuals
with higher anxiety levels or with anxiety disorders (31,34,60) or borderline personality
disorder (56) experience increased activation in emotion-generating/processing regions and
lower activation in all regulatory regions. Depression is associated with decreased activity in
the IPFC (51). Hyperactivation in emotion-generating/processing regions, coupled with
hypoactivation in regulatory areas during these tasks, may lead to difficulties in down-
regulating intense emotion. Treatment of social anxiety disorder is associated with greater
inverse dmPFC-amygdala connectivity and greater connectivity within regulatory regions
(dmPFC-IPFC and dmPFC-rACC/vmPFC) during a cognitive modulation task (60), and
improvement of depressive symptoms during treatment is also associated with greater
activity in the IPFC (33).
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Behavioral control—During tasks of behavioral control, higher subjective anxiety levels
and anxiety disorder diagnoses are associated with heightened activation in emotion-
generating/processing regions (40, 61) and attenuated activation in all regulatory regions
(39, 40, 61). Impairment in amygdala—rACC/vmPFC anticorrelation (40) and lower
connectivity between the insula and dmPFC are observed in individuals with anxiety
disorders during behavioral control (62).

In summary (Figure 1B), greater problems with emotion regulation in individuals with
disorders associated with negative affect (without substance disorders) are associated with
hyperactivation in the amygdala/insula and hypoactivation in the rACC/vmPFC and dmPFC
(specifically dACC) during tasks of affect intensity/reactivity and hyperactivation of the
amygdala/insula and hypoactivation in regulatory regions (rACC/vmPFC, dmPFC, and
IPFC) during tasks of affective modulation, cognitive modulation, and behavioral control.

Resting State Functional Connectivity and Structural Connectivity

Decreased resting state connectivity between emotion-generating/processing and regulatory
regions is associated with disorders of emotion dysregulation. Resting state connectivity
between the amygdala/insula and all three regulatory regions is lower in individuals with
anxiety and depressive disorders relative to controls in most studies and improves with
treatment (44, 63, 64). Structural connectivity is also impaired in disorders of emation
regulation. Trait anxiety, anxiety disorder, major depressive disorder, and borderline
personality are associated with decreased fractional anisotropy or increased mean diffusivity
in the uncinate fasciculus and cingulum (tracts connecting the amygdala/insula to regulatory
regions and the amygdala to the insula) (20, 65-67).

Decreased within-regulatory region functional and structural connectivity are also associated
with emotion dysregulation. Decreased resting state connectivity is observed between the
rACC/vmPFC and dmPFC inveterans with PTSD relative to healthy combat veterans (68).
Impaired interhemispheric connections among individuals with major depressive disorder
also occur, evidenced by decreased fractional anisotropy with in the genu of the corpus
callosum (69). Studies in individuals with anxiety disorders, however, demonstrated mixed
results in the genu (65).

In summary, individuals with disorders of negative affect generally exhibit decreased resting
state functional and structural connectivity between emotion-generating/processing regions
and regulatory regions and, to some degree, within regulatory regions as well.

NEURAL CIRCUITRY OF EMOTION REGULATION IN SUBSTANCE USE
DISORDERS

The emerging literature exploring the neural underpinnings of emotion regulation in
substance disorders points to intriguing similarities—and differences—relative to individuals
with disturbed emotion regulation but without substance disorders. While we will consider
potential confounds, our goal is to highlight congruent findings that are shared among the
various addictions. Moreover, we will report on differences that are associated with relapse
risk (26, 70) and craving intensity (71). fMRI activation studies are summarized in Figure
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1C, Table 2, and Table S2 in the online data supplement, and resting state functional and
structural connectivity studies are summarized in Figure 1C, Tables 3 and 4, and online
Table S3.

fMRI Tasks of Emotional Regulation

Affect intensity/reactivity—Amygdala hyperactivation is consistently observed in
individuals with disorders of negative affect during tasks of affect intensity/reactivity
(preceding section). In contrast, individuals with substance disorders show evidence of no
activation, hypoactivation (72, 73), or hyperactivation (17, 72) of the amygdala during
exposure to negative images in the International Affective Picture System (IAPS) (17) or
facial expressions (72, 73). Insula activation is equally mixed, with no or hypoactivation (17,
72, 73) or hyperactivation (72) observed in substance disorders compared with controls.
These disparate findings (even within the same cohort [72]) are evident even though all cited
studies were conducted in individuals with alcohol use disorders (alcohol disorders) and the
subjects had been abstinent for at least 2 weeks (17, 72, 73). Notably, two of these studies
(17, 72) were small (11 subjects per group).

Similar to groups with disorders of negative affect without substance disorders, individuals
with substance disorders show a dampening of the rACC/vmPFC and dmPFC. Decreased
activation in the rACC/vmPFC during fear and disgust (72, 73) and in the dmPFC (dACC)
during disgust (72) is observed in alcohol disorders. Therefore, diminished regulatory
activity but not heightened activation in emotion-generating/processing regions is observed
in substance disorders during tasks of affect intensity/reactivity.

Affective modulation—Affective modulation tasks in substance disorders are also not
associated with the heightened activation of emotion-generating/processing regions observed
in individuals with disorders of negative affect without substance disorders. In individuals
(primarily male) with alcohol disorders (26, 74), opioid use disorders (opioid disorders)
(28), and cocaine use disorders (cocaine disorders) (25, 75), tasks of affective modulation
showed no change or dampened amygdala (25, 26, 28, 74, 75) and insula (25, 26, 28, 74)
activation relative to controls. In contrast to a cohort of matched male participants with
cocaine disorders who showed no amygdala and limited insula activation during a
personalized stressful narrative, however, female participants demonstrated a marked
response (75).

Attenuated activity in emotion regulatory regions during affective modulation, on the other
hand, is again generally consistent with the observation of attenuated activation in
individuals with disorders of negative affect without substance disorders. rACC/vmPFC
activation was significantly lower in individuals with alcohol disorders than in control
subjects (26, 74) and in individuals who relapsed earlier (26). Similar findings in other
regulatory regions have been observed in most comparisons of people with substance
disorders versus control subjects: hypoactivation was demonstrated in the dmPFC (dACC) in
individuals with cocaine disorder (25) and in the IPFC in alcohol disorder (26), and lower
activation in the IPFC predicted relapse in alcohol disorder (26). The exceptions to these
findings include increased activation (IPFC) in women-only participants with cocaine
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disorder (75) and increased dACC activation in both women and men with cocaine disorder
(75).

Cognitive modulation—The only published study, to our knowledge, that assessed
cognitive modulation in individuals with substance disorders asked participants to suppress a
negative affective response during exposure to negative 1APS stimuli (76). These epochs
were compared with periods when participants were asked to maintain their affective
response. In individuals with cocaine disorders, suppression of affect resulted in reduced
activation in both emotion-generating/processing regions (insula) and emotion-regulating
regions (IPFC).

Behavioral control—When exposed to neutral distractor images while performing an
emotional oddball task (requiring attendance to a target stimulus), individuals with
borderline personality plus opioid disorder demonstrated less activation in both emotion-
generating/processing regions (amygdala) and all three emotion-regulating regions, relative
to individuals without either disorder (38). Findings in the amygdala are in contrast to the
increase in activation that would be expected in individuals with borderline personality only.

The most consistent finding distinguishing people with substance disorders from healthy
subjects, and often predictive of relapse, is hypoactivation in regulatory regions, particularly
the rACC/vmPFC, during tasks of emotion regulation (with the exception of a single study
in cocaine disorder [75]). These findings persist across dimensions and substance-disordered
populations and mirror studies of individuals with anxiety, depressive disorders, and
borderline personality disorder. Unlike the observed increase in amygdala/insula activation
in individuals with impaired emotion regulation without substance disorders, however,
activation in emotion-processing/generating regions is not reliably observed during emotion
regulation in substance disorders. The critical caveat to these observations is an apparent
gender effect. The only study assessing women separately (75) found increased activation of
emotion-generating/processing regions in women but not men.

Resting State Functional and Structural Connectivity

The strength of resting state connectivity between the amygdala (77, 78) or insula (73, 77—
80) and the rACC/vmPFC is weaker in individuals with substance disorder compared with
controls, in individuals with a greater risk of relapse (70), and in individuals with heightened
craving during withdrawal relative to those with less craving (71). Similarly, lower strength
of resting state connectivity between the amygdala and the IPFC and dmPFC is observed in
opioid disorders (78), between the insula and IPFC in alcohol and opioid disorders (73, 78,
81), and between the insula and dmPFC (78, 79) in opioid and cannabis disorders. Finally,
lower insula—amygdala connectivity strength is observed in substance disorders (78).

Likewise, alterations in structural connectivity between emotion-generating/processing
regions and regulatory regions and between the insula and amygdala are observed in
substance disorders. Fractional anisotropy in the uncinate fasciculus (78, 82) and ventral
amygdalofugal pathway (78) (amygdala—regulatory regions, amygdala—insula), anterior
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corona radiata (amygdala—rACC)(83), internal capsule (amygdala—IPFC) (82, 84), and
external capsule (amygdala—IPFC, amygdala—dmPFC) (78) is reduced in substance disorders
compared with controls. Reduced fractional anisotropy of the extreme capsule (IPFC—insula)
is also observed in substance disorders (85). One reported exception was in smokers; these
individual showed increased fractional anisotropy in the internal capsule and cingulum
(amygdala—regulatory regions). This was posited as related to a trajectory wherein there is
increased fractional anisotropy at earlier ages, which decreases with more years of smoking
and greater dependence (86).

Measures of resting state connectivity within regulatory regions are less consistent than
results between emotion-generating/processing and regulatory regions. In alcohol disorder,
connectivity is increased between the rACC/vmPFC and dACC but decreased between the
dIPFC and dACC (81). Connectivity between the rACC/vmPFC and the IPFC is also
attenuated in individuals who later relapse, relative to those who abstain (80).

In contrast, structural connectivity within and between regulatory regions is more
consistently reduced in substance disorders relative to controls and in more severe substance
disorders relative to those that are less severe. Except for some conflicting results in smokers
(in the genu) (86, 87), fractional anisotropy within the frontal forceps (82), within the genu
of the corpus callosum (78, 82, 88), and within the rostral body (87) is reduced in substance
disorders. Decreased fractional anisotropy in the genu is also associated with a longer
duration of substance disorder (89), and reduced fractional anisotropy in the genu and
frontal forceps predicts relapse in alcohol disorder (82). Further, mean diffusivity of the
genu of the corpus callosum is increased (90) in substance disorders. A number of studies
assessing white matter integrity utilizing a region-of-interest approach have also
demonstrated within-PFC reductions in white matter integrity in individuals with substance
disorders, including reduced fractional anisotropy in IOFC (91) and in a region
encompassing the cingulum and the right dACC (91). Duration of drug dependence
negatively correlated with fractional anisotropy within the right mOFC (89).

In summary, individuals with substance disorders reliably demonstrate weakened strength of
resting state connectivity between the amygdala/insula and regulatory regions, consistent
with observations in individuals with disorders associated with negative affect. Decreased
resting state functional connectivity is also generally observed between and within
regulatory regions in substance disorders relative to controls. This weakening of functional
connectivity strength may be caused by impairment in the integrity of white matter tracts.

POTENTIAL TREATMENT TARGETS

Routes of Dysfunction

Impaired functioning in rACC/vmPFC, dACC, IPFC—Unlike the augmented
amygdala/insula reactivity observed in individuals with emotion regulation difficulties
without substance disorders, individuals with substance disorders rarely exhibit
hyperactivation in emotion-generating/processing regions during emotional provocation.
This is consistent with reduced sensitivity to nondrug emotional stimuli in substance
disorders (92), whereas emotion-generating/processing regions are highly reactive to drug
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cues (26, 75, 92). Similar to what is commonly reported in individuals with emotion
regulation difficulties without substance disorders, hypo-activation in PFC regulatory
regions is reliably observed in substance disorders (rACC/vmPFC in all tasks of emotion
regulation and the dmPFC and IPFC during affective modulation and cognitive modulation).
Therefore, emotion regulation disturbances in substance disorders may stem primarily from
impairments in PFC activation, as a direct result of disrupted neural functioning, rather than
from excessive reactivity to negatively charged affective stimuli.

Decreased resting state functional and structural connectivity between
amygdala/insula and PFC—Impairments in resting state connectivity and white matter
tract integrity in individuals with substance disorders, in particular in connections between
emotion-generating/processing regions and regulatory regions (rACC/vmPFC, IPFC,
dmPFC) and between the insula and amygdala, may contribute to impaired down-regulation
of emotion-generating/processing regions. However, disruptions in connectivity could also
be the genesis of hypoactivation in regulatory regions in substance disorders. Proper
engagement of PFC modulatory responses may depend on receiving information from the
amygdala and/or insula; the primary deficit in emotion dysregulation may be delayed or
weak communication from emotion-generating/processing regions to the PFC. In fact,
individuals with anxiety disorders show delayed dIPFC and dmPFC activation during
cognitive modulation tasks (60).

Hyperactivation in default mode network during rest/baseline—In substance
disorders, task-induced rACC/vmPFC hypo-activation may reflect a relatively heightened
fMRI signal during baseline or neutral periods (26, 74, 75). rACC/vmPFC (a primary locus
of the default mode network) is active during rumination and self-monitoring but deactivated
during outwardly focused cognitive tasks (47-49). Rumination is associated with
unhappiness (47) and may be a form of emotionality itself; hyperactivation in this network
could contribute to difficulties in emotion regulation in substance and other disorders.
Heightened intraregional rACC/vmPFC connectivity has been observed in depression (93),
and heightened within-network connectivity has been observed in alcohol disorders (94).
Although our theory is more concerned with basal default mode network activity, it is still
notable that difficulty “shutting down” the net work has been observed in PTSD (57),
ADHD (48), and cocaine disorders (95).

Treatment Implications

It is not yet known which, if any, of the described alterations in substance disorders 1)
reliably contributes to relapse risk and 2) will respond to treatment, particularly with respect
to emotion regulation. Proposed avenues of future study are herein discussed.

Augment PFC activation during emotion regulation tasks—Treatments for
emotion regulation in populations without substance disorders that normalize PFC function
(increase task-related activation) may have greater efficacy for substance disorders than
dampening reactivity in emotion-generating/processing regions, as the latter is generally not
observed in substance disorders. Selective serotonin reuptake inhibitors (SSRIs) and
benzodiazepines dampen amygdala, insula (96-98), and IOFC (97, 99) activity and are
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useful in the treatment of disorders of negative affect without substance disorders but not
particularly in the treatment of substance disorders (11). A caveat is that late-onset alcohol
disorder—associated with heightened anxiety and higher rates of comorbid anxiety/
depression—tends to respond better to SSRIs than does early-onset disorder (100), possibly
suggesting a typology-specific difference in the reactivity of emotion-generating/processing
regions. In contrast to SSRIs, norepinephrine reuptake inhibitors (e.g., reboxetine) increase
activation in the dIPFC and dmPFC in response to negative stimuli (97). Norepinephrine
reuptake inhibitors, as well as other medications that increase noradrenergic function (e.g.,
bupropion, tricyclic antidepressants, SNRIs such as venlafaxine) may, therefore, deserve
further study for the treatment of substance disorders. Bupropion is already a mainstay of
treatment for nicotine dependence, and although it has not proven reliably effective in the
treatment of stimulant disorders (11), targeting individuals with PFC hypoactivation may
improve its effectiveness. Similarly, modafinil, which is most beneficial in alcohol disorders
with comorbid impairments in cognitive control (101), was reported to attenuate behavioral
disinhibition in alcohol disorder while increasing dmPFC activation (102). Targeted studies
focused on substance-disordered individuals with attenuated PFC activation during emotion
regulation tasks may improve the effectiveness of both pharmacological and behavioral
interventions.

Improve white matter tract integrity or resting state connectivity strength—
Oxytocin enhances resting state connectivity between the amygdala and rACC/vmPFC (64)
and is being investigated (preclinically) as a treatment for substance disorders (103).
Cognitive-behavioral therapy for anxiety disorders increases connectivity within regulatory
regions (dmPFC-rACC/vmPFC, dmPFC-IPFC) and increases anticorrelation between the
amygdala and dmPFC during cognitive modulation tasks (60). Identifying either
medications or psychosocial therapies that increase the strength of resting state functional
connectivity or the integrity of white matter tracts between emotion-generating/processing
and regulatory regions may, therefore, prove particularly useful in substance disorders.

Decrease default mode network activation at rest or increase deactivation
during tasks—Finally, identifying treatments that ameliorate heightened basal activation
in this network may also prove useful. Performing a complex task is known to deactivate the
default mode network, and boredom is a well-accepted relapse trigger. Simply encouraging
patients to “stay busy” may work, in part, by deactivating this network. Mindfulness is under
investigation for the treatment of a variety of substance disorders (104) and may be working
by means of this mechanism, as meditation decreases network activation (49, 105).

LIMITATIONS AND FUTURE WORK

This review has some notable limitations. First, the relatively comprehensive literature cited
assessing the neural circuitry associated with negative affect in individuals without substance
disorders is not matched by a commensurate literature in substance disorders. Second, more
task-based studies in substance disorders are needed to further explore activation patterns
within each dimension (especially in affect intensity/reactivity, cognitive modulation, and
behavioral control). Third, most studies of emotion regulation in substance disorders have
male majorities; those that included sufficient numbers of women to explore gender
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differences observed stark gender contrasts (75). Consequently, further studies into the
effects of gender on brain activation are required. Fourth, the quandary of whether the neural
differences in individuals with substance disorders are a consequence of pre-existing
vulnerabilities or of persistent substance use was not considered in this review. Nevertheless,
almost all of the studies assessing neural activity evaluated individuals with substance
disorders following at least two weeks of abstinence. Thus, even substance-induced
alterations appear to persist beyond the initial withdrawal period and may therefore impact
relapse risk and, subsequently, require treatment. Fifth, we focused our work on the insula,
amygdala, and certain regions within the PFC and their interactions partially because they
fell within relevant networks of interest. However, other regions also play key roles in
emotion regulation, including the hippocampus, dorsal and ventral striatum, and posterior
cingulate. Although not a focus of this review, these and other regions may be of equal
importance in accounting for altered emotion regulation in substance disorder. Sixth, it will
be important in future work to identify differences between different substances of abuse and
at different stages of abstinence as well as premorbid alterations versus those that are
substance-induced. Seventh, because substance disorder subtype may influence treatment
response, future work could explore the relationships between subtype and alterations in
emotion regulation circuitry, which could help in treatment matching efforts (11).

Finally, the extant literature did not allow us to assess the potential impact of comorbid
psychiatric disorders associated with negative affect (e.g., depressive, borderline personality,
posttraumatic stress, and other anxiety disorders) on disruptions in neural circuitry.
Comorbid diagnoses could account for many of the similarities described between substance
disorders and disorders of negative affect without substance disorders, as well as much of
the variability reported in the substance disorder groups. Other comorbid disorders
commonly observed in substance disorders and events associated with emotion
dysregulation (e.g., attention deficit, bipolar, and conduct/antisocial disorders as well as
childhood and adult trauma) could also play an important role in the alterations described.
For example, similar to persons with substance use disorders, individuals with conduct
disorder and callous-unemotional traits demonstrate a blunted amygdala response to
emotional stimuli (106), individuals with ADHD histories show decreased activation in the
amygdala, rACC/vmPFC, and IOFC during behavioral control (107), and those with trauma
histories alone evidence decreased PFC activation during cognitive modulation relative to
controls (108). The majority of the articles did not provide extensive details on the rates of
these disorders in their samples (see Tables S2 and S3 in the online data supplement); these
questions remain open for future exploration.

Identifying the root neural causes contributing to emotion regulation disturbances in
substance disorders, the relationship of these disturbances to relapse, and approaches for
normalizing these processes is imperative. Knowing the neural underpinnings will help us in
efforts to match treatments, which may lead to improved treatment efficacy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A. Regi involved in i lation® B. Di: of emotion r ion (depressive, anxiety, and borderline
personality disorders without substance use disorders) compared with
healthy subjects®

dmPFC

C.Sub use di: s compared with healthy subjects®

I- ©2015 Alexandra B. Hernandez

Resting state functional connectivity and/or structural connectivity,
relative to healthy subjects

----- Decreased connectivity
Mixed results or no difference

Activation during fMRI while performing emotion regulation tasks, Dimension of emotion regulation
relative to healthy subjects 1 Affect intensity/reactivity

vy Less activation 2 Affective modulation

4 More activation 3 Cognitive modulation

<—> Mixed results or no difference 4 Behavioral control

FIGURE 1.
Brain Regions Involved in Emotion Regulation and Alterations in Depressive, Anxiety, and

Borderline Personality Disorders and in Substance Use Disorders?

aThe dorsomedial prefrontal cortex (dmPFC) includes the dorsal anterior cingulate cortex
(dACC), presupplementary motor area (preSMA), and supplementary motor area (SMA).
The lateral prefrontal cortex (IPFC) includes the dorsolateral prefrontal cortex (dIPFC),
ventrolateral prefrontal cortex (vIPFC), and lateral orbitofrontal cortex (IOFC). Other
abbreviations: rostral anterior cingulate cortex (rACC), ventromedial prefrontal cortex
(vmPFC).

bThe illustration in part A is by Alexandra B. Hernandez of Gory Details (used by
permission). Regions shaded in red are categorized as emotion-generating or emotion-
processing regions; regions depicted in blue are categorized as regulatory regions. Further
details about the roles of these regions in emotion regulation are specified in Table 1.
CEmotion regulation tasks were performed during functional magnetic resonance imaging.
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TABLE 1

Brain Regions of Focus, Functional Role in Emotion Regulation, and Related Connections (White Matter

Tracts) in Substance Use Disorders?

Region of Focus and Region With Functional Connections

Structurally Connected via

Emotion-generating and emotion-processing regions

Amygdalab: assigns value to positive and negative emotional cues, is
involved in fear conditioning, activates during stress and exposure to
negative stimuli, generates fear response (21, 44)

Insula
dmPFC
rACC/vmPFC

IPFC
Amygdala

Insula (SN)<: activates in response to salient stimuli (positive and
negative cues), processes interoceptive information (ascending visceral
inputs to insula) (42), activates during stress and exposure to negative
stimuli, is involved in fear conditioning (21, 44)

Amygdala
dmPFC
rACC/vmPFC

IPFC

Insula

Ventrolateral branch of UF; ventral amygdalofugal pathway
Anteromedial branch of the UF; external capsule; cingulum

UF; cingulum; anterior corona radiata via the internal capsule;
ventral amygdalofugal pathway; inferior thalamic peduncle/radiation

Ventrolateral branch of UF; external capsule; cingulum

AC (interhemispheric connections)

Ventrolateral branch of UF; ventral amygdalofugal pathway
Superior fronto-occipital fasciculus

Unnamed tracts (structural connectivity demonstrated through seed-
based studies)

Extreme capsule; short association fibers (fronto-insular tracts)

Midbody of the CC (interhemispheric connections)

Regulatory regions

deFCd(incIudes dACC, preSMA, SMA) (CCN/ECN): activates in
response to salient stimuli (positive and negative cues), is involved in
performance monitoring/error monitoring, conflict processing,
integrating emotional response during goal selection, response conflict,
response execution (preSMA/SMA) (24,41,42,44)

IPFC
dmPFC

rACC/VvmPFC

IPFCE (includes dIPFC, VIPFC, IOFC) (CCN/ECN): involved in
planning, selection of goals, sequencing, holding information online
(dIPFC), response inhibition (especially vIPFC/IOFC), conscious/
voluntary regulation of amygdala and insula activation (24, 41, 42, 44)

dmPFC
IPFC

rACC/VvmPFC

rACC/vaFCf(incIudes rACC, vmPFC, mOFC, pgACC, sgACC)
(DMN): is involved in the subjective valuation of cues (assigns
motivational salience and encodes outcome expectancies during
emotional decision making, determines motivational priorities), is
involved in self-referential introspection (tags information as personally
relevant), processes emotional conflict (15,48), mediates extinction

Short association fibers (frontal aslant tract) (intrahemispheric
connections)

Regions of the CC (genu, rostrum, rostral body, anterior midbody,
midbody) (interhemispheric connections)

Short association fibers (interhemispheric connections)

Short association fibers (frontal aslant tract) (intrahemispheric
connections)

Regions of the CC (genu, rostrum, rostral body, anterior midbody)
(interhemispheric connections)

Short association fibers (interhemispheric connections)
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Region of Focus and Region With Functional Connections Structurally Connected via

(16), provides automatic/unconscious regulation of amygdala and
insula activation (15, 24)

dmPFC Regions of the CC (genu, rostrum, rostral body) (interhemispheric
connections)

rACC Frontal forceps (interhemispheric connections)

IPFC Short association fibers (frontal orbitopolar tract) (intrahemispheric

connections)

aAbbreviationsfor networks: cognitive control network (CCN) or alternatively named executive control network (ECN), default mode network
(DMN), salience network (SN). Abbreviations for regions: dorsal anterior cingulate cortex (JACC), dorsolateral prefrontal cortex (dIPFC),
dorsomedial prefrontal cortex (dmPFC), lateral prefrontal cortex (IPFC), lateral orbitofrontal cortex (IOFC), presupplementary motor area
(preSMA), medial orbitofrontal cortex (MOFC), perigenual anterior cingulate cortex (pgACC), rostral anterior cingulate cortex (rACC), subgenual
anterior cingulate cortex (SgJACC), supplementary motor area (SMA), ventrolateral prefrontal cortex (vIPFC), ventromedial prefrontal cortex
(vmPFC). Abbreviations for tracts: anterior commissure (AC), corpus callosum (CC), uncinate fasciculus (UF).

bData are from references 15 and 21 (functional connections) and 78 and 109-112 (structural connections). Although amygdala—IPFC structural
connectivity has been described, amygdala regulation by the IPFC likely occurs primarily via the insula, dmPFC, and/or rACC/vmPFC (15, 51).

c . . . . . .
Data are from references 21,42 (functional connections) and 109 and 113-115 (structural connections). Unless otherwise mentioned, “insula”
refers to the anterior portion of this region.

a . . . . . .
Data are from references 15 (functional connections) and 109 and 116 (structural connections). The dACC is named an “emotion generating/

processing region” (44) but also has important regulatory functions and is a “transition zone between limbic and frontal cortex” (41) and often

coactivates with the preSMA and SMA, which regulate motor behavior (41). It is therefore named as a regulatory region in this review.

e . . .
Data are from references 15 (functional connections) and 116 and 117 (structural connections). Includes parts of Brodmann areas 6, 8, 9, 10, 11,
45, 46, and 47.

f . . . .
Data are from references 15 (functional connections) and 116 and 117 (structural connections). Commissural pathways such as the CC connect

“broadly similar regions” of the two hemispheres. Although usually commissural paths are thought to connect between homologous regions, this is
not always the case. Sometimes nonhomologous regions are connected via commissural pathways, including the CC (109).
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Differences Between Individuals With Substance Use Disorder and Control Subjects in Resting State

Functional Connectivity in Regions of Focus (Amygdala, Insula, IPFC, dmPFC, rACC/VmPFC)% ?

Study Seeds Connectivity Regions
Camchong et al. sgACC Worse-outcome AUD < better-  sgACC-L dIPFC, sgACC-B insula
2013 (80) outcome AUD

Gu et al. 2010 (77) B amygdala, B rACC

McHugh et al. 2014 L and R BL amygdala, L
(70) and R CM amygdala

Muller-Oeheringet  dACC, B dIPFC

al. 2014 (81)

O’Daly et al. 2012 Rand L insula, R and L
(73) amygdala

Pujol et al. 2014 R and L insula, but authors

(79) report only R because L was
similar

Sutherland et al. R and L insula€

2013 (71)

Upadhyay et al. B insula?, B BL amygdala,

2010 (78) B CM amygdala

Cocaine use disorder <
controls

Worse-outcome cocaine use
disorder < better-outcome
cocaine use disorder and
controls

AUD > controls
AUD < controls

AUD < controls

AUD > controls

Positive correlation with
number of past detoxifications
(more detoxifications > fewer
detoxifications)

Negative correlation with
number of past detoxifications
(more detoxifications < fewer
detoxifications)

Cannabis use disorder <
controls

Nicotine use disorder with
greater alexithymia and
craving in withdrawal <
nicotine use disorder with
lower alexithymia and craving
in withdrawal

Opioid use disorder < controls

B amygdala-rACC, B rACC-R insula, B rACC-B
amygdala

L CM amygdala-vmPFC/rACC

dACC-B vmPFC
B dIPFC-R dACClinsula

L insula—L rACC (AUD with history of multiple
detoxifications versus controls), L insula—L vmPFC
(AUD with history of multiple detoxifications versus
controls), L insula-R VIPFC (AUD with history of
multiple detoxifications versus controls)

L insula-R vIPFC (AUD with history of single
detoxification versus controls), L insula-L vmPFC
(AUD with history of single detoxification versus
controls)

L amygdala-L dIPFC

L insula-L vIPFC

R insula-dACC, R insula-rACC/vmPFC (more
anticorrelated in cannabis use disorder than in
controls)

R insula-sgACC/rACC

B insula-B IOFC, B insula-=vmPFC, B insula-B BL
amygdala, B insula—-dACC, B CM amygdala—rACC,
B BL amygdala-B IOFC, B BL amygdala-dmPFC

aAbbreviationsfor substance use disorders: alcohol use disorder (AUD), substance use disorder (SUD). Abbreviations for regions: basolateral
amygdala (BL amygdala), centromedial amygdala(CM amygdala), dorsal anterior cingulate cortex (JACC), dorsolateral prefrontal cortex(dIPFC),
inferior frontal gyrus (IFG), lateral prefrontal cortex (IPFC), lateral orbitofrontal cortex (IOFC), orbitofrontal cortex (OFC), presupplementary
motor area (preSMA), medial orbitofrontal cortex (mOFC), perigenual anterior cingulate cortex (pgACC), rostral anterior cingulate cortex (rACC),
subgenual anterior cingulate cortex (sgACC), supplementary motor area (SMA), ventrolateral prefrontal cortex (VIPFC), ventromedial prefrontal
cortex (vmPFC). Other abbreviations: bilateral (B), left (L), right (R).

bDirectionaIity for all connectivity results was stated in most studies and, unless noted, was positive within individual groups (so in cases where
group 1 was less than group 2, it was because connectivity was less, not that anticorrelation was greater in group 1). Further details about the
individual studies (subjects, psychiatric comorbidities, exclusion criteria, tasks, analysis methods) can be found in Table S3 in the online data
supplement. When laterality is not specified, the cluster crosses the midline. Findings for the insula are restricted to the anterior insula; findings

observed in the posterior insula are not cited in the table.

Only results from the anterior insula seed are reported in this table, but anterior, middle, and posterior seeds were used.
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a L o . .
Only results from the anterior insula seed are reported in this table, but anterior and posterior seeds were used.
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