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Abstract
We performed a Phenome-Wide Association Study (PheWAS) to identify interrelation-

ships between the immune system genetic architecture and a wide array of phenotypes

from two de-identified electronic health record (EHR) biorepositories. We selected vari-

ants within genes encoding critical factors in the immune system and variants with known

associations with autoimmunity. To define case/control status for EHR diagnoses, we

used International Classification of Diseases, Ninth Revision (ICD-9) diagnosis codes

from 3,024 Geisinger Clinic MyCode1 subjects (470 diagnoses) and 2,899 Vanderbilt Uni-

versity Medical Center BioVU biorepository subjects (380 diagnoses). A pooled-analysis

was also carried out for the replicating results of the two data sets. We identified new asso-

ciations with potential biological relevance including SNPs in tumor necrosis factor (TNF)
and ankyrin-related genes associated with acute and chronic sinusitis and acute respira-

tory tract infection. The two most significant associations identified were for the C6orf10
SNP rs6910071 and “rheumatoid arthritis” (ICD-9 code category 714) (pMETAL = 2.58 x

10−9) and the ATN1 SNP rs2239167 and “diabetes mellitus, type 2” (ICD-9 code category

250) (pMETAL = 6.39 x 10−9). This study highlights the utility of using PheWAS in conjunc-

tion with EHRs to discover new genotypic-phenotypic associations for immune-system

related genetic loci.

PLOS ONE | DOI:10.1371/journal.pone.0160573 August 10, 2016 1 / 20

a11111

OPEN ACCESS

Citation: Verma A, Basile AO, Bradford Y,
Kuivaniemi H, Tromp G, Carey D, et al. (2016)
Phenome-Wide Association Study to Explore
Relationships between Immune System Related
Genetic Loci and Complex Traits and Diseases.
PLoS ONE 11(8): e0160573. doi:10.1371/journal.
pone.0160573

Editor: Yong-Gang Yao, Kunming Institute of
Zoology, Chinese Academy of Sciences, CHINA

Received: April 19, 2016

Accepted: July 16, 2016

Published: August 10, 2016

Copyright: © 2016 Verma et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant summary
data are within the paper and Supporting Information
files. The authors do not make the entirety of the
genetic data and phenotypic data of these
biorepositories publicly available as these are de-
identified electronic health record data linked to
genetic information. PheWAS uses a wide range of
phenotypic information linked to that genetic data,
and they do not want to risk any patient re-
identification.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0160573&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Autoimmune diseases affect about 5% of the population and can lead to chronic inflammation
targeting specific tissues [1]. The most common autoimmune diseases, such as rheumatoid
arthritis (RA), multiple sclerosis, and type 1 diabetes mellitus (T1DM), have overlapping clini-
cal, epidemiological and therapeutic features, but their genetic underpinnings and pathogenesis
are still not fully understood [2]. GenomeWide Association Studies (GWAS) have discovered
over 200 genetic loci associated with autoimmune diseases [2], elucidating biological pathways
and potential drug targets for autoimmune disorders [3]. Comparison of results across GWAS
shows a series of single nucleotide polymorphisms (SNPs) associated with multiple autoim-
mune diseases, suggesting the existence of variance in immune traits and pleiotropy [3]. For
example, multiple genetic variants that reside within the region encompassing the human leu-
kocyte antigen (HLA) system have been associated with several autoimmune diseases [4].
Although GWAS have identified multiple autoimmune disease susceptibility loci, the biological
relationship between genetic variation within these loci and disease status has not been well
characterized.

While genetic variation in immune function and inflammation contributes to susceptibility
to autoimmune conditions, this variation may also impact a variety of other diseases and diag-
noses. The immune system serves as a major defense network in fighting disease and infection.
Genetic variation in immune function has been found to contribute to disease susceptibility in
multiple classes of disorders [3]. For example, monocyte-specific expression quantitative trait
loci (eQTLs) have been identified for genetic variants associated with neurodegenerative disor-
ders such as Parkinson’s and Alzheimer’s diseases [5]. As a manifestation of immune function,
inflammation also plays an important role in conditions beyond contagious or autoimmune
diseases. For instance, inflammation has been implicated in multiple disorders including vascu-
lar diseases such as atherosclerosis [6] and congestive heart failure [7], neuropsychiatric dis-
eases like autism [8], as well as metabolic traits and disorders such as obesity [9] and type 2
diabetes (T2DM) [10].

To examine potential associations across many phenotypes, Phenome-wide association
studies (PheWAS) have been developed as a complementary approach to GWAS, using all
available phenotypic information and genetic variation in order to estimate the association
between genotype and phenotype [11]. PheWAS are dependent on comprehensive phenotypic
information on large numbers of individuals; PheWAS to date have used electronic health
record (EHR) International Classification of Diseases (ICD-9) billing codes to define case-con-
trol statuses for multiple diagnoses [12], data from epidemiological studies with hundreds to
thousands of phenotypic measurements [13][11], as well as clinical trials data [14]. The Phe-
WAS framework of evaluating the association between a wide array of phenotypes and markers
permits the study of pleiotropy, compared to the GWAS framework of investigating association
between a single trait and genetic markers, except when comparing results from multiple sepa-
rate GWAS [15]. In this PheWAS, we used variants in immune-related genes which provided
an opportunity to explore the association between immune system SNPs and phenotypes
beyond specific autoimmune and immune system traits, such as diagnoses that may have an
immune system involvement but are not specifically classified as an autoimmune/immune sys-
tem trait.

The goal of this study was to identify associations between selected SNPs with known or
possible associations with autoimmune disease and the immune system and a variety of diag-
noses, evaluating and contrasting results across two separate EHR systems. We performed our
PheWAS analysis using SNPs within genes encoding critical factors for the immune system
and SNPs with known associations with autoimmunity, including a series of SNPs also found
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on ImmunoChip, an array designed by investigators of 11 autoimmune and inflammatory dis-
eases [16,17]. To explore associations between these SNPs and diagnoses, we used ICD-9 diag-
nosis codes to define case/control status from two sites within the Electronic Medical Record
and Genomics (eMERGE) Network: Geisinger MyCode1 and Vanderbilt BioVU. Highly sig-
nificant results were investigated within the individual datasets, and replication of associations
was also sought across the two different bio-repositories. The results of this study also demon-
strate cross-phenotype associations that may be due to pleiotropy and identified complex net-
works that exist between immune related genetic variants and many different diagnoses.

Methods

Data Sets
We used de-identified EHR biorepository data linked to genotypic data and ICD-9 diagnosis
code data from two sites in the eMERGE Network: Geisinger Health System’s MyCode1 and
Vanderbilt University Medical Center’s BioVU [18]. The MyCode dataset had a total of 3,024
individuals and the BioVU dataset had 2,899 individuals available for the study with both phe-
notypic and genotypic data (Table 1). Because a majority of subjects in MyCode1 were of Euro-
pean ancestry (EA), we selected only EA subjects to seek replication with the BioVU data [19].

The Geisinger biorepository has had both general and targeted recruitment for specific dis-
eases, such as obesity and abdominal aortic aneurysms (AAA). BioVU has consented using an
opt-out approach, where individuals with discarded blood may or may not be added to the
biorepository unless they indicate they would like to opt-out of BioVU [20]. Thus BioVU has
no pre-selection for individuals with a specific disease phenotype.

Genotyping, Imputation & Quality Control
We summarize the genotyping, imputation, and quality control procedures in S1 Fig. Geisinger
MyCode1 subjects were genotyped using the Illumina HumanOmniExpress-12 v1.0 array, a
total of 729,078 SNPs. Genotyping of BioVU subjects was performed using the Illumina 660
Quad array, a total of 558,590 SNPs. We used imputation for improved genomic coverage and
overlap between datasets of immune related variants. We performed imputation using the
IMPUTE2 algorithm [21] after phasing with SHAPEIT2 [22] using the 1,000 Genomes cosmo-
politan reference panel, resulting in a total of 38,054,243 SNPs in 3,111 samples for MyCode1

and 38,041,351 SNPs in 3,375 samples for BioVU [23].
Genotype Quality Control (QC) procedures were performed prior to association testing

using the R programming statistical package [24] and PLINK software [25]. QC was performed
on each dataset separately. The first step was to filter out the SNPs with poor imputation

Table 1. Summary of Data Sets Used for the Study.

EHR Site Total
Sample
Size

%Male Median
Age (in
decade)

Case Size
Range

Genotyping
Platform

Number of
SNPs Pre-
imputation

Number of
SNPs Post-
imputation

Number of
SNPs after
filtering

Number of
Diagnosis
Codes

Geisinger
MyCode1

3024 53.0 40 Min = 11;
Max = 1898;
Median = 32

Illumina Human
OmniExpress

729,078 38,054,243 95,448 477

Vanderbilt
BioVU

2899 45.4 60 Min = 11;
Max = 1056;
Median = 31

Illumina 660 558,980 38,041,351 87,690 380

For additional information on the study design, see Figs 1 and S1.

doi:10.1371/journal.pone.0160573.t001
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quality; SNPs with imputation quality scores> 0.9 were used for further analyses. Data were
filtered further for 99% genotype and sample call rates and minor allele frequency (MAF)
threshold of 1%. Also, related samples were removed using Identity by Descent (IBD) kinship
coefficient estimates. We also performed principal component analysis (PCA), determining
principle components to use to correct for population differences within the EA of these data-
sets, as association results for immune system genes in particular can be particularly affected
by population substructure. After QC, the genotypic data consisted of 4,636,178 SNPs and
3,029 samples fromMyCode1 and 4,163,988 SNPs and 2,900 samples from BioVU.

Phenotype Data
To define case-control status for each ICD-9 code, a MySQL database was used to assemble the
phenotypic data, consisting of 6,525 ICD-9 codes from the MyCode1 dataset and 1,206 ICD-9
codes from BioVU. A case was defined as an individual with more than three instances of a
specific ICD-9 code. Controls were defined as individuals not meeting the case criteria. More
than ten case subjects were required for inclusion of a diagnosis in our study. Using these crite-
ria there, were 3,024 samples and 477 ICD-9 codes in MyCode1, and 2,899 samples and 380
ICD-9 codes in BioVU. For replication of results across the two studies, there were a total of 50
exact ICD-9 code matches (i.e. 3, 4 and 5 digit ICD-9 code) across both datasets, and a total of
186 ICD-9 category (i.e. three digit ICD-9 code) matches across both datasets.

Selection of SNPs for the Study
While we used genetic data from Illumina arrays, we focused on SNPs related to the immune
system, and chose from our array data SNPs present on ImmunoChip (Illumina) or known to
be involved in the immune system within a specific set of genes (see S1 Table for a list of these
34 genes). The ImmunoChip is a custom genotyping array designed by Illumina with 195,806
SNPs for performing deep replication of associations with major autoimmune and inflamma-
tory diseases including fine mapping of GWAS loci covering 11 major autoimmune diseases
(e.g., T1DM, autoimmune thyroid disease, celiac disease and multiple sclerosis), seronegative
diseases (e.g., ulcerative colitis, Crohn's disease, and psoriasis), and rheumatic diseases (e.g.,
RA, ankylosing spondylitis and systemic lupus erythematosus) [17]. Also included on Immu-
noChip are all the previously confirmed GWAS SNPs for which probes could be designed
using data from the 1,000 Genomes Project [16]. From this study, we selected only SNPs from
our genome-wide array data that were on the ImmunoChip array or within the genes we iden-
tified for involvement in the immune system. The SNP filtering process is shown in Fig 1.

Biofilter was the tool used to generate the list of SNPs for association testing. Biofilter is a
software tool with an extensive database containing biological knowledge from publicly avail-
able repositories of biological data that can be used to annotate genomic information, as well as
filter genomic information based on specific criteria [26,27]. First Biofilter 2.1 was used to
annotate the post-QC SNPs of this study with gene information for any SNPs within Entrez-
defined gene boundaries. Then Biofilter was used with the genotypic data from each EHR site
to filter SNPs, maintaining only those SNPs matching within the 34 genes selected for their
known involvement in the immune system (S1 Table). The SNP filtering step resulted in
95,448 SNPs fromMyCode1 and 87,690 SNPs from BioVU, with a total of 76,861 SNPs over-
lapping across the two datasets available for association testing (Table 1).

Association Testing and Identifying Replication
In both datasets, separately, associations were calculated using logistic regression with models
adjusted for sex, age, and the first five principal components. In the MyCode1 dataset, using
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Fig 1. Overview of PheWASwith Immune Variants. This flow chart provides an overview of the steps taken to perform PheWAS between immune
variants and ICD-9 diagnosis codes. The final testing dataset (purple) was formed by selecting SNPs from our array data that also exist on Immunochip
and/or are within immune-related genes (yellow) and removing samples with missing genotypic or phenotypic data (green). Comprehensive associations
were calculated between all final dataset SNPs and ICD-9 code based case/control status using logistic regression, with all models adjusted for age, sex
and first five principal components. Replication was sought following both an exact ICD-9 code and a category ICD-9 code approach following the
specified criteria. Pooled analysis was performed for both approaches using METAL. See S1 Fig for the full workflow from imputation through quality
control, association testing, and replication for this study.

doi:10.1371/journal.pone.0160573.g001
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logistic regression, the strength and significance of associations were evaluated between 95,448
SNPs and 477 clinical diagnoses. There were a total of 366,468 associations with p< 0.01. In
the BioVU dataset, association testing was performed on 87,690 SNPs and 380 phenotypes.
There were a total of 261,346 associations with p<0.01. We also compared our results to a Bon-
ferroni corrected p-value threshold. A LD pruning approach was used to account for correla-
tion between the SNPs and identified independent SNPs at r2 = 0.3 [28]. For MyCode and
BioVU association testing, the Bonferroni threshold was 4.73 x 10−9 [0.05/(22,138 x 477)] and
6.07 x 10−9 [0.05/(21,673 x 380)], respectively. There was only one result that passed the con-
servative Bonferroni threshold in MyCode and none of the results passed threshold in BioVU.

A MySQL database was used to organize all association results. This included inspection of
results in single datasets where the ICD-9 code existed only in one or the other dataset. S2
Table shows the results of MyCode1 and BioVU with p<1x10-4, where we could not seek rep-
lication across both datasets, as the ICD-9 codes were only specific to each study. For replica-
tion we used two approaches. In the first approach, association results replicating across both
datasets for the same SNP and exact ICD-9 diagnosis code, with same direction of effect of the
association were used. In the second approach, we also used the database to seek replication
across both datasets, for the same SNP and ICD-9 code category, with the same direction of
effect of the association. ICD-9 codes classify diagnoses; there are three digit ICD-9 codes that
specify disease categories (e.g. code 405 for “secondary hypertension”) that can be further sub-
divided using multiple four or five digit sub ICD-9 codes (e.g. 405.1 for “benign secondary
hypertension”, 405.11 “benign renovascular hypertension”). Wide variation exists across insti-
tutions in the way specific ICD-9 codes are applied, although three digit ICD-9 categories are
used more consistently for diagnoses from institution to institution. We therefore analyzed
results based on replication requiring the exact ICD-9 code used in the association (i.e. three,
four, or five digit sub ICD-9 codes), as well as evaluating results based on replication requiring
only the same three digits of the ICD-9 code category. S3 and S4 Tables show all of the results
where the criteria for replication were met for the same ICD-9 code, and for the same ICD-9
code category, respectively.

We also annotated SNPs in replicating associations between BioVU and MyCode1 with
information from the NHGRI-EBI GWAS catalog [29,30] and GRASP [31,32], thus identifying
any previously reported associations for these SNPs. We used a p-value threshold of 1x10-5

(default for NHGRI-EBI GWAS catalog) on the associations reported in both the sources.

Focusing on Immune System and Autoimmune Traits
We further explored results for associations with phenotypes/diagnoses more closely linked to
the immune system or autoimmune disease. Thus, we filtered the results presented in S4 Table
(all results where the criteria for replication were met for the same ICD-9 code category) for
only ICD-9 categories related to the immune system or autoimmune disease by having three
individuals identify any ICD-9 categories for removal that were too broad (such as “general
symptoms, not otherwise specified”, etc.), cancer related diagnoses, and diagnoses clearly related
to accident or surgery (such as “hypothyroidism due to ablation”). In this way, we retained
ICD-9 codes describing autoimmune reactions or clearly influenced by immune system varia-
tion. Table 2 lists the ICD-9 categories and descriptions selected through this process, as well as
the genes in which the variants are located. This process resulted in 409 associations (S5 Table).

Visualization Tools
We used Synthesis-View [33], PhenoGram [34], and Cytoscape [35], to visualize the results.
Synthesis-View was used to visualize the SNP-phenotype associations and to plot associations
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matching previously reported associations in the NHGRI-EBI GWAS catalog and GRASP.
PhenoGram was used to visualize potentially pleiotropic SNPs by creating a chromosomal
ideogram with lines denoting SNP locations and colored circles depicting phenotypes associ-
ated with those SNPs.

Table 2. Immune-Related ICD-9 categories selected for further analysis.

ICD-9 General Classification ICD-9 Code Category (Code: Category
Description)

Nearest Genes

Endocrine, nutritional and metabolic
diseases, and immunity disorders

250: Diabetes mellitus, Type 1 LOC645266,MTCO3P1, HLA-DRA, HLA-DQB2, HLA-DOB, DDC,
DDC, LOC100129427, HLA-DMA, HCG23, C6orf10,MIR588, CAST,
EPHA5, LOC645321, SERPINB11, KC6, FLJ30679, PRELID1P1,
RPS4XP9, THEMIS, HIST1H1T

273: Disorders of plasma protein
metabolism

LOC100996339, ESRRG

Diseases of the nervous system 331: Other cerebral degenerations QRSL1

340: Multiple sclerosis MYT1L, IRF4

357: Inflammatory and toxic neuropathy GTDC2, RAB38, LOC100129160

Diseases of the sense organs 373: Inflammation of eyelids USH2A,MAP4K4

Diseases of the respiratory system 461: Acute sinusitis CNTNAP2, ANKS1A

465: Acute upper respiratory infections
of multiple or unspecified sites

RPL23AP54, ZZEF1, ANK3

466: Acute bronchitis and bronchiolitis CLSTN2, LOC100129949

472: Chronic pharyngitis and
nasopharyngitis

DAP3P2, DCAF17, LOC100287243,METTL8, TAF3, KIAA1217

473: Chronic sinusitis ANK3, TRPS1, KSR1, RBM17

477: Allergic rhinitis KCNK3,VAV3-AS1,PADI4,MED13,KIRREL3,TOX,FTLP7

482: Other bacterial pneumonia TLR6, LOC645481

491: Chronic bronchitis SDC4,RPS2P9, SYS1-DBNDD2,PITX2,SYS1,SYS1-DBNDD2,XCR1

492: Emphysema GABRA4

493: Asthma TPD52L1, CAST,WDR11

515: Postinflammatory pulmonary
fibrosis

SLC16A10,FRMD6-AS2,LOC100506923,ADIPOR1

Diseases of the digestive system 556: Ulcerative colitis BTF3L4P3

571: Chronic liver disease and cirrhosis RSBN1, RFX3, CTIF, PHTF1

577: Diseases of pancreas LCE1B, NTRK3-AS1

Diseases of the genitourinary system 584: Acute renal failure FAM205B, LACC1, DGKZP1, E2F3, FAM205A

585: Chronic kidney disease STXBP4, LOC100996324, CCDC148, RPL13AP25, BMP2, RRP15

586: Renal failure PLK2, LOC100507162

595: Cystitis SDK1, DNTTIP2

Diseases of the skin and subcutaneous
tissue

692: Contact dermatitis and other
eczema

MB21D2

695: Erythematous conditions SRRM4, PRDM15, VDR, INTS6, FGFR3P3

Diseases of the musculoskeletal
system and connective tissue

714: Rheumatoid arthritis and other
inflammatory polyarthropathies

MTCO3P1, HLA-DRA, NOTCH4, TNIP1, IL6, HLA-DRB1, C6orf10,
HLA-DRB9

715: Osteoarthrosis and allied disorders BRD2, SEMA6A, FLJ42102, RNY4P22, TNFSF8, KIAA1919, BACH2,
AKT3, SDHAP3, ZBTB38, CAMK1G, PRDM1, U2SURP, RETNLB,
ANXA6

716: Other and unspecified
arthropathies

IL23R, GPX3, TRNAS13, ZNF192P2, AGPAT4, QKI, ENTPD7, GJD4

719: Other and unspecified disorders of
joint

TCF4, LOC100288337, TBX3

doi:10.1371/journal.pone.0160573.t002
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We also used Cytoscape 3.0 to visualize network diagrams from the significant PheWAS
results. To produce the Cytoscape plots, we first used Biofilter to annotate the PheWAS result
SNPs with the gene, or the closest gene to the SNP. We then used Biofilter to obtain the gene
annotations from Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [36].

Functional Annotation
To obtain functional information, we annotated the SNPs used in this study with HaploReg V2
[37] and SNP and CNV Annotation Database (SCAN) [38]. HaploReg provides functional
annotation of SNPs within LD blocks, and includes information on chromatin state in multiple
cell types, regulatory motif alterations and sequence conservation. SCAN provides information
from eQTL experiments with a list of genes whose expression is affected by the given SNP in
Caucasian (CEU) and Yoruba (YRI) populations. We used expression data specific to the CEU
population from SCAN.

Results

PheWAS in Two EHR Datasets Using ICD-9 Codes
Fig 1 provides an overview of our study to identify comprehensive associations between
immune system related variants and ICD-9 based case/control diagnoses within MyCode1

and BioVU data (further details available in Methods). S1 Fig shows the full workflow, from
imputation through quality control, association testing and replication for this study. Table 1
provides a summary of the datasets used. Only subjects of EA with both phenotypic and geno-
typic data within these sites were selected for discovery and replication analyses.

Evaluating the two EHR datasets separately yielded a total of 366,468 associations (p< 0.01)
between SNPs and ICD-9 codes in the MyCode1 dataset and 261,346 associations (p< 0.01) in
the BioVU dataset (see details on datasets in Methods). The most significant association in
MyCode1 passing our Bonferroni threshold of 4.73 x 10−9 was between rs41272317 in the
ACAD11 gene on chromosome 3 and “symptoms concerning nutrition metabolism and devel-
opment” (ICD-9 code 783.21), with p = 8.15 x 10−12 (β = 2.68, cases = 45, controls = 2,979). In
the BioVU PheWAS results, the most significant association result was between SNP rs870769
on chromosome 8 and “transient cerebral ischemia” (ICD-9 code 435), with p = 7.41 x 10−8

(β = 2.2, cases = 32, controls = 2,861), which did not pass our Bonferroni threshold. While these
are most significant associations within each dataset independently, they did not replicate across
both MyCode and BioVU.

Geisinger’s genotyped cohort fromMyCode1 had a large number of cases with AAA or
obesity, warranting further exploration for immune variation related to AAA and obesity.
Inflammatory processes have been implicated in AAA as well as obesity [39]. We found an
association within MyCode between “abdominal aortic aneurysm without mention of rupture”
(ICD-9 code 441.4) and rs11084402 on chromosome 19 (p = 2.22 x 10−5, β = 0.36, cases = 778,
controls = 2,246). There were no associations for AAA in the BioVU dataset.

We further explored results with diagnosis codes meeting the criteria for inclusion, but for
associations where we could not seek replication because that ICD-9 code was not present in
the other dataset. There were a total of 50 exact ICD-9 code matches across both datasets, and
a total of 186 exact ICD-9 category matches across both datasets, which placed limitations on
seeking replication across the two sets. For the results where we could not seek replication due
to the ICD-9 codes not being present in the other dataset, we focused our attention on associa-
tion results with the highest case numbers (hundreds to thousands of cases) with p< 1x10-4.
While this p-value cutoff is less stringent than our Bonferroni cutoff, we chose a more explor-
atory p-value cutoff focused on the most highly suggestive and powered associations from the
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PheWAS. S2 Table lists these results for MyCode1 and BioVU with p<1x10-4. In MyCode1,
we found associations between SNPs and metabolic disorder traits, including with “essential
primary hypertension” (ICD-9 code 401.9), “other and unspecified hyperlipidemia” (ICD9-
code 272.4), and “morbid obesity” (ICD-9 code 278.01). Interestingly, there were related meta-
bolic disorder traits in BioVU, but these did not replicate the MyCode1 results. For example,
among the highest case numbers in BioVU for p<1x10-4 there were associations between SNPs
and diagnoses including “essential hypertension” (ICD9-code 401), and “disorder of lipoid
metabolism” (ICD-9 code 272).

PheWAS Results with Replication
To identify further robust associations, we also sought replication of results across the two
datasets using two approaches: seeking results for the same SNP and same ICD-9 code category
(i.e. truncating the ICD-9 code for each case/control status to the three digit ICD-9 code) with
p<0.01 and the same direction of association, and also seeking results for the same SNP and
exact ICD-9 code (i.e. the exact ICD-9 case/control status for each association, varying from
three to five digits) with p<0.01 and the same direction of association (Fig 1). There were a
total of 224 associations with exact ICD-9 code replication across the two datasets with
p<0.01, for the same SNP, coded allele, and direction of effect (S3 Table). Of the 224 replicated
associations with the exact same ICD-9 code, the most significant association in BioVU that
replicated in MyCode1 was between “soft tissue disorders” (ICD-9 code 729.1) and the
PLA2G2E SNP rs1108975 with pBioVU = 3.29 x 10−6 (Case-Control = 43/2,853), replicating
in the MyCode1 data with pMyCode = 3.29 x10-3 (Case/Control = 136/2,888). The most signifi-
cant association in the MyCode1 data, replicating in the BioVU dataset was between SNP
rs11869607 and the diagnosis “deficiency anemias” (ICD-9 281.1) with pMyCode = 5.98 x 10−5

(Case/Control = 21/3003) and in BioVU pBioVU = 3.07 x 10−3 (Case/Control = 16/2,882).
We had a total of 3,054 results for the same SNP, coded allele, and direction of effect, when

the replication criterion was based on requiring the same ICD-9 code category, (S4 Table) and
association between F5 SNP rs6427196 and “pulmonary embolus” (ICD-9 code category 453)
was most significant with pMyCode = 1.3 x 10−7 (Case/ControlMyCode = 53/2,970) and pBioVU =
5.72 x 10−3 (Case/ControlBioVU = 63/2,834).

We used METAL [40] to perform a pooled-analysis for both sets of results meeting our
criteria for replication across BioVU and MyCode1 (S3 and S4 Tables). The most significant
of these associations was between the diagnosis “myalgia and myostosis” (ICD-9 code 729.1)
and the PLA2G2E SNP rs1108975 with pMETAL = 8.99 x 10−8 (Case/ControlMyCode = 136/
2,888, Case/ControlBioVU = 43/2,853). Of the 3,054 results meeting our PheWAS replication
criteria for the same ICD-9 code category, the most significant association was between the
diagnosis “rheumatoid arthritis and other inflammatory polyarthropathies” (ICD-9 code cat-
egory 714) and C6orf10 SNP rs6910071 with a meta-analysis pMETAL = 2.58 x 10−9 (Case-
ControlMyCode = 60/2,964, Case-ControlBioVU = 81/2,818). Another top association signal was
between the ATN1 SNP rs2239167 and “diabetes mellitus, type 2” (ICD-9 category code 250)
with a pMETAL = 6.39 x 10−9 (Case-ControlMyCode = 23/3,001, Case-ControlBioVU = 41/2,858).

Matching Previously Reported GWAS Results
Results replicating in both biorepositories using the exact ICD-9 code and ICD-9 category-
based PheWAS were evaluated for any matches to SNPs with previously reported associations
for the same phenotypes with significance of p-value<1x10-5 in the NHGRI-EBI GWAS cata-
log and GRASP. We found that GRASP included GWAS results from many more studies than
the NHGRI-EBI catalog and most association in NHGRI-EBI were also reported in GRASP.
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However, we report SNP associations from previous GWAS if it is reported in either NHGRI-
EBI catalog or GRASP.

Of the SNPs in the 224 exact ICD-9 code replicating associations, we found a total of 10
SNPs with phenotypic associations also previously reported in existing GWAS. However, none
of these SNPs were associated with the same phenotypes in our study compared to existing
GWAS. For example, the PARD3B SNP rs1207421 is reported in the GWAS catalog to be asso-
ciated with “knee osteoarthritis” (reported GWAS p = 6 x 10−6) [41]. In our study this SNP had
a novel association with “scar conditions and fibrosis of skin” (ICD-9 code; 709.2), and was not
associated with osteoarthritis.

In our results meeting the PheWAS criteria for replication in both datasets for the same
ICD-9 code category, a total of 284 SNPs were also represented in either NHGRI-EBI GWAS
catalog or the GRASP database. A total of 42 SNP-phenotype pairs matched identical associa-
tions reported in the GWAS catalogs, and five results had a diagnosis closely related to the phe-
notype reported in the GWAS catalogs. A few top SNP-phenotype pairs matching previously
reported associations include the C6orf10 SNP rs6910071 associated in our study with “rheu-
matoid arthritis and other inflammatory polyarthropathies” and reported previously to be
associated with RA [42–44]. Also, an F5 SNP rs6427196 and pulmonary embolus/DVT associa-
tion (pMETAL = 1.16 x10-8, Case/ControlMyCode = 53/2,970, Case/ControlBioVU = 63/2,834) that
has been previously reported with venous thromboembolism [45,46,46,47]. A SNP rs2647044
downstream ofMTC03P1 associated with “diabetes mellitus type 1” (pMETAL = 7.94 x10-7,
Case/ControlMyCode = 22/3,002, Case/ControlBioVU = 98/2,801) in our study, was previously
reported to be associated in GWAS with T1DM [48] and RA [42]. Finally, there was an associa-
tion between rs660895 and “rheumatoid arthritis and other inflammatory polyarthropathies”
(pMETAL = 3.28 x 10−7, Case/ControlMyCode = 85/2,939, Case/ControlBioVU = 138/2,761), and
this SNP has shown previous association with RA [43]. Fig 2 shows a plot of the replicating
associations found for our ICD-9 code category PheWAS for SNPs matching the exact or
closely related ICD-9 code category description in previously reported studies.

Associations with Immune and Autoimmune Related Diagnoses
From the replicating category ICD-9 code results, we concentrated on the 441 SNP-ICD-9
code associations for immune- or autoimmune-related diagnoses, i.e. diagnoses more directly
impacted by immune system variation. To assist developing a robust list of more specifically
immune- or autoimmune-related ICD-9 codes, three separate researchers evaluated the selec-
tion of these ICD-9 code classes to reach consensus, resulting in 441 SNP-ICD-9 association
results for further evaluation. In Table 2, we list the ICD-9 categories selected for this analysis
as well as the genes with SNPs. S4 Table lists the association results meeting the criteria for sig-
nificance and replication. Fig 3 presents the results for the 441 SNP-ICD-9 associations related
to immune function.

Fig 3 shows the great diversity of the replicating results, ranging from autoimmune condi-
tions, such as “rheumatoid arthritis” (RA) (ICD-9 code: 714), to contagious diseases, such as
“bacterial pneumonia” (ICD-9 code: 482), to inflammatory diseases including “erythematous
conditions” (ICD-9 code: 695). The diagnosis with the largest total number of replicating asso-
ciation results in Fig 3 was “osteoarthrosis” (ICD-9 code: 715) with 53 results in the MyCode1

and BioVU datasets. “Diabetes mellitus, type I” (TIDM) (ICD-9 code: 250) and “chronic sinus-
itis” (ICD-9 code: 473) each had 49 replicating results in both datasets.

Within this subset of results, the statistically most significant results include associations
with RA, T1DM, and allergic rhinitis and osteoarthrosis. RA and T1DM are both common
autoimmune diseases, and inflammation has been implicated in the pathogenesis of
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Fig 2. Synthesis view plot showing PheWAS results replicating across MyCode1 and BioVU that have previously reported associations.
The first track is the chromosomal location for each SNP. The next column lists the SNP identifier, the phenotype associated in our study, and the
reported GWAS trait (p<10−5). Results representing exact matches with the NHGRI-EBI GWAS catalog and GRASP are annotated with a single
asterisk and the closely related traits are represented with a double asterisk. Blue symbols represent results fromMyCode1, red symbols
represent results from BioVU and green symbols are the pooled analysis results obtained using the programMETAL.

doi:10.1371/journal.pone.0160573.g002
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osteoarthrosis [49]. The most significant replicating association from the pooled analysis was
between rs6910071 and the diagnosis RA with pMETAL = 2.58 x 10−9, as mentioned above this
SNP has also been associated with RA in previous GWAS.

Functional Annotation of Associated Variants within Genes
Of the 441 autoimmune and immune system related results, we next considered SNPs directly
mapping to or within 50 kb of a gene to include promoter and regulatory regions, for poten-
tially relevant genes. There were 233 associations of SNPs that mapped within genes. Herein,
we again observed multiple variants mapped to genes with known relationships with associated
phenotypes, particularly for RA and T1DM within the well-characterized HLA locus. This
group included SNPs associated with T1DM within theHLA-DMA, and HLA-DOB genes, and

Fig 3. PheWAS View Plot of Meta-analysis Results with p<0.01 Replicating for the Same ICD-9 Category, Meeting Autoimmune
and Immune-Related Diagnosis Criteria. The left track specifies the phenotype and ICD-9 Category code with which the SNP was
associated. The next track indicates–log10(p-value) from the meta-analysis performed on all replicating SNPs with p<0.01. The last track
indicates the SNP that had the most significant p-value, and the direction of effect of the association (+, positive; -, negative). The total
number of associations between the SNPs and diagnoses was 409.

doi:10.1371/journal.pone.0160573.g003
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SNPs associated with RA mapped to HLA-DRB9 andHLA-DRB1. The SNP rs1480380 associ-
ated with osteoarthrosis and T1DM in our study is within 50 kb of HLA-DMA. Nine SNPs
associated with T1DM in our study were in the HLA-DRA gene, and eight SNPs associated
with RA also mapped toHLA-DRA. It is important to consider that the HLA region on chro-
mosome 6 is highly polymorphic and there could be variability in HLA alleles due to popula-
tion stratification. We only used EA individuals in this study, thus we expect less variation in
the HLA region compared to a cohort across multiple ancestries. Further, we compared the
MAFs of HLA region SNPs with 1000 Genomes EA population and the frequencies were very
close.

Functional Annotation of Associated Variants outside Protein-Coding
Genes
Of the 441 replicating associations classified as autoimmune- or immune-related, there were
208 associations where SNPs mapped outside protein coding genes, with a total of 206 SNPs.
We annotated the SNPs that did not map to genes with information on potential functionality
using two public databases: HaploReg V2 and SCAN (S6 Table).

A total of 40 SNPs were associated with significantly altered gene expression in HapMap
CEU lymphoblastoid cell lines in the SCAN database. The statistically most significant eQTL
in SCAN for our 206 SNPs is rs2395182 and the expression of eight HLA locus genes as well as
other genes including RNASE2, and ZNF749. In our study, this SNP was associated with “rheu-
matoid arthritis and other inflammatory polyarthropathies” (ICD-9 code: 714). This SNP is
located 495 bp upstream of HLA-DRA. Another highly significant SCAN eQTL exists between
the SNP rs1794282 and altered expression ofHLA-DQA1 and HLA-DQA2. In our study, SNP
rs1794282 was associated with “type 1 diabetes” (ICD-9 code: 250).

We also used HaploReg to annotate the 206 SNPs that were outside gene boundaries, as well
as any SNPs in LD (r2> 0.8) with the original SNPs. Of these 206 SNPs, 134 had altered regula-
tory motifs in HaploReg and are likely to influence transcriptional regulation. Sixteen of the
SNPs were reported to be strong enhancers in one cell type, and 47 SNPs are weak enhancers
in one or more cell types, supporting the potentially functional role of these variants.

Pleiotropy and Association Network
With the wide range of phenotypes explored in PheWAS, SNPs associated with more than one
phenotype can be identified, indicating potential pleiotropy. In this study, 107 out of 2,770
SNPs had associations meeting our PheWAS criteria for the same ICD-9 code category that
demonstrated potential pleiotropy. An instance of such potential pleiotropy is seen with SNP
rs114369580 which was found to be associated with immune related disorders T1DM and
gout. The plot on the results of the SNPs associated with more than one phenotype is shown in
Fig 4.

We further explored the interrelations between association results as a network using Cytos-
cape. Fig 5 shows a sub-network of our results for potential pleiotropy. We used SNPs that met
our PheWAS criteria for replication for the same ICD-9 code category, and annotated those
SNPs with the nearest gene. Next we used Cytoscape to link together ICD-9 codes with genes,
where those ICD-9 codes are associated with the SNPs within those genes. Next we annotated
the genes using the KEGG [36] pathways, and added them to the network. In the network, the
diagnoses of RA and T1DM link toHLA-DRA, a gene found in the rheumatoid arthritis
and type I diabetes KEGG disease pathways. Another interesting pattern was between IL6
(rs2069843, rs2069849, rs1548216, rs2069844) and RA (ICD-9: 714) and IL23R (rs10889675)
and “arthropathy” (ICD-9: 716), where both genes are from the interleukin gene family and
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Fig 4. Pleiotropy: SNPs Associated with more than One Phenotype and Replicating acrossmore than One Study for the Same ICD-9 Category.
This chromosomal ideogram has lines indicating the location of the SNP, with filled colored circles indicating different ICD-9 code diagnoses associated
with that particular SNP. When there are multiple pairs of the same phenotypes in the same region, this indicates regions where several SNPs in close
proximity were associated with the same pairs of phenotypes.

doi:10.1371/journal.pone.0160573.g004
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found in a JAK-STAT signaling pathway. In Fig 5, the number of replicating association SNPs
within a gene is represented by thickness of the lines. We identified that ANK3 has most num-
ber of SNPs (a total of 65 SNPs) associated with chronic sinusitis (ICD-9: 473), Acute upper
respiratory infections (ICD-9: 465).

Discussion
Using PheWAS we found a series of associations between SNPs within or in close proximity of
genes with known involvement in the immune system, such as genes within the HLA locus,
including genetic variants within HLA-DRA associated with a series of immune-relevant diag-
noses. As a member of the HLA class of molecules, HLA-DRA is expressed in various antigen
presenting cells, and has been implicated in both T1DM [50] and RA [51].

Four SNPs in both biorepositories with associations with RA are within IL6. The product of
the IL6 gene is an interleukin, both a pro-inflammatory cytokine and an anti-inflammatory
myokine, with an important role in regulation of inflammation and hematopoiesis. Therapies
targeting the IL6 signaling system have been found effective for the treatment of RA [52].

A different group of three SNPs associated with RA mapped to TNIP1, a gene encoding an
A20-binding protein that has a role in autoimmunity through the regulation of NFκB activa-
tion. Previous studies have shown genetic variants in TNIP1 associated with various autoim-
mune conditions including psoriasis, and systemic lupus erythematous [53].

The most significant association in MyCode1 that replicated in BioVU was for the SNP
rs6682179 mapped to the F5 gene, which was associated with pulmonary embolus and deep
vein thrombosis (ICD-9 code category 453). The F5 gene encodes the coagulation factor V
protein, a protein that circulates in the blood and is part of the blood coagulation cascade.
The F5 gene has many known mutations causing different blood coagulation disorders like
factor V deficiency [54] and factor V Leiden thrombophilia [55]. We found that rs6682179
from our study is in linkage disequilibrium with rs2420371 and rs1018827 that have known

Fig 5. Cytoscape Network Showing the Connections between Phenotypes, the Genes with SNPs, and
Pathways. In this network, green squares represent phenotype; red triangles represent genes; and blue
circles are KEGG pathways. The colored lines highlight the link between phenotype and pathway. For the
geneHLA-DRAwith SNPs associated with “714: rheumatoid arthritis” and “250: type 1 diabetes” is present in
the KEGG pathway of “rheumatoid arthritis” (red line) and “type 1 diabetes” (green line) respectively. Also,
the blue edge shows the connection between “714: rheumatoid arthritis”, “716: other specified arthropathies”
and the KEGG “JAK-STAT signaling pathway” through two interleukin genes, IL23R and IL6.

doi:10.1371/journal.pone.0160573.g005
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associations with plasma levels of natural anticoagulant inhibitors [56] and venous thrombo-
sis [57], respectively.

Within our replicating results, a majority of the SNPs associated with chronic sinusitis
(ICD-9: 473), and acute upper respiratory infection (ICD-9: 465) phenotypes map to genes
that encode members of the ankyrin protein family. Specifically, several SNPs mapping to
ANK3 are highly represented in both the acute respiratory infection and the chronic sinusitis
association results, and variants mapping to ANKS1A were associated with acute sinusitis.
Ankyrin proteins are involved in cell migration and in mediating the attachment of proteins
to the cytoskeleton. While this protein family is not implicated in immune-related disorders, it
is of interest that related phenotypes are associated with SNPs mapping to the same class of
genes.

While we were able to seek replication of association results across two separate EHRs, a
challenge was the limited overlap between the two datasets for specific ICD-9 codes as well as
ICD-9 categories. Thus, it will be worthwhile to seek replication in other data sets in the future,
such as through other sites of eMERGE [58,59], or evaluate the results using another method
such as permutation testing. This lack of overlap is partially due to the variation in coding prac-
tices for ICD-9 codes from medical institution to institution. The lack of overlap is also likely
partly due to the targeted recruitment of individuals with specific diseases at Geisinger, as the
MyCode1 dataset is enriched for patients with obesity or AAA.

Another potential limitation in PheWAS is the multiple hypothesis-testing burden. We con-
trasted the significance of our results with a Bonferroni correction. We have correlated SNPs,
and we also have correlated phenotypes within this study. The use of ICD-9 codes for case/con-
trol status is less well powered than traditional GWAS, due to lower case numbers. Also, the
goal of PheWAS is to be exploratory, generating new hypothesis for further research. Thus we
focused our evaluation within this manuscript on replication (when possible) across the two
datasets and performed a meta-analysis for the results replicating across the two studies. We
evaluated the SNP-phenotype associations by calculating individual SNP-phenotype associa-
tions; a future direction is evaluation and use of methods that combine information from mul-
tiple phenotypes for statistical testing.

We focused our associations on genetic variants within genes with evidence of involvement
in autoimmunity and the immune system. We could have used a more general approach, seek-
ing associations between autoimmune- and immune-traits and genome-wide SNPs, but this
would have increased our multiple hypothesis testing further. Our more narrow search space
will have missed genetic variants without previous evidence of association with autoimmunity
and the immune system.

Our PheWAS analysis pipeline replicated previously published associations between SNPs
and immune phenotypes. We also have identified a series of potential novel associations, and
some of these results replicated with exact ICD-9 code or ICD-9 code category across two sepa-
rate EHRs. Further studies are needed to confirm the biological validity of our potentially novel
associations. Our results demonstrate potential pleiotropy, through cross-phenotype associa-
tions where individual SNPs are associated with more than one diagnosis. Further, our results
show associations between inflammation/autoimmune related SNPs and disease/outcomes
such as obesity, underscoring the impact of variation in the immune system on complex traits
beyond direct connections to autoimmunity and the immune system.
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