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Abstract

Muscle development and growth influences the efficiency of poultry meat production, and is
closely related to deposition of intramuscular fat (IMF), which is crucial in meat quality. To
clarify the molecular mechanisms underlying muscle development and IMF deposition in
chickens, protein expression profiles were examined in the breast muscle of Beijing-You
chickens at ages 1, 56, 98 and 140 days, using isobaric tags for relative and absolute quan-
tification (iTRAQ). Two hundred and four of 494 proteins were expressed differentially. The
expression profile at day 1 differed greatly from those at day 56, 98 and 140. KEGG path-
way analysis of differential protein expression from pair-wise comparisons (day 1 vs. 56; 56
vs. 98; 98 vs. 140), showed that the fatty acid degradation pathway was more active during
the stage from day 1 to 56 than at other periods. This was consistent with the change in IMF
content, which was highest at day 1 and declined dramatically thereafter. When muscle
growth was most rapid (days 56-98), pathways involved in muscle development were domi-
nant, including hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac muscle con-
traction, tight junctions and focal adhesion. In contrast with hatchlings, the fatty acid
degradation pathway was downregulated from day 98 to 140, which was consistent with the
period for IMF deposition following rapid muscle growth. Changes in some key specific pro-
teins, including fast skeletal muscle troponin T isoform, aldehyde dehydrogenase 1A1 and
apolipoprotein A1, were verified by Western blotting, and could be potential biomarkers for
IMF deposition in chickens. Protein—protein interaction networks showed that ribosome-
related functional modules were clustered in all three stages. However, the functional mod-
ule involved in the metabolic pathway was only clustered in the first stage (day 1 vs. 56).
This study improves our understanding of the molecular mechanisms underlying muscle
development and IMF deposition in chickens.
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Introduction

Improvement in lifestyle and changes in consumption habits mean that livestock production
aims to provide sufficient meat of improved quality. Meat quality and production are influ-
enced by intramuscular fat (IMF) content and skeletal muscle development. For example, the
content of IMF and the myofiber type can affect meat quality traits such as flavor, juiciness,
water holding capacity and tenderness[1-4]. In chickens, IMF is not visible and not anatomi-
cally separable, which makes it difficult to investigate the mechanism of its deposition. Protein
profiles of whole muscle, therefore, are important in understanding the mechanisms for both
muscle development and IMF deposition.

The short lifespan of chickens makes them an excellent model for studying various aspects
of development. Some of the molecular markers of muscle structure/metabolism in livestock
have also been identified by genome scans, but no studies using proteomics technology have
linked muscle growth and IMF content in chickens. It is desirable to analyze the expression
profile of proteins in chicken skeletal muscle at different ages[5,6]. Many studies have charac-
terized proteins from 2-DE gels in pigs [7], cattle[8,9], and layers [5] at different stages of
embryonic development to early growth after hatching. Doherty et al[5] have characterized the
proteome of layer chicken breast muscle using two-dimensional gel electrophoresis (2-DE)
from 1 to 27 days after hatching. Fifty-one proteins had mass spectra that matched existing
chicken proteins in on-line databases. For many of these proteins, there were dramatic changes
in relative expression levels during the 27 days of growth. Proteomic profiling of the breast
muscle of Thai indigenous chickens during the growth period were also analyzed using the
2-DE method. A total of 259, 161, 120 and 107 protein spots were found to be expressed in the
chicken breast muscles at 0, 3, 6 and 18 weeks of age, respectively. From these proteins, five dis-
tinct spots were significantly associated with chicken age. These were characterized and showed
homology with phosphoglycerate mutase 1 (PGAM1), apolipoprotein A1 (APOA1), triosepho-
sphate isomerase 1 (TPI1), heat shock protein 25 kDa (HSP25) and fatty acid binding protein 3
(FABP3)[10]. In addition, by application of an isobaric tagging for relative and absolute quanti-
fication (iTRAQ)-based approach, the proteomes of bovine embryos at the zygote and 2-cell
and 4-cell stage with MII oocytes as a reference were quantitatively analyzed[11]. Bioinformatic
analysis of 87 proteins that differed significantly in abundance between the four stages revealed
proteins involved in the p53 pathway, lipid metabolism, and mitosis, indicating that these pro-
cesses may play pivotal roles in embryonic development[11]. All of these studies showed the
utility of proteomics as a tool for uncovering the molecular basis of physiological differences in
muscle during these growth periods. Compared with the methods previously used (1D and 2D
gels), the isobaric tags for relative and absolute quantitation (iTRAQ) analysis in the present
study is more accurate and has been widely applied to investigate the proteome of different
organisms at different developmental stages [12-15].

The present study used advanced proteomics methodology (iTRAQ) to identify differen-
tially expressed proteins in breast muscles of slow-growing chickens at different post-hatching
ages.

Materials and Methods
Ethics Statement

All of the animal experiments were conducted in accordance with the Guidelines for Experi-
mental Animals established by the Ministry of Science and Technology (Beijing, China). Ani-
mal experiments were approved by the Science Research Department (in charge of animal
welfare issue) of the Institute of Animal Sciences, CAAS (Beijing, China).
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Animals

Forty female Beijing-You chickens were obtained at day 1 from the Institute of Animal Science,
Chinese Academy of Agricultural Sciences (Beijing, China), and were randomly assigned to four
groups of 10. Individuals were reared in stairstep caging under continuous lighting using stan-
dard conditions of temperature, humidity and ventilation. The same diet was fed to all chickens
and a three-phase feeding system was used: the starter ration (d 1 to d 28) with 21.0% crude pro-
tein and 12.12 MJ/kg, the second phase (d 28 to d 56) with 19.0% crude protein and 12.54 MJ/
kg, and the last phase (after d 56) with 16.0% crude protein and 12.96 MJ/kg. Feed and water
were provided ad libitum during the experiment. All birds were fasted for 12 h, and weighed
before being killed by stunning and exsanguination. The left breast muscles were collected from
10 chickens at day 1 (hatching), 56 (fast growth age), 98 (marketing age) and 140 (first egg age).
All samples (200-300 mg) were snap-frozen and stored at —80°C before analysis. The entire
right breast and livers were collected, weighed and stored at —20°C for phenotypic measurement.

IMF measurement

IMF content of breast and fat content of the liver were determined by Soxhlet extraction, as
described previously[16,17], and expressed as percentages of the dry weight of the breast muscle.

Protein extraction

Frozen breast muscle tissues (~200 mg) was homogenized in 1 mL lysis buffer containing 7 M
urea (Sigma, St Louis, MO, USA), 2 M thiourea (Sigma), 4% (w/v) 3-3 (cholamidopropyl)
dimethylammonio-1-propanesulfonate (CHAPS; Sigma), 65 mM dithiothreitol (DTT; Sigma),
and 0.05% (w/v) protease inhibitor (Sigma). The homogenates were held on ice for 30 min and
centrifuged for 30 min at 12,000 g, to remove insoluble components. The total protein concen-
tration of each sample was determined with a 2-D Quant kit (GE Healthcare, Pittsburgh, PA,
USA). The ten samples of each age group were pooled using equal amounts of protein then the
four pools were diluted to the same concentration with Tris-buffered saline (TBS) before
iTRAQ labeling. The samples were stored at —80°C until analysis. Each pool was tested twice.

iTRAQ labeling

After precipitation with acetone, the protein (200 pg) of each pool was dissolved with 1 M DTT
for 1 h at 37°C and kept in the dark with 1 M indole-3-acetic acid (IAA) for 1 h at room tem-
perature. Samples were dissolved and centrifuged twice with 120 ul UA (8 M urea in 0.1 M
Tris.HCI, pH 8.5), and then re-dissolved and centrifuged three times with 100 M lautyltrethy-
lammonium bromide (LTEAB) (1 M). The proteins (2-4 pg) were digested with trypsin (tryp-
sin: protein = 1:50; Sigma) and incubated at 37°C overnight. Each peptide pool was then passed
through a 0.2-um centrifugal filter for 20 min at 10,000 g at 20°C. Labeling of each pooled sam-
ple was 2-plex, where two reporter tags were used; hatchling samples were labeled with reporter
tags 113 and 117; those from day 56 with reporter tags 114 and 118; the pool at day 98 with
reporter tags 115 and 119; and the last pool from day 140 was labeled with reporter tags 116
and 121. The four 2-plex labeled samples were then combined into a single 8-plex sample mix-
ture and dried by centrifugal evaporation.

Strong cation exchange (SCX) separation and reverse phase liquid
chromatography tandem mass spectrometry (RPLC-MS/MS)

The combined peptide mixture was analyzed by RPLC-MS/MS for simultaneous identification
and quantification. The sequence of a peptide is determined from the products that are
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generated from proteolytic cleavage of the protein and the relative quantity of a given peptide
among the treated samples is determined from the intensities of reporter ion signals also pres-
ent in the MS/MS scan. iTRAQ-8 plex labeling reagents (Applied Biosystems, Foster City, CA,
USA) were added to the peptide samples, which were incubated at room temperature for 2 h.

The digested protein samples were separated using multidimensional liquid chromatogra-
phy (LC). In the first dimension, the peptide mixtures were fractionated using an Ultimate LC
system (Shimadzu 20AD, Kyoto, Japan) connected to an SCX column (Polysulfoethyl column,
2.1 mm x 100 mm, 5 u, 200 A; Nest Group, Southborough, MA, USA). A linear binary gradient
from solvent A (10 mM KH,PO, (Sinopharm Chemical Reagent Co. Ltd, Shanghai, China)
and 25% acetonitrile (ACN, pH 2.6; Fisher Scientific, Fair lawn, NJ, USA), to solvent B (10 mM
KH,PO,, 0.35 M KCl (Sinopharm Chemical Reagent Co. Ltd.), 25% ACN, pH 2.6 was applied:
0%-5% solvent B over 5 min, 5%-25% solvent B over 35 min, then 35%-100% solvent B over
10 min, with a flow rate of 200pul/min and detection at 214/280 nm. The entire run lasted 1 h,
and 20 SCX fractions were collected. These fractions were vacuum dried (rotation vacuum con-
centrators, Christ RVC 2-25; Christ, Germany) and re-dissolved in 0.1% formic acid (Tedia,
Fairfield, OH, USA) and 5% ACN.

Based on the SCX chromatograms, the 20 SCX fractions were combined into eight pools
then desalted by ZORBAX 300SB-C18 column (5 pum, 300 A, 0.1 x 150 mm; Microm, Miami,
FL, USA). The pooled SCX fractions were automatically injected by a Famos autosampler and
separated by an UltiMate capillary LC system (Dionex/LC Packings) and fractionated on a C18
PepMap main column (5um, 300 A, 0.1 x 150 mm; Microm, Miami, FL, USA) using a linear
binary gradient (solvent A: 0.1% formic acid, 5% ACN; solvent B: 0.1% formic acid, 95%
ACN). High Performance Liquid Chromatography (HPLC) linear gradients were from 0% sol-
vent B (5 min) to 35% (70 min) and from 35% to 100% (120 min) at a flow rate of 0.3pl/min.

The peptides were eluted from the LC column and automatically deposited using a Probot
spotting device. Mass spectrometry (MS) was conducted with a QSTAR XL instrument
(Applied Biosystems).

Data analysis

Peptide identification from the QSTAR XL data was carried out using the Paragon algorithm
[18] in the ProteinPilot 4.2 software package (Applied Biosystems). MS/MS was performed on
the four most abundant ions and the proteins identified by searching the SWISSPROT-verte-
brate and National Center for Biotechnology Information (NCBI) databases. The following
parameters were used for searching: trypsin as enzyme, fixed modification of methyl metha-
nethiosulfate labeled cysteine, iTRAQ as sample type, no special factors, biological modifica-
tion, thorough identification search, and fragmentation mass accuracy, which were built-in
functions of ProteinPilot software, and the Paragon method was adopted. Then the name,
function, International Protein Index (IPI), and similar characteristics were obtained from the
Uniprot database. For protein-abundance ratios measured using iTRAQ, 1.5-fold up-regula-
tion and 0.75-fold down-regulation change and the p-value < 0.05 (the p-value is generated
from the peptide ratios used for quantitation) were set as the threshold for significant changes.

Western blotting

The pools of proteins from each age group were mixed (4:1) with 5x sample buffer [0.5 ml 0.5
mM Tris.HCI (pH 6.8), 0.1 g SDS, 0.005 g bromophenol blue, 0.5 ml glycerol, 0.078 g DTT].
Proteins (40 pg) were boiled for 5 min and separated on SDS-PAGE in running buffer (25 mM
Tris. HCI, pH 8.3, 1.4% glycine, 1 g SDS; Mini-PROTEAN Tetra Electrophoresis Cell, 0.75 mm
thickness; Bio-Rad, Hercules, CA, USA) in two stages (30 min at 80 V, and 60 min at 120 V).
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The gels were transferred to Polyvinylidene Fluoride (PVDF) membranes (Millipore, Billerica,
MA, USA) in ice-cold transfer buffer (25 mM Tris.HCI, pH 8.3, 1.4% glycine, 20% methanol;
Mini Trans-Blot Electrophoretic Transfer Cell; Bio-Rad) at 200 mA for 1 h. Membranes were
blocked with 5% non-fat milk (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) in
TBST (10 mM Tris.HCI, pH 8.0, 150 mM NacCl, and 0.1% Tween 20) for 90 min. Primary anti-
bodies for Heat shock protein beta-1 (HSPB1) (diluted 1:400; Abcam, Cambridge, MA, USA),
Apolipoprotein (APO)A1 (diluted 1:300; Biorbyt, Cambridge, UK), aldehyde dehydrogenase
(ALDH)1AL1 (diluted 1:300; Biorbyt), malate dehydrogenase (MDH)1 (diluted 1:300; Biorbyt),
annexin (ANX)AG6 (diluted 1:800; Sigma), and fast skeletal muscle troponin T isoform
(TNNTS3) (diluted 1:800; Sigma) were incubated overnight at 4°C. Membranes were washed
twice for 10 min in TBST and once for 10 min in TBS. Horseradish peroxidase (HRP)-labeled
anti-goat and anti-mouse secondary antibodies (Thermo Scientific Pierce, Waltham, MA,
USA) were diluted 1:15,000 in TBST and incubated with the membranes for 90 min. After
washing twice for 10 min in TBST and once for 10 min in TBS, immunoreactive proteins were
visualized using a chemiluminescent HRP substrate (Millipore) in a dark room. The exposed
films were analyzed for their gray-scale value using Image J.

Results and Discussion
Proteomic analysis of breast muscle

Traits related to breast muscle weight and IMF content were measured (Fig 1A and 1B). The
breast muscle absolute weight was obviously increased, but the breast muscle weight, relative to
body weight, increased more slowly with age. Another study, using Beijing-You and western-
type broilers, also showed that the breast muscle weights significantly increased with growth of
the chickens[17]. Saneyasu, et al.[19]also investigated the change of body and breast muscle
weights at 7, 14, 28, and 49 days of age, and showed significant increases in both with age. The
relative weight of the breast muscle increased slowly, indicating a slight favoring of its growth
over that of the whole body. Chartrin et al.[20] investigated lipid deposition in breast muscle of
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Fig 1. Changes in muscle growth and fat content in breast muscle at different ages. The data were analyzed by using one-way ANOVA and
multiple comparison, and the results were shown as means + SD. There are no bars on BrW % and IMF % because the SD was smaller than the
symbols. (A) Changes in breast muscle growth with age. The weight and percentage of breast muscle (BrW, BrW%) increased significantly (P < 0.01)
before day 98, but there was no difference in the percentage of breast muscle between days 98 and 140. (B) Content of IMF increased significantly
(P < 0.01) after day 56, but was significantly higher at hatching than at other ages (P < 0.01).

doi:10.1371/journal.pone.0159722.9001
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mule ducks at days 1 to 98 and found that there are two periods of IMF deposition. The first,
from day 1 to 42, is when lipids (mainly phospholipids and cholesterol provided by the egg
yolk) stored in the adipocytes during embryonic life were transferred to the muscle fibers and
used for growth and energy requirements and the second, after day 42, is when muscle again
stores lipids. The present result is consistent with that finding as the content of IMF was high-
est at day 1, decreased dramatically by day 56, then increased again from day 56 to 140.

The pooling strategy was adopted in this study, as it minimize the differences due to subject-
to-subject variation and better identifies characteristics of the population[21]. Clustering
showed that the protein expression profile was consistent for each of the repetitions (S1 Fig).
Over 5000 proteins were identified and those accurately identified in breast muscle at days 1, 56,
98 and 140 were 494. Details of all accurately identified proteins as well as those at each sampled
age are shown in S1 Table. Cluster analysis of all proteins expressed at different ages showed
that the proteins in breast muscle at post-hatching ages (days 56, 98 and 140) were more similar
than those at hatching, and the proteins at day 56 and day 98 were similar (S1 Fig).

Two hundred and four differentially expressed proteins were defined and analyzed (P < 0.05,
indicating that the quantity in one pool was > 1.5 or < 0.7, compared to the other pool, for each
pairwise comparison) (S2 Table). To gain insight into the changes between each stage, four
groups of proteins by Gene Ontology analysis were compared: day 56 vs. day 1, day 98 vs. day 56,
and day 140 vs. day 98 (S3 Table and Fig 2). Proteins related to glucose and intermediary metab-
olism were abundant from day 1 to 56; proteins involved in muscle development were abundant
from day 56 to 98; and from day 98 to 140, translation and protein folding processes were abun-
dant. The protein expression profiles were similar at the three post-hatching ages (days 56, 98
and 140) but differed from those at day 1 by clustering analysis. The molecular mechanisms of
muscle development and IMF deposition are different at hatching and post-hatching stages.

Highly upregulated or downregulated proteins in hatchlings compared to
post-hatching chickens

The proteins were defined as age-specific, highly upregulated or downregulated when the content
differed >10 fold compared to that at other ages. As shown in S4 Table, many proteins were
highly upregulated at day 1, such as ADP-ribosylhydrolase like 1 (ADPRHLI), alpha-2-HS-gly-
coprotein (AHSG), apolipoprotein A (APOA1, APOAIV), histone family (H1, H2B-VII,
HIST2H2AC, H4), thymocyte nuclear protein 1 (THYN1), myosin light polypeptide 6 (MYL6),
isocitrate dehydrogenase [NADP](IDH), peptidyl-prolyl cis-trans isomerase (PPIA), sarcalume-
nin (SRL), tubulin beta-7 chain (TUB?) inter alia. Some proteins were highly downregulated at
day 1 (54 Table), which were mostly involved in energy metabolism and muscle development;
for example, adenylate kinase isoenzyme 1 (AK1), fructose-bisphosphate (ALDOA.ALDOB.
ALDOC), creatine kinase S-type, mitochondrial (CKMT2), desmin (DES), fructose-1, 6-bispho-
sphatase 2 (FBP2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen phosphory-
lase (GPH1), glucose-6-phosphate isomerase (GPI), L-lactate dehydrogenase A chain (LDHA),
phosphoglycerate kinase 1 (PGK1), malate dehydrogenase land 2 (MDH1, MDH2), malic
enzyme 1 (ME1), phosphoglycerate mutase 1(PGAM1), phosphorylase B and L chain (PYGB,
PYGL), acylphosphatase (ACYP), alpha-actinin-2 (ACTN2), troponin C, skeletal muscle
(TNNC2), troponin I, fast skeletal muscle (TNNI2), fast skeletal muscle troponin T isoform
(TNNT?3), triosephosphate isomerase 1 (TPI1), tropomyosin alpha-1 chain (TPM1) etc.

Over-represented pathways in breast muscle from day 1 to 56

Between days 1 and 56, breast muscle weight increased about 100-fold and IMF decreased about
100-fold. Thus, this is a critical stage for muscle growth and depletion of IMF (Fig 1A and 1B).
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Fig 2. Biological processes of the differentially expressed proteins identified for three stages. The identified
proteins were grouped into 15 categories according to their biological process for every stage (GO term with P-
value < 0.05). Glucose and intermediary metabolism, muscle development, translation and protein folding were the
major biological processes from day 1 to 56, day 56 to 98, and day 98 to 140.

doi:10.1371/journal.pone.0159722.9002
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Comparing the protein profiles at days 1 and 56, 191 differing proteins were identified (the
fold difference was > 1.5 or < 0.7). The 19 metabolic pathways were enriched during this fast
growing stage based on a KEGG pathway analysis (S5 Table). The protein-protein interaction
network of the differentially expressed proteins identified for this interval (days 56 vs. 1) was
also analyzed by web-tool STRING 10.0 (http://string-db.org); there were two functional mod-
ules (Fig 3). The first related to metabolic pathways, including glycolysis/gluconeogenesis
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Fig 3. Protein interaction network of differentially expressed proteins between day 1 and 56. Two functional modules were apparent in the
network, forming tightly connected clusters. The first functional module included the proteins related to metabolic pathways, and the second included
the proteins involved in the ribosomes.

doi:10.1371/journal.pone.0159722.9003
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pathway, insulin signaling pathway, and lipid metabolic pathway. This module might relate to
the significant changes in breast muscle, such as fast muscle growth and IMF deposition (Fig
1A and 1B). The second module involved the ribosomes.

Active pathways and key differentially expressed proteins at day 1

Within the 19 metabolic pathways, some differentially expressed proteins that were highly
expressed at day 1 compared to day 56 were involved in the lipid metabolic pathway, such as
valine, leucine and isoleucine degradation, and fatty acid degradation and elongation in
mitochondria.

Of eight differentially expressed proteins involved in the fatty acid degradation pathway,
five (CPT-2, ACADL, HADHA, HADHB and ACAA?2) were more abundant at day 1 than at
day 56, and ALDH1A1 and ALDH?2 were significantly lower at day 1 compared to day 56
(Abbreviations used in this paper are listed in Tables 1 and 2). It was deduced that lipid oxida-
tion was more active and fatty acid synthesis was less active at day 1 compared to day 56.

The differentially expressed proteins, APOA1 and APOAIV, were identified (S4 Table),
which was consistent with previous studies[5]. The reason may be that a large number of lipo-
proteins take up cholesterol from the yolk sac membrane at hatching[5,22,23], and the produc-
tion of the APOs was stimulated by lipoproteins. Synthesis of APOAI in the skeletal muscle of
hatchling chicks acts as a local lipid transporter in early post-hatching development[24]. This
is consistent with the phenotype where the content of IMF at day 1 is about 8 times higher than

that at day 56 (Fig 1B).

Table 1. Abbreviations used.

Abbreviations Gene name Protein name
ACAA2 acetyl-CoA acyltransferase 2 uncharacterized protein
ACADL acyl-CoA dehydrogenase, long chain uncharacterized protein
ACTA1 actin, alpha 1 actin, alpha
ACTN4 actinin, alpha 4 alpha-actinin-4

ALDH1A1 aldehyde dehydrogenase 1 family, member A1 retinal dehydrogenase 1
ALDH2 aldehyde dehydrogenase 2 family uncharacterized protein
ANXA2 Annexin A2 annexin A2
APOA1 apolipoprotein A-I apolipoprotein A-|
APOAIV apolipoprotein A-IV apolipoprotein AIV
CPT-2 carnitine O-palmitoyltransferase 2 uncharacterized protein

DES desmin desmin
HADH hydroxyacyl-CoA dehydrogenase uncharacterized protein

HADHA hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein),

alpha subunit

uncharacterized protein

HADHB hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein),

beta subunit

uncharacterized protein

KBTBD10 kelch repeat and BTB (POZ) domain containing 10 uncharacterized protein
LAMA2 laminin, alpha 2 uncharacterized protein
LAMB1 laminin, beta 1 laminin subunit beta-1
LMNA lamin-L(I1)-like lamin-A

MYBPCH1 myosin binding protein C uncharacterized protein

MYBPC2 myosin binding protein C myosin-binding protein C, fast-

type
MYBPH myosin binding protein H uncharacterized protein

doi:10.1371/journal.pone.0159722.t001
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Table 2. Abbreviations used.

Abbreviations
MYH6
MYOM2
MYLPF
MYOZ1
MYQOZ3
PDLIM3
SPTAN1
TNNC2
TNNI2
TNNT3
TPM1
TPM2
TTN
TUB7

doi:10.1371/journal.pone.0159722.t002

Gene name
myosin, heavy chain 6
myomesin 2
myosin light chain, phosphorylatable
myozenin 1
myozenin 3
PDZ and LIM domain 3
spectrin, alpha, non-erythrocytic 1
troponin C type 2
troponin | type 2
troponin T type 3
tropomyosin alpha-1 chain
tropomyosin beta chain
myopalladin
tubulin beta-7 chain

Protein name
myosin heavy chain
uncharacterized protein
myosin regulatory light chain 2
uncharacterized protein
uncharacterized protein
PDZ and LIM domain protein 3
spectrin alpha chain
troponin C
troponin |
troponin T
tropomyosin alpha-1 chain
tropomyosin beta chain
connectin
tubulin beta-7 chain

Expression of histone family and ribosomal family proteins (S6 Table) differed greatly
between hatching and post-hatching (56, 98 and 140 days). Histones play a pivotal role in regu-
lating gene expression by controlling the access of key regulatory factors and complexes to
chromatin, which is essential for transcription, DNA replication, DNA repair and DNA recom-
bination [25-29]. The organization of chromatin is considered to be regulated by post-transla-
tional modification of histones, such as methylation, acetylation, phosphorylation and
ubiquitination[28]. Many studies have shown that myogenesis is controlled through sequential
chromatin regulation by the selection of the histone variant and the appropriate histone modi-
fication [30-33]. For example, in mouse embryos, a bivalent modification of H3K4me3 and
H3K27me3 was formed on H3.3-incorporated skeletal muscle genes before embryonic skeletal
muscle differentiation [34]. Ribosomal proteins, in conjunction with rRNA, make up the ribo-
somal subunits involved in the cellular process of translation and protein biosynthesis. It has
been demonstrated that differential mRNA translation controls protein expression of specific
subsets of genes during myogenesis, and one of a subset of transcripts that is enriched for
mRNAs encoding ribosomal proteins is regulated at the translational level [35]. Ribosomal
proteins were also highly expressed during mature adipogenesis[36]. A large group of ribo-
somal proteins was identified in chickens (56 Table), which may partly explain why differentia-
tion of myocytes and preadipocytes within muscle occurs mainly before hatching.

Active pathways and key differentially expressed proteins at day 56

Many metabolism-related proteins were more abundant at day 56 than at day 1. There were 24
upregulated proteins, related to cytoskeleton and actin binding, including actin, cofilin, des-
min, actinin, myosin, calpain, calmodulin, troponin, myomesin and myozenin.

These proteins were involved in muscle-development-related pathways, such as glycolysis/
gluconeogenesis, hypertrophic cardiomyopathy (HCM), insulin signaling, cardiac muscle con-
traction and dilated cardiomyopathy (DCM). Sixteen upregulated proteins related to the gly-
colysis/gluconeogenesis pathway were more abundant at day 56, and eight proteins in the
HCM pathway and six (LMNA, DES, TTN, TPM1, TPM2, MYH6) were highly abundant at
day 56.

The period from day 1 to 56 is a fast growing stage for skeletal muscle (Fig 1A). The identi-
fied proteins play a critical role in all skeletal and cardiac muscle in the early stages of
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development[37,38]. Specifically, the energy from glycolysis/gluconeogenesis metabolism is
needed for developing skeletal muscle. Insulin signaling pathway proteins are involved in the
proliferation and differentiation of preadipocytes and myocytes[39-41], and are prominent for
coordinating myofiber growth, muscle hypertrophy and muscle regeneration[42-45]. calmod-
ulin (CALM), connectin/titin (TTN) and troponin C (TnC) are activated by the second mes-
senger Ca”* and stimulate expression of troponin I (TnI), troponin T (TnT), actin, myosin and
muscle development[46-50]. In the present study, the amount of TTN, TnC (TNNC2), Tnl
(TNNI2), TnT (TNNT3), actin (ACTA1), myosin (MYBPC1, MYBPC2, MYBPH, MYLPF,
MYHS6), M line (MYOM2) and Z line (MYOZ1, MYOZ3) was enhanced, related to muscle
development at day 56. Muscle contraction and hypertrophy are the main mechanisms influ-
encing muscle development, along with the insulin signaling and HCM pathways at day 56.

Over-represented pathways in breast muscle from day 56 to 98 (market
age)

From day 56 to 98, breast muscle weight and IMF about doubled and thus fast growth of mus-
cle and IMF deposition continues (Fig 1A and 1B). For the local slow-growing chickens used
here, market age is around day 98.

There were 44 differentially expressed proteins identified when comparing days 56 and 98.
Seven significant enrichment pathways were identified by KEGG analysis (S5 Table), of which
six are involved in muscle development. The only significant functional module in the network
analysis of protein interaction (Fig 4), however, related to the ribosomes.

There were 12 differentially expressed proteins related to cytoskeleton and actin binding,
which was consistent with the high muscle growth rate at this stage. Four more abundant pro-
teins at day 98 than at day 56 related to HCM and three related to focal adhesion. This suggests

ENSGALG00000014305

Fig 4. Protein interaction network of differentially expressed proteins between days 56 and 98. There was only one
significant functional module in the network, which was related to the ribosomes.

doi:10.1371/journal.pone.0159722.9004
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that the muscle development at this stage was closely connected with muscle growth, and these
proteins may play important roles in focal adhesion and HCM during skeletal muscle develop-
ment. The proteins included ACTN4, extracellular matrix proteins (LAMA?2 and LAMBL1),
MYHS6, TTN, DES and TPM2. Previous studies have made inroads into understanding the
mechanism underlying muscle development. The enzymes related to cytoskeletal protein bind-
ing, including MYBPC2, MYBPC1, PDLIM3, ANXA2, SPTANI1, KBTBD10 and TUB7 were
highly abundant in breast muscle at day 98 compared to day 56. ANXA2 is a Ca>*-binding pro-
tein implicated in several biochemical processes, including cell proliferation, ion-channel acti-
vation, cytoskeleton rearrangement, cell-cell interactions and the bridging of membranes [51-
54]. ANXA2 forms junctions between lipid bilayer structures through molecular bridging of
their external leaflets[55,56]. From day 56 to 98, focal adhesion, tight junctions and HCM play
an important role in muscle development. Extracellular matrix proteins had a key role in mus-
cle growth at day 98, which was different from day 56. ANXA2 may play an important role in
lipid metabolism.

Over-represented pathways in breast muscle from day 98 to 140

From day 98 to 140, breast muscle weight and IMF increased about 1.3-fold, so muscle growth
and IMF deposition are slowing from that occurring in the previous phase (Fig 1A and 1B).
For the local slow-growing chickens used here, day 140 is near sexual maturity.

Comparing the proteins at days 98 and 140, 58 were identified as being differentially
expressed with cytoskeletal and ribosomal proteins being less abundant at day 140 than at day
98. The cytoskeleton is present in all cells, and plays important roles in cellular processes such
as differentiation and apoptosis. As key regulators of cellular architecture, cytoskeletal compo-
nents contribute to physical processes such as adhesion and migration[57-59]. Ribosomal pro-
teins relate to the cellular processes of translation and protein biosynthesis. This decrease in
abundance suggests that the rate of growth and the metabolic processes were slower at 140
than at 98 days. The only functional module clustering in the protein—protein interaction net-
work involved the ribosomes (Fig 5).

Three pathways were identified by KEGG analysis, with 58 differentially expressed proteins,
including those of fatty acid metabolism and the proteins related to lipid metabolism, ACADL,
APOAL1 and HADH, were more abundant at day 140 compared to day 98 (S5 Table). So, the
capacity for lipid production was increased and that of oxidation decreased, resulting in lipid
accumulation, perhaps explaining the higher IMF content in mature birds compared to youn-
ger birds.

Verification of content of key proteins by Western blotting

To validate the results of the iTRAQ testing, Western blotting was used to examine the relative
contents of six key functional proteins at the different ages (Fig 6). Two proteins (MDH]1 and
TNNT?3) related to muscle development, and four proteins (ALDH1A1, ANXA6, APOAL,
HSPBI1) related to lipid metabolism. There was acceptable consistency between the results of
Western blotting and the fold-change of differentially expressed proteins from iTRAQ analysis.
No internal reference was used here in the Western blotting because the abundance of B-actin,
B-tubulin, histone and GAPDH all differed significantly at hatching and the post-hatching
ages. The control sample used for Western blotting was a composite of breast muscle proteins
made by pooling the different ages. MDHI1 plays an important role in transporting NADH
equivalents across the mitochondrial membrane, controlling tricarboxylic acid (TCA) cycle
pool size and providing contractile function[60], so the increased expression of MDHs is
required for the high demands of energy metabolism in developing tissues[61], especially in
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Fig 5. Protein interaction network of differentially expressed proteins between days 98 and 140. There was only one significant functional
module in the network, which involved ribosomes.

doi:10.1371/journal.pone.0159722.9005

those with high metabolic rate such as heart, skeletal muscle, and brain. Troponin-mediated
Ca®"-regulation governs the actin-activated myosin motor function which plays a key role in
the regulation of striated muscle contraction in vertebrates[62]. Point mutations in the cTnT
gene have been found in human familial hypertrophic cardiomyopathy[63], and the expression
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doi:10.1371/journal.pone.0159722.9006
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of TnT isoform is regulated during heart and muscle development and adaptation[64], suggest-
ing that TnT plays an important role in muscle growth and function. ALDHs are known to
participate in oxidizing a plethora of endogenous and exogenous aldehydes[65]. ALDH1A1
was up-regulated in omental and intramuscular preadipocytes during differentiation[66], and
the increased levels of ALDH1A1 in the obese omental fat might be involved in fat accumula-
tion[67]. Annexin A6 (AnxA6) is a Ca®" and phospholipid binding protein that acts as a scaf-
folding protein and regulates cholesterol transport along endo- and exocytic pathways. Loss of
AnxAG6 alters both lipid and glucose homeostasis, resulting in increased lipolysis and high den-
sity lipoprotein increased in AnxA6 KO mice[68]. Apolipoprotein Al (apoAl) is the major
apolipoprotein constituent of the high-density lipoprotein (HDL) and is involved in reverse
cholesterol transport[69]. Variants in the apolipoprotein A1 (APOAI) gene play an important
role in the regulation of lipid transport[70-73]. Synthesis of APOAI in the skeletal muscle of
hatchling chicks acts as a local lipid transporter for early post-hatching development[24]. Heat
shock protein beta 1 (HSPB1), a member of the heat-shock family of proteins, is a relatively
small (27 kDa) molecular chaperone protein associated with cellular development, differentia-
tion, and signal transduction[74]. HspB1 and its regulator genes (FAS, and AGT) were shown
to be good candidate genes associated with intramuscular fat content in the longissimus muscle
of Korean cattle[75].

Conclusion

In summary, the present study provides a useful resource for further investigating the roles of
proteins expressed differentially in skeletal muscle at different developmental stages. Such
efforts will enable better understanding of the molecular mechanisms of muscle development
in chickens. The changes in protein abundance with age have not been documented previously,
and the extent of the changes found here was unexpected. This study is the first step in under-
standing post-hatching development on a proteome-wide scale, and indicates the complexity
of such an analysis. In addition, the present results suggest that APOA1 and HSPB1 may be
useful as molecular markers of IMF deposition in chickens.
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