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Abstract
Microsaccades aid vision by helping to strategically sample visual scenes. Despite the

importance of these small eye movements, no cortical area has ever been implicated in

their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal

eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactiva-

tion altered microsaccade metrics and kinematics. Such inactivation also impaired micro-

saccade deployment following peripheral cue onset, regardless of cue side or inactivation

configuration. Our results demonstrate that the FEF provides critical top-down drive for

microsaccade generation, particularly during the recovery of microsaccades after disruption

by sensory transients. Our results constitute the first direct evidence, to our knowledge, for

the contribution of any cortical area to microsaccade generation, and they provide a possi-

ble substrate for how cognitive processes can influence the strategic deployment of

microsaccades.

Author Summary

Microsaccades are small, fixational eye movements that precisely relocate the visual axis.
Despite evidence that microsaccades can be strategically controlled in high-acuity visual
tasks, impacting visual processing, and considerable knowledge about how microsaccades
are generated by the oculomotor brainstem, little is known about the cortical substrates
that control microsaccades. To address this gap, we examined microsaccades generated by
non-human primates before, during, and after large-volume reversible unilateral or bilat-
eral inactivation of the frontal eye fields, a key oculomotor area in the frontal cortex. In
support of a role for the frontal eye fields in microsaccades, microsaccade metrics and
kinematics were altered during frontal eye fields inactivation. More surprisingly, frontal
eye fields inactivation also impaired the generation of microsaccades following presenta-
tion of peripheral cues, regardless of the side of the cue or inactivation configuration. To
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our knowledge, our results constitute the first direct evidence for the contribution of any
cortical area to microsaccade generation and suggest that the frontal eye fields can provide
the top-down signals to the oculomotor brainstem needed to strategically guide
microsaccades.

Introduction
Microsaccades, which frequently occur during gaze fixation, translate retinal images by only a
few photoreceptors. Despite their modest size, microsaccades strongly impact visual perception
[1–5] and visually guided behavior [6–8]. Indeed, visual responses in a number of brain struc-
tures are dynamically influenced by either the production or consequence of microsaccades,
with responses being enhanced immediately before microsaccades [9], suppressed during or
just after microsaccades [7,10,11], and then subsequently enhanced [10–15]. While some
mechanisms underlying microsaccade generation have been elucidated in the superior collicu-
lus (SC) [16–20], cerebellum [21], and brainstem saccadic burst generator [22–24], no study
has addressed the involvement of any cortical area in microsaccade generation. This gap in
knowledge is all the more surprising given the strategic deployment of microsaccades in tasks
requiring high visual acuity [25,26], the impacts of microsaccades on visuomotor processing
noted above, and the interest in microsaccades as a potential biomarker for visuospatial atten-
tion [27–31].

Here, we directly examined the causal role of the frontal eye fields (FEF), a key cortical ocu-
lomotor structure that projects strongly to the SC [32,33], in microsaccade generation. To
address this, we reversibly inactivated large volumes of either the unilateral or bilateral FEF
using cryoloops implanted in the arcuate sulcus and examined the changes in microsaccade
behavior, focusing primarily on how FEF inactivation alters the well-known evolution of
microsaccades that occurs following peripheral stimulus onset [28,29,34,35]. Our results show
that the role for the FEF in microsaccades is distinct from that for the SC, and that the FEF pro-
vides a plausible substrate for how microsaccades can be strategically deployed.

Results
The FEF was reversibly inactivated using cryogenic techniques either unilaterally (three mon-
keys) or bilaterally (two of the three monkeys) while monkeys performed delayed visually or
memory-guided saccades (see Materials and Methods). These tasks required the monkeys to
maintain fixation before and after peripheral cues were presented, allowing us to study pre-
and post-cue microsaccadic modulations during otherwise steady fixation. We analyzed 74,650
microsaccades from 44,225 trials across monkeys, sessions (i.e., pre-, peri-, and post-cooling),
and inactivation configurations (i.e., left or right unilateral inactivation and bilateral inactiva-
tion). In this paper, we present representative results from monkey DZ during unilateral inacti-
vation of the left FEF (7,791 trials) or bilateral FEF inactivation (7,378 trials), and we also
summarize results from all monkeys. To ensure that the effects of FEF inactivation were not
due to satiation or other time-dependent factors, we combined pre- and post-cooling trials into
the “FEF warm” condition and compared it to the “FEF cool” condition.

As expected, large-volume FEF inactivation impacted many aspects of (large) saccadic
behavior. In a previous report [36], we described the effects of unilateral cryogenic FEF inacti-
vation on immediate and delayed saccades to peripheral targets located 4° or more from the fix-
ation point. Briefly, unilateral FEF inactivation increased reaction times for delayed visually or
memory-guided saccades in either direction and decreased accuracy and peak velocity (i.e.,
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decreased the velocity-amplitude main sequence relationship) of contralesional but not ipsile-
sional saccades. These effects were replicated in the current study and are consistent with the
geometry and positioning of the cryogenic loops within the arcuate sulcus relative to FEF’s
topography [36,37]. We also found that bilateral FEF inactivation exacerbated all effects, such
that saccades in either direction were generated at increased reaction times with lower peak
velocities and accuracy. Despite these effects, the monkeys continued to perform well, with
error rates increasing by less than 10%. Having established this, we now turn to the specific
effects of FEF inactivation on microsaccades.

FEF Inactivation Increased Microsaccade Amplitude and Decreased
Microsaccade Peak Velocity
Across our sample, we found consistent alterations in microsaccade amplitude and peak veloc-
ity, regardless of whether the microsaccade was generated before or after peripheral cue onset
in our tasks. Fig 1A shows the effects of unilateral FEF inactivation on ipsilesional and contrale-
sional microsaccade amplitude for our representative dataset. When the FEF was not inacti-
vated, microsaccades had relatively small amplitudes (median: 0.51°) compared to the fixation
window, which likely relates to the small size of our fixation cue [38]. During FEF inactivation,
the amplitude distributions for both ipsi- and contralesional microsaccades were shifted
toward larger amplitudes (p< 0.0001, Wilcoxon rank sum test), with greater shifts for con-
tralesional (increased by 21%) versus ipsilesional (increased by 10%) microsaccades. Regardless
of increases in microsaccade amplitude during FEF inactivation, the vast majority of microsac-
cades remained<1.5°. Across our sample, contralesional microsaccade amplitudes increased
significantly in four of five configurations; ipsilesional microsaccade amplitude increased sig-
nificantly in two of five configurations (Fig 1B). During bilateral FEF inactivation, the ampli-
tudes of both leftward and rightward microsaccades also increased significantly (Fig 1B).
Importantly, microsaccade amplitude increased regardless of whether microsaccades were gen-
erated before or after cue presentation (Fig 1C, and see Materials and Methods for definitions
of pre-cue and rebound periods).

Could these increases in microsaccade amplitude be a simple consequence of a biased fixa-
tion position? We analyzed fixation position with and without FEF inactivation and found that
unilateral FEF inactivation biased fixation position by less than 1° toward the intact visual
hemifield (S1A Fig). However, this bias persisted before, during, and after cue presentation
(S1B and S1C Fig), meaning that any changes in microsaccade behavior due to FEF inactiva-
tion were not sufficient to correct for a biased fixation position. This observation is consistent
with the idea that FEF inactivation introduces a new balance point for eye position, as observed
during SC inactivations [19,39], rather than a mechanism that acts to correct for the biased fix-
ation position, since unilateral FEF inactivation also increased ipsilesional microsaccade ampli-
tudes (Fig 1). Similarly, we observed increased microsaccade amplitudes in both directions
during bilateral FEF inactivation (Fig 1B and 1C), despite a fixation position bias only toward
one side (S1C Fig).

More compelling evidence against a simple compensatory mechanism based on a bias in fix-
ation position is provided by microsaccade peak velocity, which decreased independent of
increased microsaccade amplitude or fixation offset. Such decreases in peak velocity are shown
in the velocity-amplitude main sequence relationships in Fig 2A for both ipsilesional and con-
tralesional microsaccades; note how both main sequence relationships are shifted downward
during unilateral FEF inactivation. To determine the significance of such changes, we fitted a
linear regression to 5,000 bootstrapped samples of microsaccades for both the FEF warm and
FEF cool conditions and then extracted peak velocities from each relationship at amplitudes of
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Fig 1. FEF inactivation increased ipsilesional and contralesional microsaccade amplitudes independently of peripheral cueing. (A) Unilateral
(left) FEF inactivation shifted distributions toward larger amplitudes for each microsaccade direction from example monkey DZ, although we observed
larger increases for contralesional microsaccades. Colored bars above the distributions indicate the median, with 25th and 75th percentiles with
whiskers extending outward to the 1st and 99th percentiles. (B) Microsaccade amplitudes increased for each monkey (GB, DZ, and OZ) and unilateral
(Xr or Xl) or bilateral (Xbi) inactivation configurations, but unilateral FEF inactivation more consistently increased contralesional amplitudes. The
shaded area in B indicates microsaccades from our example monkey. (C) Across monkeys, unilateral or bilateral FEF inactivation increased
microsaccade amplitudes in both the pre-cue (left) and rebound (right) periods. Filled symbols inB andC indicate statistically significant differences
using a Wilcoxon rank sum test (p < 0.05). Data in Supporting Information (see S1 Data).

doi:10.1371/journal.pbio.1002531.g001
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Fig 2. FEF inactivation decreased ipsilesional and contralesional microsaccade peak velocities, both before and after cue onset. (A)
Unilateral (left) FEF inactivation reduced peak velocity for contralesional microsaccades independently of amplitude in our example monkey DZ
and also decreased peak velocities for ipsilesional microsaccades. As shown in each inset, decreased peak velocities were associated with a
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0.4° to 1.0° with 0.1° increments. We found significantly decreased peak velocities across this
entire range of amplitudes for both ipsilesional and contralesional microsaccades (insets of Fig
2A, each p< 0.01, Welch's t tests). Fig 2B shows how FEF inactivation alters the kinematic pro-
files of microsaccades matched for radial amplitudes (e.g., between 0.40° and 0.45°; see shaded
region of Fig 2A) by lowering peak velocity and significantly increasing microsaccade duration
(ipsilesional, p< 0.05; contralesional, p< 0.0001, Wilcoxon rank sum test). Such changes in
kinematics and duration are consistent with FEF inactivation altering the drive to brainstem
circuits generating microsaccades. To analyze any changes across our sample, we extracted
peak velocities at 2° and found significant decreases of 9% and 23% for ipsilesional and con-
tralesional microsaccades during FEF inactivation, respectively (Fig 2C, each p< 0.0001, Wel-
ch's t tests). Unilateral FEF inactivation significantly decreased contralesional peak velocity in
all five configurations and significantly decreased ipsilesional peak velocity in three of five con-
figurations (Fig 2C). Bilateral FEF inactivation significantly decreased peak velocity for both
leftward and rightward microsaccades in both monkeys (Fig 2C). Once again, such bilateral
decreases in microsaccade peak velocity occurred regardless of whether microsaccades were
generated in the pre-cue or rebound period (Fig 2D) and despite a unilateral bias in fixation
position during bilateral inactivation (S1C Fig).

Therefore, even prior to any task-related stimulus, FEF inactivation had a measurable
impact on microsaccade metrics and kinematics, with such an impact often influencing even
ipsilesional microsaccades. We next describe an even larger impact of FEF inactivation on the
rate of cue-induced microsaccades.

FEF Inactivation Blunted the Rate of Cue-Induced Microsaccades
Microsaccade rate shows robust and highly repeatable modulations after peripheral cue onsets,
decreasing ~50 ms after cue onset and then rebounding before returning to baseline [4,29,35].
To analyze the effects of FEF inactivation on microsaccade rate, we divided our data into three
periods: pre-cue, microsaccadic inhibition, and rebound (Fig 3; see Materials and Methods for
how these periods were defined; microsaccade rate was calculated within a sliding ±50 ms win-
dow with step size of 5 ms). As shown in our representative data, the influence of unilateral
FEF inactivation was largely specific to the rebound period (Fig 3A and 3B): note how the rate
of such rebound microsaccades decreased from 1.08 to 0.70 microsaccades/s with FEF inactiva-
tion and then recovered to 0.87 microsaccades/s with FEF rewarming (both changes signifi-
cant, p< 0.0001, Welch's t test). In contrast, microsaccade rate in the pre-cue period decreased
from 1.11 to 0.91 microsaccades/s (p< 0.0001) with FEF inactivation and decreased further to
0.76 microsaccades/s (p< 0.01) when the FEF was rewarmed, suggesting that this effect may
have been due to satiation with increasing trial count. Microsaccade rate during the inhibition
period was unchanged. We also analyzed both the start and end of microsaccadic inhibition
and the timing of the first rebound microsaccade after cue presentation (see Materials and
Methods). FEF inactivation had no influence on the start of microsaccadic inhibition following

downward shift in the main sequence relationship (+/- 95% confidence intervals). (B) FEF inactivation reduced peak velocity for microsaccades
matched for radial amplitude, here shown for monkey DZ by averaging radial eye position and velocity traces (+/- standard error) aligned to
microsaccade onset. As indicated by the shaded regions in A, we selected ipsilesional and contralesional microsaccades having radial amplitudes
between 0.40° and 0.45°. The bilateral influence of FEF inactivation on amplitude-matched microsaccades is demonstrated by decreased peak
velocity and increasing duration within the enlarged radial velocity traces (see arrows). (C) Peak velocity extracted at 2° decreased for
contralesional microsaccades across monkeys and inactivation configurations and occasionally decreased for ipsilesional microsaccades.
Distributions of peak velocities at 2° were obtained by bootstrapping 5,000 random samples of microsaccades and extracting the peak velocity at
2° from each linear regression. (D) Across monkeys, unilateral and bilateral FEF inactivation produced similar decreases in contralesional peak
velocity at 2° in both the pre-cue and rebound periods. Filled symbols inC andD indicate statistically significant differences using aWelch's t test
(p < 0.05) with 5,000 bootstrapped samples from each of the FEF warm and FEF cool conditions. Data in Supporting Information (see S2 Data).

doi:10.1371/journal.pbio.1002531.g002
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Fig 3. FEF inactivation markedly reducedmicrosaccades in the rebound period. (A) Microsaccade onset times relative to cue onset for
individual pre-, peri-, and post-cooling trials from our example monkey with a unilateral (left) FEF inactivation. Each dot is a microsaccade onset time,
and each row is a trial. (B) Corresponding time-courses of mean microsaccade rate (+/- 95% confidence intervals) for each of the pre-, peri-, and

Impact of FEF Inactivation on Microsaccades

PLOS Biology | DOI:10.1371/journal.pbio.1002531 August 10, 2016 7 / 23



cue onset (59 ms for both pre- and peri-cool) or its end (152 versus 158 ms for FEF pre- versus
peri-cool, p = 0.74, Wilcoxon rank sum test). In contrast, the timing of the first rebound micro-
saccades increased from 264 to 291 ms with FEF inactivation and then recovered to 266 ms
when the FEF was rewarmed (S2A Fig, both p< 0.0001; Wilcoxon rank sum test).

For each of the three monkeys, unilateral FEF inactivation systematically decreased micro-
saccade rate during the rebound period (Fig 3D, significant in four of five configurations) but
not the pre-cue period (Fig 3C). Bilateral FEF inactivation further reduced microsaccade rate
during the rebound period (Fig 3D) but, unlike unilateral inactivation, also significantly
decreased microsaccade rate during the pre-cue period (Fig 3C). Thus, with bilateral inactiva-
tion, there was a generalized decrease in microsaccades. Across our sample, the decrease in
microsaccade rate in the rebound period averaged 24% with unilateral inactivation and 54%
with bilateral inactivation. Consistent with a generally exacerbated effect of bilateral versus uni-
lateral FEF inactivation, we also found a relatively greater increase in the timing of the first
microsaccade in the rebound period during bilateral (44 ms) versus unilateral (7 ms; S2B Fig).
These results indicate that FEF integrity is critical for cue-induced microsaccades and that
larger bilateral inactivation volumes can further impact microsaccades generated before cue
presentation. These effects on cue-induced microsaccade rate are also categorically different
from those reported during pharmacological inactivation of the SC, where cue-induced micro-
saccade rates remained unchanged [18].

Because FEF inactivation also introduced a bias in fixation position, we wondered whether
this could explain the changes in microsaccade rate during the rebound period. To investigate
this, we repeated our analysis of microsaccade rate after performing a median split of FEF
warm and FEF cool trials based on their radial fixation error in the pre-cue period (Fig 4A).
This analysis exploits the substantial overlap in fixation positions with or without FEF inactiva-
tion (S1A Fig), and, in fact, fixation error was significantly larger for the higher-than-median
FEF warm trials than for the lower-than-median FEF cool trials (Fig 4A, fixation error for FEF
warmhigh = 0.82°; fixation error for FEF coollow = 0.53°). As shown in Fig 4B, the robust
decrease in rebound microsaccades during FEF inactivation persisted regardless of this split in
fixation error. To quantify this across our sample, we calculated the change in rebound micro-
saccades from FEF warmhigh trials to FEF coollow trials. If the changes in rebound microsac-
cades during inactivation arose because of a greater fixation error, then we should observe no
decrease in rebound microsaccades across these subsets of data, because fixation offset was
greater in FEF warmhigh trials. However, as shown in Fig 4C, we still observed a profound
decrease in microsaccade rate during the rebound period with FEF inactivation. Therefore, the
effects of Fig 3 cannot be due to fixation error.

Finally, these analyses led us to investigate whether FEF inactivation impacted eye position
drift, and not just overall bias. Even though our eye tracker was not well suited to study drift at
a higher resolution, to the extent that we could measure it, eye position drift before cue onset
was not influenced by FEF inactivation (S3 Fig). FEF inactivation also did not influence depen-
dencies between drift and microsaccades. Specifically, we analyzed the relationship between
eye position drift and microsaccades, as previous work has shown that drift speed is lower
before as compared to after a microsaccade [40]. However, we observed no systematic influ-
ence of FEF inactivation on this relationship (S4 Fig). Thus, we conclude that the effects shown

post-cooling sessions. In our example monkey, unilateral FEF inactivation exerted its greatest impact on microsaccade rate during the rebound
period (i.e., 140–400 ms after cue onset), with no changes occurring in the pre-cue period (i.e., 200 ms period before cue onset) or the microsaccadic
inhibition period (i.e., 60–140 ms after cue onset). (C) Across monkeys, we found consistent microsaccade rate decreases in the pre-cue period with
bilateral but not unilateral inactivation configurations. (D) In contrast, both unilateral and bilateral FEF inactivation consistently decreased
microsaccade rate in the rebound period. Same format as Fig 2C. Data in Supporting Information (see S3 Data).

doi:10.1371/journal.pbio.1002531.g003
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Fig 4. FEF inactivation decreased reboundmicrosaccades despite increases in fixation error. (A)
Unilateral (left) FEF inactivation increased radial fixation error before cue onset in our example monkey DZ,
largely due to shift in fixation position toward the intact side (see S1 Fig). (B) For this samemonkey, FEF
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in Fig 3 on FEF inactivation on microsaccade rate could not be attributed to biases in fixation
position or drift in the pre-cue period.

Unilateral FEF Inactivation Decreased Microsaccade Rate Regardless
of the Side of the Cue
Next, we investigated whether the effects of FEF inactivation on microsaccade rate only
occurred when cues were presented contralateral to the side of inactivation. To our surprise,
we found that unilateral FEF inactivation decreased microsaccade rate during the rebound
period regardless of the side of the cue (Fig 5A, shown for our representative data during left
FEF inactivation). Despite an idiosyncratically higher rate of rebound microsaccades for cues
presented in the intact (left) hemifield even before inactivation, unilateral FEF inactivation sig-
nificantly reduced microsaccade rate during the rebound period for cues presented in both the
intact (left; 41% decrease, p< 0.001, Welch’s t test) and affected (right; 12% decrease, p< 0.05)
hemifield (see arrows). We observed such robust decreases in microsaccade rate during the
rebound period during unilateral FEF inactivation across our sample, regardless of the side of
the cue relative to the side of inactivation (Fig 5C). Such decreases were even greater during
bilateral FEF inactivation (Fig 5B; both hemifields are presumably affected in this configura-
tion; Fig 5C).

We also compared the influence of unilateral or bilateral FEF inactivation on microsaccade
rate during the pre-cue and rebound periods (Fig 5D). This analysis again revealed that each
cooling configuration robustly decreased the rate of microsaccades in the rebound period
regardless of the side of the cue, but that only bilateral FEF inactivation decreased microsaccade
rate before cue onset. Together with Fig 3, these results demonstrate the importance of FEF
integrity when microsaccades are deployed, particularly after cue onset.

FEF Inactivation Altered the Directions of Microsaccades
Cue presentation is known to briefly bias microsaccade direction toward and then away from
the cue [28,29,34,35]; will FEF inactivation alter such directional modulations? Our monkeys
exhibited strong idiosyncratic tendencies in microsaccade direction even before FEF inactiva-
tion, which complicates our interpretation. However, we still observed consistencies across our
sample, especially when examining how FEF inactivation impacted the fraction of microsac-
cades toward the cue during the rebound period.

In general, unilateral FEF inactivation biased microsaccades toward the affected side, with
this bias becoming more pronounced following contralesional cues. For example, before FEF
inactivation, monkey DZ had a strong idiosyncratic tendency to make leftward microsaccades,
which was perturbed for ~400 ms after cue presentation (Fig 6A). Left FEF inactivation
increased the tendency for rightward microsaccades even before cue onset (i.e., the blue line
lies above the red line for rightward cues, but below the red line for leftward cues), perhaps to
correct for an altered fixation position. During the microsaccade rebound period, FEF inactiva-
tion exacerbated this effect only when cues were presented in the affected hemifield (arrow in
Fig 6A). To quantify this effect, we measured how FEF inactivation altered the fraction of

inactivation reduced microsaccade rate in the rebound period for both trials with high (higher-than- median
values) and low (lower-than-median values) radial fixation error in the pre-cue period. Importantly, FEF
inactivation reduced rebound microsaccades despite a significantly greater fixation error in FEF warmhigh

(0.82°) compared to the FEF coollow (0.53°). (C) Across all monkeys and cooling configurations, FEF
inactivation consistently reduced microsaccade rate in the rebound period when comparing FEF warmhigh

and FEF coollow trials. Same format as Fig 2C. Data in Supporting Information (see S4 Data).

doi:10.1371/journal.pbio.1002531.g004
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Fig 5. FEF inactivation decreasedmicrosaccade rate in response to cues appearing in either visual hemifield. (A) Time courses of mean
microsaccade rate (+/- 95% confidence intervals) in response to cues either in the affected or intact visual hemifield for unilateral FEF warm and FEF
cool conditions from our example monkey DZ. As indicated by arrows, unilateral (left) FEF inactivation decreased microsaccade rate in the rebound
period for cues appearing in both the intact and affected visual hemifield. (B) Bilateral FEF inactivation produced similar, but quantitatively larger,
decreases in microsaccade rate in response to cues in either affected visual hemifield from this same monkey (downward arrows). Bilateral FEF
inactivation also decreased microsaccade rate in the pre-cue independent of subsequent cue location (upward arrows). (C) Microsaccade rate in the
rebound period consistently decreased for both the intact and affected side across monkeys and inactivation configurations, with somewhat larger
effects accompanying bilateral versus unilateral FEF inactivation. (D) Across monkeys, only bilateral FEF inactivation decreased microsaccade rate in
the pre-cue period and had a quantitatively larger impact on rate in the rebound period compared to unilateral FEF inactivation. Same format as Fig 2C.
Data in Supporting Information (see S5 Data).

doi:10.1371/journal.pbio.1002531.g005
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Fig 6. Unilateral FEF inactivation biasedmicrosaccades toward the affected side, whereas bilateral FEF inactivation rescued this effect and
delayed andmagnified any pre-existing cue-induced directional modulations. (A) Time courses of mean microsaccade directionality (i.e., fraction
toward cue +/- 95% confidence intervals) in response to cues either in the affected or intact visual hemifield for unilateral FEF warm and FEF cool
conditions from our example monkey DZ. While unilateral FEF inactivation biased microsaccades towards the affected field before cue onset, a change
in post-cue microsaccades only accompanied cues for the affected visual hemifield (see arrow). (B) Bilateral FEF inactivation did not bias
microsaccades in the pre-cue period but delayed and magnified the pre-existing directional biases in the microsaccadic inhibition and rebound periods
(see arrow). (C) Three of five unilateral FEF inactivation configurations had similar effects, whereas bilateral FEF inactivation in both monkeys produced
no pre-cue directional bias, and a magnification of pre-existing biases in the rebound period. (D) A pre-cue bias toward the affected side was consistent
across monkeys only with unilateral FEF inactivation, whereas unilateral and bilateral FEF inactivation impacted cue-induced microsaccade
directionality following cues in the affected side. Same format as Fig 2C. Data in Supporting Information (see S6 Data).

doi:10.1371/journal.pbio.1002531.g006
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microsaccades toward cues in the rebound period, segregated by the side of the cue. This frac-
tion significantly increased from 40% to 62% during unilateral FEF inactivation for cues in the
affected hemifield (p< 0.0001, Welch's t test) but only increased from 6% to 11% for cues in
the intact hemifield (p = 0.08). Across our sample, such an increase was seen in three of five
unilateral configurations for cues in the affected hemifield but never for cues presented in the
intact hemifield (Fig 6C). Thus, FEF inactivation influenced microsaccade directionality after
contralesional but not ipsilesional cues. Interestingly, this directional profile differs from how
FEF inactivation influenced microsaccade rate for both contralesional and ipsilesional cues
(Figs 3 and 5).

For bilateral FEF inactivation, pre-existing biases in microsaccade direction following cue
onset were delayed and magnified. For example, in monkey DZ (Fig 6B), bilateral FEF inactiva-
tion did not alter the general idiosyncratic tendency of the monkey (e.g., before or long after
cue onset), but it instead prolonged and exaggerated the transient modulation of microsaccades
after the cue. Quantitatively, the fraction of microsaccades toward the cue during the rebound
period changed from 7% to 4% for leftward cues (p = 0.08, Welch's t test) and from 45% to 7%
for rightward cues (p< 0.0001, see arrow).

Across our sample, unilateral FEF inactivation biased microsaccade directions toward the
affected side even before cue onset (Fig 6D). This is again different from SC inactivation [18],
but it could be related to the altered fixation position. However, the bilateral inactivation data
shows that altered fixation position does not produce directional biases in the pre-cue period.
Interestingly, changes in microsaccade directionality after cue onset only occurred in the
affected hemifield during unilateral inactivation (Fig 6C), but even these changes were not con-
sistently seen in our sample. Taken together, all of our results emphasize that the main effect of
FEF inactivation on microsaccade deployment is through modulations of rate rather than
microsaccade directionality. This profile differs completely from that seen following inactiva-
tion of the SC, which robustly and consistently altered microsaccade direction without influ-
encing microsaccade rate [18].

Discussion
Our study demonstrates a causal role for the FEF in microsaccade generation, particularly fol-
lowing cue onset. A number of our results are novel, given that this is the first study to our
knowledge of any cortical area being involved in microsaccade production. First, unilateral
FEF inactivation increased microsaccade amplitude and decreased microsaccade peak velocity,
particularly for contralesional microsaccades; this suggests a role for the FEF in contributing to
brainstem signals during microsaccade generation, independent of peripheral cues. Second,
unilateral FEF inactivation severely impaired cue-induced microsaccades for cues appearing in
either hemifield; therefore, changes in microsaccade generation with unilateral FEF inactiva-
tion are not the result of impaired processing of a contralateral visual stimulus but rather attest
to the FEF's role in deploying microsaccades following any peripheral cue. Third, bilateral FEF
inactivation exacerbated the effects of unilateral FEF inactivation, consistent with the FEF con-
tributing to microsaccades generated towards either hemifield. In this discussion, we consider
the implications of these results in the context of what is known about microsaccade generation
and deployment, known properties of FEF activity, and the emerging view that microsaccades
are an essential component of optimal sampling of a visual scene [3,41,42].

Substrates for Top-Down Control of Microsaccades
Microsaccades can be strategically deployed in tasks requiring high visual acuity [25,26], but
the substrates responsible for such top-down influences on microsaccades are poorly
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understood. Previous studies have demonstrated a critical role for the SC in microsaccade gen-
eration and deployment [16,18,19]. Frontal inputs into the SC may enable cognitive processes
to influence microsaccade behavior. The results of FEF inactivation, which preferentially
impacted the rate of microsaccades following peripheral cue onset, are largely consistent with
this idea. Furthermore, the FEF has been implicated in covert visuospatial attention [43,44]
and sends visual, cognitive, and saccade-related signals directly to the SC [45]. We are not sug-
gesting that the FEF is the sole source of frontal input into the SC for microsaccade control, but
it may well serve as an important interface between the SC and other prefrontal areas.

We were also intrigued by the differences in how FEF or SC inactivation impacted microsac-
cades generated after peripheral cue onset. Specifically, FEF inactivation decreased microsac-
cade rate without having an equally large impact on direction; in contrast, inactivation of the
caudal SC (which represents peripheral cue locations) impacted microsaccade direction with-
out influencing rate [18]. There are a number of potential, and not mutually exclusive, explana-
tions for these comparative results. They may speak to a particularly important role for the FEF
in intervals requiring top-down control of microsaccades, in this case providing signals related
to when a microsaccade should be generated. Alternatively, our cryogenic inactivation of the
FEF inactivated a much larger volume of tissue compared to the more focal pharmacological
techniques used to inactivate the SC (see below). Such differences in inactivation volume are
likely even more important considering that the strength of topographic organization in the
FEF tends to be less than that observed in the SC. FEF neurons tuned for small retinal errors,
which are akin to those found in the rostral SC, tend to be diffusely distributed throughout the
FEF and not just confined to the most lateral portion [45,46]. Thus, methodological differences
between inactivation techniques hinder the functional conclusions about the comparative role
of each area in microsaccade behavior. Nevertheless, the impact of FEF inactivation on the
microsaccade rate signature can help us better understand the underlying neural mechanisms.

Implications of Our Findings on the Microsaccade Rate Signature
The microsaccade rate signature describes the well-known and highly replicable inhibition and
then rebound of microsaccade rate following presentation of any stimulus [28,29,34,35,47].
Despite the large volume of inactivated FEF tissue, unilateral inactivation delayed and blunted
microsaccade production only during the rebound period (Fig 3), without affecting the baseline
rate of microsaccades before cue onset or the start of the microsaccadic inhibition period. Per-
haps most surprisingly, such effects were observed regardless of the side of cue presentation.
Hence, they cannot simply be explained by impaired processing or neglect of a contralesional
stimulus. The temporal specificity of FEF inactivation, impairing the rebound but not baseline
or inhibition periods, demonstrates that recovery of microsaccades after disruption by sensory
transients requires frontal inputs and, hence, is not simply a passive process. Consistent with
this, the direction of microsaccades in the rebound period tends to be opposite to those preced-
ing reflexive microsaccades directed toward the cue [31]. Following the same logic, FEF inputs
do not seem to be involved in the onset of microsaccade inhibition, as inhibition onset was not
influenced by FEF inactivation. Based on our results, it appears that different portions of the
microsaccade rate signature are attributable to different neural substrates (e.g., non-frontal
inputs to microsaccade inhibition and frontal inputs to the rebound).

Interestingly, a role for frontal inputs in the first microsaccade after inhibition is consistent
with recent models regarding microsaccade generation. In a model by Hafed and Ignaschen-
kova [35] that utilizes the framework of a recurring rise-to-threshold process, the process initi-
ating the first microsaccade after inhibition has a faster rate of rise to threshold. Similarly, in a
model by Engbert [48,49] that considers spatiotemporal dynamics of SC activity, the rebound
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from inhibition is associated with a change in threshold that integrates sensory and attentional
inputs. While both of these models are agnostic as to the source of signals that change micro-
saccade behavior in the rebound period, attributing either a faster rate of rise (in the Hafed and
Ignaschenkova model) or attentional signals (in the Engbert model) to frontal sources is
broadly consistent with the impact of FEF inactivation on the microsaccade rate signature.
Note, however, that our reasoning regarding the impact of unilateral FEF inactivation on the
Engbert model hinges on the assumption that a large unilateral inactivation can produce bilat-
eral effects (see below). In support of our contention that frontal sources are involved in
rebound microsaccades, simulations of the Hafed and Ignaschenkova model in which we
reduced the rate of rise related to the first microsaccade after inhibition produced results very
similar to those produced by FEF inactivation (S1 Text and S5 Fig).

While we observed strong influences of FEF inactivation on microsaccade rate, we observed
little systematic influence of FEF inactivation on microsaccade direction. This finding may be
attributable to the idiosyncrasies of our subjects, but perhaps more fundamentally, we only
studied microsaccades during the performance of delayed-saccade tasks. The strongest evi-
dence linking microsaccade direction to the allocation of visuospatial attention has come from
tasks in which covert attention needs to be allocated precisely to perform the task [4,28–30,50].
Recent psychophysical results have demonstrated a dissociation between microsaccade rate
and direction effects in attention paradigms [30], and experiments inactivating the SC have
shown that rate and direction may not necessarily be affected by the same neural mechanism
[18]. In light of these findings, it will be of considerable future interest to see the comparative
effect of FEF inactivation on microsaccade rate and direction in other paradigms.

Unilateral FEF Inactivation Produces Bilateral Effects on Microsaccades
The FEF has an important role in the generation of saccades and deployment of visuospatial
attention into the contralateral visual hemifield [43,44], and the effects of FEF inactivation on
contralesional microsaccades are consistent with the extension of this role for the FEF into the
range of the smallest amplitude saccades. How then do we explain the impact of FEF inactiva-
tion on the peak velocity of ipsilesional microsaccades, and on microsaccades deployed after
the onset of ipsilesional cues?

The response fields for neurons in the rostral SC can cover portions of both contralateral
and ipsilateral fields [16]. If homologous FEF neurons tuned for small amplitudes also cover
both hemifields, then inactivation of such neurons may contribute to the decreases in ipsile-
sional microsaccade peak velocity with unilateral FEF inactivation. Consistent with this, the lat-
eral portion of one FEF, which preferentially represents small amplitude saccades, also projects
to the contralateral SC [51]. A preferential projection from the lateral but not medial FEF to
the contralateral SC may explain why unilateral FEF inactivation did not decrease the peak
velocity of larger ipsilesional saccades [36].

Furthermore, recent findings suggest a more nuanced role in how the FEF contributes to
spatially guided behavior. For example, while focal FEF inactivation increases or decreases the
reaction times of contralesional or ipsilesional saccades respectively [43,52,53], larger volume
temporary or permanent lesions of the FEF raise saccade reaction times bilaterally [36,54]. In
our previous work [36], we estimated that the volume inactivated via cooling is conservatively
at least four times larger than that typically achieved using pharmacological modulations or
optogenetics [18,19,55]. In light of this large inactivation volume, we speculated [36] that bilat-
eral reaction time increases may arise from differences in how the FEF commits to a saccadic
decision via widespread disinhibition of the intact FEF or to the presence of diffusely distrib-
uted FEF neurons with ipsilateral response fields [56] whose contribution is only revealed by
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large-volume inactivation. Similarly, inactivation of diffusely distributed FEF neurons tuned to
small retinal errors [45,46] may delay the generation of microsaccades during the rebound
period, regardless of the side of the cue (e.g., S4 Fig), thereby delaying and blunting the
rebound period.

Conclusions
The FEF has been implicated in the deployment of covert visuospatial attention via top-down
signals to extrastriate visual cortex [57–59] and was recently shown to contribute to pupil dila-
tion [60]. Our discovery of a role for the FEF in microsaccade deployment raises the interesting
possibility that the FEF can also influence visual processing in still more ways, for example, by
strategically deploying microsaccades or via pre-microsaccadic modulations that shape visual
processing before the arrival of re-afferent visual input [9]. Our findings set the stage for future
experiments that distinguish how cognitive processes optimize visual processing via the prepa-
ration and generation of microsaccades or by coordinating such microsaccades with other
components of the orienting response [27].

Materials and Methods

Subjects and Physiological Procedures
Three male monkeys (Macaca mulatta, monkeys GB, DZ, and OZ, weighing 11.1, 9.8, and 8.6
kg, respectively) were used in these experiments. Only monkey GB contributed data to our pre-
vious manuscript [36]. All training, surgical, and experimental procedures conformed to the
policies of the Canadian Council on Animal Care and National Institutes of Health on the care
and use of laboratory animals, and were approved by the Animal Use Subcommittee of the
University of Western Ontario Council on Animal Care (2007-099-10). We monitored the
monkeys' weights daily, and their health was under the close supervision of the university
veterinarians.

Each monkey underwent one surgery to enable reversible cryogenic inactivation of one or
both FEFs. Monkeys DZ and OZ were implanted with bilateral FEF cryoloops, whereas mon-
key GB was only implanted with unilateral FEF cryoloops in the right hemisphere. Our surgical
procedures of implanting cryoloops in the arcuate sulcus have been previously described
[36,61]. Briefly, we performed a small, 2.25 cm2 craniotomy at the stereotaxic coordinates of
the arcuate sulcus spur and implanted two customized, stainless steel cryoloops (each 5 to 8
mm in length and extending 3 mm into the sulcus) into each arcuate sulcus, which allowed for
the cooling of tissue adjacent to the superior and inferior arms of the arcuate sulcus. Cryoloop
temperatures of 3°C silence post-synaptic activity in tissue up to 1.5 mm away without influ-
encing the propagation of action potentials in nearby axons [61]. For this manuscript, we only
collected data using the cryoloop in the inferior arm of the arcuate sulcus, which provided an
estimated volume of inactivation of 90 mm3 in the anterior bank of the arcuate sulcus. Cooling
only the cryoloop in the inferior arm of the arcuate sulcus produced the expected triad of con-
tralateral saccadic deficits (i.e., decreases in peak velocity, accuracy, and increases in reaction
time), which was approximately 70% of the total saccadic deficits observed from cooling both
cryoloops [36].

Data Collection
Head-restrained monkeys were placed in front of a rectilinear grid of 500+ red LEDs covering
±35° of the horizontal and vertical visual field. We conducted experiments in a dark, sound-
attenuated room and recorded each monkey's eye position using a single, chair-mounted eye
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tracker (EyeLink II). The behavioral tasks were controlled by customized real-time LabView
programs on a PXI controller (National Instruments) at a rate of 1 kHz.

A single experimental dataset consisted of a pre-, peri-, and post-cooling session, with each
session containing the same number of correct trials. The number of trials for a given dataset
ranged from 180 to 480 correct trials, depending upon the number of cue locations. Our exper-
imental procedure for cryogenic inactivation of the FEF has been previously described [36].
Briefly, following the completion of the pre-cooling session, chilled methanol was pumped
through the lumen of the cryoloops, decreasing the cryoloop temperature. Once the cryoloop
temperature was stable at 3°C for at least 3 min, we began the peri-cooling session. Upon fin-
ishing the peri-cooling session, we turned off the cooling pumps, which allowed the cryoloop
temperature to rapidly return to normal. When the cryoloop temperature had reached 35°C
for at least 3 min, we started the post-cooling session. Because we simultaneously recorded
neurons in the intermediate layers of the superior colliculus (iSC) with FEF inactivation, it was
necessary to minimize the amount of time for transitions (i.e., shorter than 3 min between pre-
and peri-cooling and peri- and post-cooling sessions) to ensure continued isolation of an iSC
neuron throughout the full dataset. However, cryoloop temperatures rapidly decreased or
increased when the cooling pumps were turned on and off, respectively, and we still found sim-
ilar effects on saccadic behavior with slightly reduced transition durations. The effects of FEF
inactivation on neuronal activity within the iSC will be described in a future manuscript.

Behavioral Tasks
Monkeys performed memory and visually-guided saccades toward peripheral cues after a
delayed response period. Following a variable fixation period of 750 to 1000 ms during which
monkeys maintained fixation within a +/- 3° window of a central cue, a peripheral cue
appeared in either visual hemifield. Monkeys were required to maintain fixation of the central
cue and delay their saccadic response until the central cue was extinguished. Note that despite
the large fixation window in our experiments, our central cue was 0.63° in diameter, explaining
why most microsaccades were significantly smaller than 1° (Fig 1A). Peripheral cues were
either extinguished 150 or 250 ms after onset or remained on for the ensuing memory or visu-
ally guided saccade, respectively. After a delayed response period of at least 750 ms, monkeys
were rewarded with a liquid reward if they generated a saccade toward the location of the
remembered or persistent peripheral cue within 1,000 ms of the offset of the central cue. This
response window allowed us to differentiate trials with increased saccade reaction times from
neglect of the peripheral cue during FEF inactivation, although monkeys had very few saccade
reaction times>500 ms. When we were also recording iSC activity, the location of one periph-
eral cue coincided with the peak of the response field of an isolated iSC neuron; the other
peripheral cue was placed in the diametrically opposite position. In this report, peripheral cues
were always located within 45° radial angle relative to the horizontal meridian and more than
5° in radial eccentricity from the central cue. Analysis of microsaccade rate and directionality
in the 500 ms window surrounding cue onset revealed no differences depending on the location
of the peripheral cue or depending on whether the peripheral cue remained illuminated or not.
Accordingly, we pooled all trials together, subdividing data based only on the side of the cue
relative to the side of FEF inactivation.

Data Analysis
Offline, we screened all trials for microsaccades in a customized graphics user interface made
in MatLab (Mathworks) that automatically detected microsaccade onset and offset using veloc-
ity (10°/s) and acceleration (600°/s2) criteria. We only accepted trials in which the monkey
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maintained fixation of the central cue for the full delayed period and removed any trial in
which we identified any blinks or other aberrant changes in eye position or velocity (e.g., due
to fatigue or inattention). We verified the onset and offset marks for each microsaccade and
removed any microsaccades with amplitudes greater than 3° or severe curvatures in their tra-
jectories (i.e., ratio of maximal to final displacement greater than 2). To differentiate microsac-
cades from drift, we also removed any microsaccades with onset accelerations lower than
1,000°/s2. We considered all microsaccades generated for each monkey actively fixating the
central cue (i.e., fixation and delayed response periods) regardless of whether they correctly
looked to the location of the peripheral cue. Similar results were observed if we constrained our
analysis only to successfully performed trials. While our amplitude limit of 3° is very liberal, we
wanted to ensure that any reduction of microsaccade occurrence during FEF inactivation (see
Results) was not due to a coinciding increase in microsaccade amplitude above an arbitrary
limit. Despite this liberal definition of microsaccade amplitude, and despite the specifics of our
task and fixation window size, for each monkey, we found that the distribution of microsaccade
amplitudes (e.g., median microsaccade amplitude of 0.51° for our example monkey in the FEF
warm condition, see Fig 1A) was in good agreement with previous studies in monkeys and
humans (reviewed in [62]). Perhaps most importantly, all of the results of FEF inactivation still
held if we reduced our amplitude limit to 2°.

We investigated the contribution of the FEF to multiple aspects of microsaccade behavior in
this manuscript. Microsaccade rate was defined as the number of microsaccades within a slid-
ing ±50 ms rectangular window (in steps of 5 ms) divided by the number of all acceptable trials.
Based on observations across monkeys, we used fixed time windows to quantify the microsac-
cade rate for the pre-cue period (i.e., 200 ms preceding cue onset), microsaccadic inhibition
period (i.e., 60–140 ms after cue onset), and rate rebound period (i.e., 140–400 ms after cue
onset; see Fig 3B for depiction of these periods). In order to investigate the timing of cue-
induced microsaccades, we defined the microsaccade response time as the mean latency of the
first microsaccade generated following cue onset during the rate rebound period. We defined
the microsaccade amplitude as the angular vectorial displacement from microsaccade onset to
offset. The microsaccade peak velocity was defined as the maximal vectorial velocity during its
movement. To characterize changes in peak velocity, we constructed velocity-amplitude main
sequence relationships and then extracted the peak velocity for 2° microsaccades from a fitted
linear regression. We also investigated microsaccade directionality as the fraction of microsac-
cades toward the cue (i.e., sum of microsaccades toward the cue divided by the sum of micro-
saccades directed either toward or away from the cue); therefore, microsaccade directionality
was independent of rate. Microsaccades directed within ±45° of the cue or diametrically oppo-
site location of the cue were classified as toward or away from the cue, respectively. Finally, we
also determined the specific timing of the microsaccade rate signature for each monkey. For
this analysis, we first counted microsaccades across the full trial duration in ±50 ms bins and
then calculated a threshold number of microsaccades that corresponded to 20% of the mean
number in the pre-cue period. We determined the start of microsaccadic inhibition and
rebound periods by incrementing bins backward and forward from 100 ms after cue onset in 1
ms steps, respectively, to find the next bin that exceeded the threshold number.

To determine the time course and statistics of microsaccade rate and directionality, we per-
formed sliding window analyses in which we calculated a given measure within a ±50 ms win-
dow, and incrementally shifted this window every 5 ms for the full trial duration. The 95%
confidence intervals of the mean microsaccade rate and peak velocity at 2° were calculated
using 5,000 bootstrapped samples of randomly selected trials with replacement, while for direc-
tionality we used a binomial probability function. For statistical comparisons of specific time
periods and/or conditions between bootstrapped distributions, we performedWelch's t tests
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(p< 0.05). For all other microsaccade measures, we determined statistical significance using
Wilcoxon rank sum tests (p< 0.05).

Supporting Information
S1 Data. Data for Fig 1.
(XLSX)

S2 Data. Data for Fig 2.
(XLSX)

S3 Data. Data for Fig 3.
(XLSX)

S4 Data. Data for Fig 4.
(XLSX)

S5 Data. Data for Fig 5.
(XLSX)

S6 Data. Data for Fig 6.
(XLSX)

S7 Data. Data for S1 Fig.
(XLSX)

S8 Data. Data for S2 Fig.
(XLSX)

S9 Data. Data for S3 Fig.
(XLSX)

S10 Data. Data for S4 Fig.
(XLSX)

S11 Data. Data for S5 Fig.
(XLSX)

S1 Fig. FEF inactivation biased fixation position. (A) Unilateral FEF inactivation biased fixa-
tion position toward the intact side. Mean horizontal and vertical eye position in pre-cue
period for FEF warm and FEF cool trials from our example monkey DZ with a unilateral (left)
FEF inactivation after removing any outliers (>3 standard deviation). Lines indicate the mean
+/- standard deviation for each condition. (B) This bias in horizontal eye position toward the
intact side (+/- standard error) during FEF inactivation was largely stable before and after cue
onset. (C) Consistent horizontal biases toward the intact side occurred for each monkey (GB,
DZ, and OZ) and unilateral (Xr or Xl) inactivation configuration, whereas bilateral FEF inacti-
vation (Xbi) consistently biased fixation positions to one affected side. All differences in posi-
tion offset were statistically significant using a Wilcoxon rank sum test (p< 0.05). Data in
Supporting Information (see S7 Data).
(TIF)

S2 Fig. FEF inactivation prolonged the onset of the first microsaccade in the rebound
period. (A) Number of the first rebound microsaccades across pre-, peri-, and post-cooling tri-
als from our example monkey DZ. FEF inactivation increased the response time for microsac-
cades specifically occurring within the rebound period. Vertical lines indicate the mean
response time for rebound microsaccades. (B) Microsaccadic response time increased across
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monkeys in three of five unilateral inactivation configurations, whereas bilateral FEF inactiva-
tion produced a quantitatively larger and more consistent increase in microsaccadic response
time. Same format as S1C Fig. Data in Supporting Information (see S8 Data).
(TIF)

S3 Fig. FEF inactivation did not influence drift velocity before cue onset. (A) Unilateral
(left) inactivation had no effect on radial drift velocity within the 750 ms before cue onset in
our example monkey DZ. For this analysis, we calculated the mean radial velocity from each
trial after removing any intervals with microsaccades (10 ms before to 10 ms after) and artifacts
(radial velocity>20°/s). (B) Across monkeys, FEF inactivation did not significantly influence
radial drift velocity with absolute differences always less than 0.25°/s. Same format as S1C Fig.
Note that our eye tracker was not well suited to study drift at a higher resolution; thus, it is pos-
sible that FEF inactivation caused effects on drift beyond the limits of our eye tracking technol-
ogy. Data in Supporting Information (see S9 Data).
(TIF)

S4 Fig. FEF inactivation had no effect on the post-microsaccadic increase in drift velocity.
(A) Radial drift velocity somewhat increased following microsaccades in our example monkey
DZ, but FEF inactivation did not alter this relationship. Pre- and post-microsaccade radial drift
velocity were calculated from 60 to 10 ms before microsaccade onset and 10 to 60 ms after
microsaccade offset, respectively, although we first removed any time points with artifacts
(radial velocity>20°/s). (B) Across monkeys, we observed a similar post-microsaccadic
increase of radial drift velocity for FEF warm trials. While FEF inactivation sometimes pro-
duced significant effects on the post-microsaccadic increases (indicated by asterisks above dif-
ferences, Wilcoxon rank sum test, p< 0.025), such effects were either marginal (<0.25°/s) or
not consistently observed across monkeys. Same format as S1C Fig. Data in Supporting Infor-
mation (see S10 Data).
(TIF)

S5 Fig. Reducing the top-down drive in an existing model of cue-induced microsaccade
deployment captures our experimentally observed effects on microsaccade rate. (A and B)
Time courses of mean microsaccade rate (+/- 95% confidence intervals) in response to cues for
unilateral and bilateral inactivation simulations, respectively. Microsaccade rate is shown for
the normal model (red) and with parameter changes to reflect reduced FEF drive (blue). Our
unilateral inactivation model implemented only a simple reduction in the facilitation factor
(i.e., top-down drive) that is specific for rebound microsaccades, which delayed and reduced
their occurrence after cue onset, similar to our experimental results (see Fig 5A). The bilateral
inactivation model additionally implemented a reduction in overall drive for all microsaccades
and simulated both a decrease in pre-cue microsaccade rate and a further blunting of rate for
rebound microsaccades comparable to the effects of bilateral FEF inactivation (see Fig 5B).
Note that both models simulated identical results for cues in either visual hemifield, and we
used the same procedures to determine the time-course and statistics for our modeling data,
except that we implemented a ±25 ms window instead, which more precisely represented our
observed post-cue microsaccade modulations in FEF warm trials. Data in Supporting Informa-
tion (see S11 Data).
(TIF)

S1 Text. Supplemental results.
(DOCX)
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