Skip to main content
. Author manuscript; available in PMC: 2016 Aug 10.
Published in final edited form as: Proc AAAI Conf Artif Intell. 2016 Feb;2016:1273–1279.

Algorithm 1.

Learning and Prediction Procedures

INPUT:
  • Train data collection 𝒟 = {< Yl, xl >}, where l = 1, ···, N.

  • DVI sampling frequency r.

  • Number of hidden states in LDS d.

  • Current observations Yu for patient u who is being predicted.

  • An arbitrary future time stamp t* (t* > Tu).

PROCEDURE:
  1. // Stage1: Learning the population model.

  2. {l} = DV I({Yl}, {xl}, r).

  3. Ω = LearnLDS({l}).

  4. // Stage2: Learning the multivariate interaction model.

  5. Compute residual time series Ru.

  6. Λu = LearnMT GP (Ru).

  7. // Adaptive Prediction: Predicting y^tu by Ω and Λu.

  8. Trend prediction: y^tu(Ω)=PredictLDS(Ω,t).

  9. Variability prediction: y^tu(Λu)=PredictMTGP(Λu,t).

  10. y^tu=y^tu(Ω)+y^tu(Λu).

OUTPUT: Prediction at time stamp t:y^tu.