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Abstract

Melanoma claims approximately 80% of skin cancer-related deaths. Its life-threatening nature is 

primarily due to a propensity to metastasize. The prognosis for melanoma patients with distal 

metastasis is bleak, with median survival of six months even with the latest available treatments. 

The most commonly mutated oncogenes in melanoma are BRAF and NRAS accounting 

approximately 60% and 20% of cases, respectively. In malignant melanoma, accumulating 

evidence suggests that multiple signaling pathways are constitutively activated and play an 

important role in cell proliferation, cell survival, epithelial to mesenchymal transition, metastasis 

and resistance to therapeutic regimens. Phytochemicals are gaining considerable attention because 

of their low toxicity, low cost, and public acceptance as dietary supplements. Cell culture and 

animals studies have elucidated several cellular and molecular mechanisms by which 

phytochemicals act in the prevention and treatment of metastatic melanoma. Several promising 

phytochemicals, such as, fisetin, epigallocatechin-3-gallate, resveratrol, curcumin, 

proanthocyanidins, silymarin, apigenin, capsaicin, genistein, indole-3-carbinol, and luteolin are 

gaining considerable attention and found in a variety of fresh fruits, vegetables, roots, and herbs. 

In this review, we will discuss the preventive potential, therapeutic effects, bioavailability and 

structure activity relationship of these selected phytochemicals for the management of melanoma.
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1. INTRODUCTION

Skin cancer is the most common malignancy worldwide with particularly high incidence 

among fair-skinned populations [1]. Skin cancer poses a major threat to public health as 

incidence and mortality rates of skin cancers are dramatically increasing [2–4]. Skin cancers 
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are divided into two major groups according to cellular origin as either melanoma 

(melanocytic) or non-melanoma (epithelial) skin cancers (NMSCs) [5]. The NMSCs are 

comprised of basal cell carcinomas (BCCs) and squamous cell carcinomas (SSCs) and 

accounts for 80 and 16 percent of all skin cancer cases respectively. Although both BCCs 

and SCCs arise from the epidermal basal layer, they have different characteristics [5]. 

Though BCCs exhibit slow growth and rarely metastasize, their SCCs counterparts 

metastasize 2 to 5 of the time and carry a poor prognosis if metastasis has occurred [6]. 

Melanoma, which accounts for only 4 percent of all skin cancers, is a potentially life-

threatening skin cancer due to its propensity to metastasize. It claims approximately 80 

percent of skin cancer related deaths. The prognosis for melanoma patients with distal 

metastasis is minimal, with median survival of only six months [7, 8]. Moreover, the 

incidence of melanoma is rapidly increasing worldwide. The majority of melanoma cancers 

occur in developed countries such as Europe, Australia, New Zealand and the United States 

[8, 9]. The World Health Organization reports the annual incidence of melanoma to be 

approximately 160,000 with an associated 48,000 deaths worldwide each year [10–12]. In 

recent years, melanoma is the only common cancer with an increasing incidence and death 

rate. More importantly, the incidence of melanoma in children is also increasing rapidly. 

Reports estimate that 1 in 50 Americans will be diagnosed with melanoma during their 

lifetime. According to an estimate from the American Cancer Society, one person dies every 

hour from melanoma [13, 14]. Furthermore, about 9,940 melanoma-related deaths are 

projected to occur in the United States in 2015 [15, 16]. A gender-based analysis predicted 

that approximately 42,670 men and 31,200 women are expected to be diagnosed with 

melanoma and about 6,640 men and 3,300 women will die from melanoma in the United 

States in 2015.

Melanoma develops when melanocytes proliferate abnormally and become unresponsive to 

the regulatory signals from fibroblasts and keratinocytes. The signaling pathways that 

regulate melanocyte proliferation become aberrantly activated, and thus these cells divide to 

develop melanoma [17–20]. Melanoma development is characterized by two distinct growth 

phases. The radial growth phase (RGP) is characterized by the growth of single cells or 

small clusters of cells confined to the epidermis and extend to the papillary dermis. 

Alternatively, the invasion of melanoma cells into the dermis and development of tumor-

like-nodules or plaques is referred to as vertical growth phase (VGP) [17, 18, 21, 22]. 

Depending upon the frequency and location, melanoma of the skin can be divided into 

various types according to clinical and histological growth patterns. However, they all pose 

the same risk according to their tumor depth, mitotic index (dividing melanoma cells), 

ulceration and, more importantly, level of spread in the regional lymph nodes [23–25].

Depending upon the clinical and pathological growth patterns melanoma can be divided into 

four major subtypes [26, 27]. Superficial spreading melanoma is the most common type that 

accounts for approximately half to three-quarters of all diagnosed melanoma and is most 

common in fair skinned persons of all ages. Superficial spreading melanoma usually derived 

from a preexisting benign melanocytic nevus and remain confined to the epidermis (RGP) 

for an extended time before beginning to VGP [28]. Areas of the skin with the highest nevus 

density (most commonly found on the back and trunk in men and on the back and legs in 

women) and with intermittent sun exposure are at high risk for superficial spreading 
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melanoma. Nodular melanoma is the second most common type that accounts for 

approximately 15 to 35% of all diagnosed melanomas and is notoriously rapidly-growing 

and invasive. It usually develops as uniform dark blue-black, blue-red or sometimes 

colorless bump at the trunk, head and neck areas [29, 30]. Lentigo malignant melanoma is 

less common subtype of melanoma that accounts approximately 5 to 15% of cases. It occurs 

on sun-exposed skin of faces of middle aged to elderly adults with a history of photodamage. 

Lentigo maligna melanoma is slow growing and has a prolonged RGP and is less invasive 

[31, 32]. Acral lentiginous melanoma is the least common form that accounts for 

approximately 5 to 10% of all diagnosed melanomas. It develops most commonly in dark-

skinned individuals such as in people of Japanese, African American, Latin American, and 

Native American descents [33]. The most common sites for occurrence of acryl lentiginous 

melanoma are the soles of the feet, palms and beneath the nail plates [34, 35]. Acryl 

lentiginous melanomas appear clinically as tan to brown-black, macules and patches with 

irregular borders and an average size of 3 centimeters [36]. Melanoma can develop 

anywhere in the body, including the internal organs. Some less common types of melanoma 

include ocular and mucosal melanoma. Ocular melanoma, which represents 3–5% of all 

melanoma cases, occurs inside the eyes when melanocytes of the iris or choroid layer begin 

to proliferate abnormally. Uveal melanoma is the most common form of ocular melanoma 

and primarily affects light-skinned populations [37]. Mucosal melanoma represents less than 

2% of all cases of melanoma and can develop in the nose, mouth, throat, and in the genital 

areas [38]. This review begins with a review of the gene mutations and dysregulated 

signaling pathways in melanoma. Beyond this, we explain the preventative and therapeutic 

effects of key phytochemicals for the management of melanoma in the context of their 

bioavailability and structure-activity relationship.

2. GENE MUTATIONS AND SIGNALING PATHWAYS ACTIVATED IN 

MELANOMA

The use of advanced technology in the analysis of the human genome has helped to shed 

light on specific gene mutations that occur frequently in melanomas and the impact of these 

mutations on the regulation of signaling pathways. More importantly, studies have 

confirmed that these mutations control the progression and malignancy of melanomas. Some 

of the most frequently mutated genes found in in melanoma are described below.

2.1. BRAF Mutations

BRAF, a serine/threonine protein kinase of RAF family (ARAF, BRAF and CRAF), is 

generally expressed in neuronal tissues and melanocytes [39–41]. It is encoded on 

chromosome 7q34 and is a component of the mitogen-activated protein kinase (MAPK) 

pathway. MAPK a pro-growth signaling pathway is activated by cell surface growth factors 

receptors [42]. BRAF signaling is mutated in approximately 60% of melanomas resulting in 

induction of genomic instability, driving the proliferation of melanoma cells. The Sanger 

Institute first described activating mutations in BRAF signaling in 2002 [43]. The most 

common BRAF mutation (> 90% of known BRAF mutations) results from substitution of 

glutamic acid (E) in place of valine (V) at codon 600 (a single nucleotide mutation resulting 

in BRAFV600E, nucleotide 1799 T>A; codon GTG>GAG). Mutated BRAFV600E leads to 
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hyper-activation of MAPK signaling. Another common BRAF mutation (BRAFV600K) is the 

substitution of lysine (K) for valine (V) at position 600, which has been reported more 

common in some populations [44]. Activating mutation BRAFV600E has been implicated in 

melanoma progression by activating the downstream MEK/ERK signaling pathway and thus 

enhancing replicative potential, reducing senescence and apoptosis, and promoting 

angiogenesis [45, 46]. Activation of this pathway also stimulates cell invasion and metastasis 

by upregulating proteins involved in migration, cell contractility, as well as evasion of the 

immune response [47, 48].

2.2. NRAS Mutations

NRAS, another crucial signaling molecule of RAS family (HRAS, KRAS and NRAS), is 

located upstream of the BRAF/MEK/ERK (MAPK) and PI3K/AKT pathways [49–51]. 

After BRAF, NRAS is the second most commonly activated oncogene found mutated in 15–

25% of all melanomas. Although KRAS mutations are the most common among all human 

malignancies, NRAS mutations are most frequently found in melanoma [52]. The 

substitution of an arginine (R) for a glutamine (Q) at position 61 within the NRAS protein is 

NRASQ61R. The NRAS protein is a small GTP binding proteins (guanosine-5-triphosphate; 

GTPase) that cleaves bound GTP and thus regulates cellular responses to many extracellular 

stimuli, including soluble growth factors [49]. Signal transduction through this pathway 

begins when extracellular growth factors interact with cell surface receptors [53]. This 

creates intracellular docking sites that then interact with specific adaptor molecules and 

signal transducing proteins leading to activation of guanine nucleotide-exchange factors 

(GNEFs). GNEFs remove guanine nucleotides from NRAS and allow passive binding to 

GTP, which is abundantly present in the cytosol. GTP bound NRAS then interacts with 

downstream effector molecules including BRAF, PI3K and others to regulate proliferation, 

survival and differentiation. Although NRAS mutations are distinct from BRAF, they both 

cause the constitutive activation of MAPK and PI3K/AKT signaling pathways [54, 55]. 

Melanomas with NRAS mutations develop higher-grade tumors with higher mitotic and 

invasive potentials than the BRAF mutated melanomas [56, 57]. BRAF and NRAS 

mutations can be detected at early stages of melanoma progression and remains activated 

throughout the progression of disease [58, 59]. It is well established that these mutations are 

almost never simultaneously present and, alone, are insufficient to initiate melanoma 

development [60].

2.3. PTEN Mutations

PTEN (phosphatase and tensin homologue), a tumor suppressor gene located at 10q23–24, is 

mutated in 30–50% of melanoma cell lines and in 5–20% primary melanomas [61–63]. 

PTEN functions as a dual specificity phosphatase with the ability to dephosphorylate both 

proteins and lipids. It can dephosphorylate phosphoserine and phosphotyrosine residues in 

proteins, and convert the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) to 

phosphatidylinositol 4,5-biphosphate (PIP2) via dephosphorylation. As a protein 

phosphatase, PTEN suppress MAPK signaling through dephosphorylation of focal adhesion 

kinase (FAK), and regulates cell-to-cell adhesion and thus inhibits cell survival, 

proliferation, migration and invasion [64–66]. PTEN’s lipid phosphatase activity is 

considered as its primary and major function. PTEN converts PIP3 to PIP2 and thus 
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negatively regulates the PI3K/AKT signaling pathway that is important for cell proliferation, 

survival, and apoptosis [67–69].

2.4. p53 Mutations

The tumor suppressor, p53, is regarded as the guardian of the genome. It responds to variety 

of stress stimuli, including DNA damage and hypoxia [70, 71]. p53 acts as a transcription 

factor for a variety of genes related to DNA repair, cell cycle progression, apoptosis and the 

maintenance of cellular homeostasis [72]. Mutations in the p53 gene are associated with 

more aggressive phenotypes in various human cancers. p53 gene mutation analysis in 

melanoma established that approximately 10% of all melanomas harbor p53 mutations [73, 

74]. Most of these mutations are ultraviolet radiation-induced mutations [75–77]. 

Furthermore, higher frequency of p53 inactivation in wild type BRAF and NRAS melanoma 

exhibited low ERK activity, suggesting MAPK independent melanoma progression [78, 79]. 

Although the frequency of p53 mutations in melanomas is low, various studies have 

demonstrated p53’s major role in the suppression of progression from nevus to melanoma 

[80, 81]. Several studies of superficial spreading melanoma have also found a longer 

relapse-free-survival rate among patients whose tumors expressed wild type p53 [82, 83].

2.5. CDKN2A/p16 Mutations

CDKN2A/p16 (also known as CDK4I or INK4a), a tumor suppressor gene associated with 

red hair and freckles, encodes a cyclin-dependent kinase (CDK) inhibitor p16. 

CDKN2A/p16 is responsible for cell cycle arrest at G1 checkpoint prior to the DNA 

synthesis (S) phase [84–86]. The CDKN2A/p16 protein inhibits phosphorylation and 

activation of retinoblastoma (Rb) proteins by CDK4 and CDK6. Since non-functional or 

inactivated CDKN2A/p16 shows reduced binding with CDK4, phosphorylation and 

activation of Rb occurs, resulting in abnormal cell proliferation [87, 88]. Cytogenetic, 

linkage and molecular analyses of the 9p21 region in familial and sporadic melanoma with 

multiple primary lesions has implicated CDKN2A/p16 as melanoma susceptibility gene 

[89]. CDKN2A/p16 mutations have been detected in variety of tumors including 

melanomas, providing evidence for CDKN2A/p16 involvement in the development of these 

malignancies [90, 91]. A study of 60 melanoma cell lines demonstrated that 92% of 

melanoma cell lines had aberrantly activated CDKN2A/p16 or CDK4. In the same study, 

80% cell lines carried either non-function p16 or absent in p16 [92]. More importantly, the 

presence of CDKN2A/p16 germline mutations are not only associated with melanoma but 

also increase the risk of other malignancies such as pancreatic and breast cancer [54]. 

According to an estimate 5–10% of melanomas are known to be hereditary, and among those 

only 20–40% are associated with a pathogenic mutation in CDKN2A/p16 [93]. Frequency of 

CDKN2A/p16 mutation in familial melanoma ranged from 8–50% established after 

screening of 230 melanoma families worldwide for germline mutation in CDKN2A/p16 

[94]. Furthermore, Americans who carry a CDKN2A/p16 mutation have an estimated 76% 

lifetime risk of developing melanoma [95]. Due to the exceptionally high probability of 

developing melanoma in the CDKN2A/p16 mutated population with poor prognosis of late-

stage disease, it may be useful to institute a screening process to identify and warn 

CDKN2A/p16 mutation carriers of their high-risk status before the development of 
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melanoma [96–98]. Recent studies have implicated that CDKN2B mutation is also involved 

in the promotion and progression of benign melanocytic nevi to melanoma [99].

3. PHYTOCHEMICALS FOR THE PREVENTION/TREATMENT OF 

MELANOMA

The role of diet and nutrition in the prevention of disease has gained public attention 

recently. A growing body of scientific evidence has established the protective effect of 

dietary manipulation, especially the use of dietary supplements to protect the skin from 

various diseases such as cancer. Epidemiologic studies have also addressed the role of 

dietary factors in melanoma prevention. Since these dietary phytochemicals are safe and 

carry minimal toxicity, they hold promising potential as complementary therapies for the 

treatment of melanoma as well [100–103]. In the present review, we have explored the 

protective and therapeutic potential of dietary phytochemicals against cell proliferation, 

apoptosis, invasion and metastasis by targeting signal transduction pathways (Table 1 and 

Fig. 1). These phytochemicals includes fisetin, epigallocatechin-3-gallate, resveratrol, 

curcumin, proanthocyanidin, silymarin, apigenin, capsaicin, genistein, indole-3-carbinol, 

and luteolin.

3.1. Fisetin

Fisetin (3,3′,4′,7-Tetrahydroxyflavone) (Fig. 2A), a naturally occurring flavonoid, is 

commonly found in various fruits and vegetables such as strawberries, mangoes, kiwis, 

apples, grapes, persimmons, cucumbers and onions [104, 105]. Fisetin has shown to possess 

antioxidant, anti-inflammatory, and anti-proliferative properties against various cancers 

including melanoma and non-melanoma skin cancers [106–110]. Treatment of various 

malignant melanoma cell lines carrying different genetic characteristics (BRAF-mutant, 

NRAS-mutant, BRAF-NRAS wild type) with fisetin inhibited their invasion. Strengthening 

this finding, fisetin also decreased the invasive potential of melanoma cells in experiments 

using three-dimensional human skin equivalents. The anti-invasive effects of fisetin were 

associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2 as well as 

inhibition of nuclear factor kappaB (NFκB) signaling pathway. Fisetin treatment also 

promoted mesenchymal to epithelial transition (MET) by decreasing mesenchymal marker 

proteins and increasing epithelial marker proteins [108]. Syed et al. [111, 112] observed 

downregulation of Wnt/β-catenin, PI3K/AKT, mTOR, and microphthalmia-associated 

transcription factor (MITF) signaling proteins in melanoma cell lines and in a three-

dimensional human skin equivalent melanoma model. These findings show that fisetin is a 

phytochemical with promising anti-melanoma activities.

3.1.1. Bioavailability of Fisetin—Murine investigations have not been able to 

demonstrate any measurable toxicity of the phytochemical, fisetin [113, 114]. Bioavailability 

studies have demonstrated that fisetin was readily absorbed with detectable levels in the 

serum of mice [113, 115–117]. Pharmacokinetics studies involved conversion of fisetin-

loaded dimyristoylphosphatidylcholine liposomal vesicles into nanocochleates by the action 

of Ca2+ ions. Analysis following intraperitoneal injection of nanocochleates showed a 141-

fold higher relative bioavailability in mice [115]. In another study, liposomal encapsulation 
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of fisetin increased bioavailability by 47-fold and enhanced the anti-tumor potential when 

compared to free fisetin [116]. Furthermore, intraperitoneal administration of the fisetin 

nano-emulsion resulted in a 24-fold increase of relative fisetin bioavailability [113].

3.1.2. Structure Activity Relationship of Fisetin—The basic flavonoid structure is 

two benzene rings (A- and B-ring) linked through a central heterocyclic pyrane (also known 

as pyrone or C-ring). The 2-position of the pyrone ring is generally with B-ring. The 

presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3 

(C2=C3 double bond), and a hydroxyl group at position 3 (3-OH) of the C-ring determine 

the type of flavonoid compound. Flavonols (e.g., quercetin, myricetin, quercetagetin, fisetin) 

all have an oxygen group at position 4, a C2=C3 double bond, and a 3-hydroxyl (3-OH) 

group and are known to possess anti-cancer properties [118]. Furthermore, fisetin, has 3′ - 
and 4' -OH on the B-ring, and elimination of 3' -OH on the B-ring, 4',5,7 trihydroxyflavone 

(THF) (Fig. 2B), has been shown to reduce the anti-cancer potency of fisetin. The important 

structural features of flavonoids (3'- and 4' -OH on the B-ring, 3-OH on the C-ring, the 

C2=C3 double bond in the C-ring and the phenylchromone C6–C5–C6) promote inhibition 

of epidermal growth factor (EGF)-induced cell transformation [118]. In another study, the 

structure activity relationship of fisetin was examined using different derivatives of the 

flavonoid. Sagara et al. [119] evaluated four trihydroxyflavones (THF), lacking one hydroxyl 

group, and three dihydroxyflavones (DHF), lacking two hydroxyl groups. All the derivatives 

tested promoted nerve cell differentiation and protected nerve cells from oxidative stress 

induced death, although there was a significant difference in both potency and efficacy. The 

3,3',4' THF (Fig. 2C) most effectively induced differentiation, accomplishing this in >80% 

cells. Furthermore, Akaishi et al. [120] recently reported that the 3',4'-dihydroxyl (Fig. 2D) 

group is essential for the inhibitory effect of fisetin on amyloid beta protein fibril formation.

3.2. Epigallocatechin Gallate (EGCG)

Green tea (Camellia sinensis) leaves contain many polyphenols such as flavanols 

(catechins), flavandiols, and phenolic acid. Among them, the four main catechins present in 

green tea leaves are (−)-epigallocatechin gallate (EGCG), (−)-epicatechin gallate (ECG), 

(−)-epigallocatechin (EGC) and (−)-epicatechin (EC) (Fig. 3A–D). Epidemiological studies 

suggested that regular consumption of green tea attenuates the risk of many cancers. Green 

tea polyphenols and EGCG are known to have antioxidant, anti-mutagenic, anti-

inflammatory, and anti-carcinogenic activities. [121–123]. Evidence shows that EGCG is 

more potent than other catechins in reducing the human melanoma cell growth [124]. Most 

importantly, neither EGCG nor other catechins have any effect on growth of normal 

melanocytes [125]. EGCG inhibits growth, promotes cell cycle arrest, and induces apoptosis 

of melanoma cells by modulating cyclin-dependent kinase network and Bcl-2 family 

proteins [125, 126]. In addition, combining EGCG with interferon/vorinostat therapy 

enhanced its efficacy against melanoma by targeting NFκB signaling pathways. 

Combination of EGCG/vorinostat significantly inhibited melanoma cell proliferation and 

increased apoptosis through activation of cell cycle inhibitory proteins, modulation of Bcl-2 

family proteins, and NFκB signaling pathway. A recent study established that treatment of 

melanoma cells with EGCG at physiological dose reduced melanoma growth by inhibiting 

NFκB activity [127]. This was correlated with decreased IL-1β secretion. In addition, 
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numerous investigations have demonstrated that EGCG inhibited many pro-inflammatory 

enzymes and cytokines such as iNOS, COX-2, MMPs, IL-6, IL-8, IL-12 and TNFα [128, 

129]. EGCG-induced IL-1β suppression was mediated by downregulation of the 

inflammasome, decreased nuclear localization leucine-rich-repeat protein 1 (NLRP1), and 

reduced caspase-1 activation.

In a recent study, Singh and Katiyar [130] demonstrated the anti-invasive potential of various 

green tea catechins on human melanoma cell invasion. They showed that EGCG carried the 

greatest inhibitory effect of the green tea catechins, with lesser effects from EGC > ECG, 

GC and EC. EGCG was found to inhibit melanoma cell invasion by decreasing EMT 

through reduced COX-2 expression, PGE2, and PGE2 receptors in melanoma cells [130]. 

Overall these findings revealed signaling pathways by which EGCG may inhibit invasion of 

melanoma cells. Thus this non-toxic, dietary component of green tea, EGCG, possesses 

antioxidant, anti-inflammatory, anti-carcinogenic potential, which makes it a logical 

candidate molecule for melanoma prevention and therapeutics.

3.2.1. Bioavailability of EGCG—Centuries of tea consumption provide evidence of 

EGCG’s safety in humans. Phase I clinical investigations have demonstrated that catechins 

and polyphenon E in doses ranging from 200 to 1200 mg were well-tolerated. Murine 

investigations found a broad range of bioavailability from 26.5% in mice to 1.6% in rats 

[131–133]. HPLC studies have revealed levels ranging from 5 to 150 ng/ml of EGCG, EC, 

and ECG in serum after oral tea consumption [134, 135]. Some bioavailability investigations 

have postulated that the low bioavailability may be because of the large size of the 

compounds [136]. The bioavailability of tea catechins in humans is relatively low at a range 

of only 0.2 to 2% [133, 137–139]. Oral administration of 1.5 mM of EGC, ECG and EGCG 

resulted in an average plasma concentration of 5 µM, 3.1 µM, and 1.3 µM respectively [140]. 

Oral consumption of 100 to 1600 mg of pure EGCG resulted in 0.26 to 6.35 µM of EGCG 

detectable in plasma after 2 to 3 hrs [141]. These studies show that tea catechins reach 

human plasma at the micromolar level (less than 1–2%) while the metabolites are present to 

a greater extent in human plasma after oral consumption of green tea [136, 142].

3.2.2. Structure Activity Relationship of EGCG—The catechins are the major 

components of green tea. These catechins contain a benzopyran skeleton with a hydroxyl or 

ester moiety at the 3-position and a phenyl group substituted at the 2-position. Catechins are 

classified by 2,3 subsituents and by the number of hydroxyl groups in the B- and D-ring 

[143]. In a recent study, using 10 different polyphenols demonstrated that anti-cancer 

potential of polyphenols such as catechin and epicatechin increases significantly if they were 

esterified with gallic acid to produce catechin gallate and ECG [144]. Among the 10 

polyphenols, EGCG was most potent in inhibiting cell growth and inducing apoptosis. 

Although epicatechin has not demonstrated anti-proliferative effects, the catechin and 

epicatechin were found to significantly inhibit proliferation after esterification with gallic 

acid to form gallate and ECG. Similarly, gallic acid group of EGCG significantly enhanced 

catechin's anti-cancer potential. This property may be used to synthesize flavonoid 

derivatives to develop novel anti-cancer agents in the future [144]. Khandelwal et al. 
established that EGCG functions as an Hsp90 inhibitor [145]. They found that the prenyl-
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substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system act as a novel scaffold that 

exhibits greater Hsp90 inhibition than EGCG. The abilities of various green tea polyphenols 

to inhibit cell growth, RAS signaling, and activator protein-1 (AP-1) activity were 

compared. With the exception of epicatechin, all of the tea polyphenols showed strong 

inhibition of cell growth and AP-1 activity. Among these compounds, both the galloyl 

structure on the B-ring and the gallate moiety inhibited growth and AP-1 signaling with the 

galloyl structure contributing the strongest effects. Catechin epimers such as theaflavin-3,3'-

digallate, inhibited the phosphorylation of p38. EGCG decreased levels of c-Jun, while 

theaflavin-3,3'-digallate decreased the level of fra-1. Based on the results they suggested that 

catechins and theaflavins inhibited AP-1 activity and the MAPK pathway through different 

mechanisms [146]. EGCG inhibited the chymotrypsin-like activity of the proteasome 

organelle both in vitro and in vivo at concentrations equivalent to that found in the serum of 

green tea drinkers. Atomic orbital energy analyses and HPLC demonstrated that the carbon 

of the polyphenol ester bond is necessary for inhibition of proteasome activity in cancer cells 

[147, 148]. In an effort to discover more stable polyphenol proteasome inhibitors, Landis-

Piwowar et al. [149] synthesized several novel EGCG analogs and observed that elimination 

of hydroxyl groups from either the B- or D-ring decreased proteasome inhibition in vitro. 

Another group developed alkyl gallate and gallamide derivatives with strong anti-

proliferative and apoptotic activity against human cancer cells by using the EGCG-derived 

galloyl group as a core structure [150]. Dodo et al. [150] the pioneers of the aforementioned 

technique, subsequently added a galloyl group into alkyl gallates and gallamides to 

synthesize various bisgallate and bisgallamide derivatives. This enhanced the anti-

proliferative effects of gallamides but not alkyl gallates.

3.3. Resveratrol

It is a polyphenolic phytoalexin stilbenoid derivative of stilbene (Fig. 4A), produced 

naturally by a wide variety of plants such as grapes, peanuts, mulberries, cranberries, and 

eucalyptus. Resveratrol is known to possess cardio-protective, antioxidant, neuroprotective, 

immunomodulatory, anti-inflammatory, metabolism-regulating, and anti-cancer effects 

[151]. An accumulating body of evidence has shown that resveratrol inhibits cell growth and 

induces apoptosis in various melanoma cells by S-phase cell cycle arrest and down-

regulation of cyclins [152, 153]. In addition, Caltagirone et al. [154] found that 

intraperitoneal administration of resveratrol delayed the tumor growth in mice. Fang et al. 
[155] recently found that resveratrol enhances the sensitivity of melanoma cells to radiation 

by inhibiting proliferation and inducing apoptosis. The anti-proliferative effects of 

resveratrol following radiation were associated with decreased expression of the proliferative 

molecules. Decreased expression of the anti-apoptotic molecules cFLIP, Bcl-2 and survivin 

correlated with the apoptotic effects of resveratrol after radiation. In a recent study, 

Gatouillat et al. [156] showed that resveratrol inhibited the growth of a doxorubicin-resistant 

B16 melanoma cells through inhibition of the G1/S phase transition, down-regulation of 

cyclin D1/cdk4, and increased expression of p53, which ultimately induced apoptosis. 

Furthermore, resveratrol reduced the growth of doxorubicin-resistant B16 melanoma cells in 

mice and prolonged survival of mice compared to untreated controls. In studies of DR5-

positive melanoma cells, Ivanov et al. [157] found that resveratrol decreased signal 

transducer and activator of transcription 3 (STAT3) and NFκB activation, suppressed Bcl-xL 
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and cFLIP proteins, and enhanced cellular sensitivity to exogenous TRAIL. Furthermore, 

upregulation of the α-melanocyte-stimulating hormone (α-MSH) signal transduction 

pathway involving Wnt/β-catenin, c-kit, and MITF were suppressed by resveratrol [158]. 

These signaling pathways have well-established roles in the immortality, viability, and 

invasiveness of melanoma cells [159]. In addition, Lee et al. [160] found that resveratrol 

inhibited STAT3 acetylation, which is markedly increased in melanoma cells when 

compared to normal melanocytes. Inactivation of the estrogen receptor alpha (ERα) gene via 

methylation strongly correlates with poor prognosis as well as an aggressive phenotype of 

melanoma [159]. Resveratrol reactivates gene expression in tumors by reducing STAT3 

acetylation [158]. In addition, it triggers protective autophagy by increasing signaling 

through the ceramide/AKT/mTOR pathway in B16 melanoma cells [161]. In a recent study, 

Trapp et al. [162] found that resveratrol stimulated isolated human umbilical vein cell 

(HUVEC) proliferation, however it resulted in growth inhibition of HUVECs grown with 

melanoma cells in three-dimensional co-culture and in three-dimensional spheroids. This 

selective effect of the compound on melanoma cells was associated with increased p53 

expression and matrix protein thrombospondin-1. Resveratrol inhibited vascular endothelial 

growth factor (VEGF) production through enhanced expression of hypoxia inducible 

factor-1α. Furthermore, resveratrol reduced hepatic metastatic invasion of B16M melanoma 

cells inoculated intra-splenically by decreasing vascular adhesion molecule 1 expression in 

the hepatic sinusoidal endothelium. This consequently decreased B16M cell adhesion to 

endothelial cells through late activation of antigen 4. Resveratrol was found to inhibit the 

nuclear translocation and transcriptional activity of NFκBp65, an important inducer of EMT. 

This lead to significantly prolonged animal survival time and reduced melanoma tumor sizes 

in vivo. This was associated with inhibition of lipopolysaccharide induced tumor migration 

and decreased markers of EMT [159, 163]. These data support a potential use of mono or 

combination resveratrol therapy for the management of melanoma.

3.3.1. Bioavailability of Resveratrol—The bioavailability and pharmacological activity 

of resveratrol in rabbits, rats, and mice models have been reported after intravenous and oral 

administration [151]. Oral treatment of mice with 20 mg/kg resveratrol yielded the highest 

plasma concentration (2.6 ±1.0µM) after 5 min. In another study, Asensi et al. [164] reported 

that intravenous administration of resveratrol (20 mg/kg) to rabbits yielded its maximum 

concentration in plasma (42.8 ± 4.4 µM) 5 min after administration, but reduced rapidly to 

0.9 ± 0.2 µM (0.2 mg/l) at 1 hr. More importantly, when the same quantity of resveratrol is 

administered orally, the maximum concentration reached in plasma (2–3 µM in mice and 

about 1 µM in rabbits or rats) within the first 5 min after administration followed by a 

decrease in its level to less than 0.1 µM at 1 hr [165–167]. Compounds such as glucuronides 

or sulfates are the most common resveratrol metabolites found in human plasma or urine 

following oral consumption [168, 169]. In another studies, administration of single dose of 

0.5 g to 5 g resveratrol in 40 healthy volunteers showed that free resveratrol is rapidly 

absorbed with a comparatively low mean plasma concentration from 73 ng/mL (50.3 

mmol/L) to 539 ng/mL (52.4 mmol/L) respectively [168–170]. After 5–6 hrs, the 

concentration of resveratrol metabolites [resveratrol-3-O-sulfate (with a maximum 

concentration of 1135–4294 ng/mL (3.7–14 mmol/L) and monoglucuronides] was 20 fold 

high than the free resveratrol with plasma half-life of 2.9 – 11.5 hrs.
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3.3.2. Structure Activity Relationship of Resveratrol—Resveratrol has demonstrated 

its potential to inhibit melanoma growth by targeting various signaling pathways [153–157, 

159, 171]. Murias et al. [172, 173] synthesized resveratrol derivatives by increasing the 

number of hydroxyl groups on the phenol rings of the stilbene structure and evaluated their 

anti-tumor potential against human cancer cell lines. The cytostatic activity exhibited by 

hydroxystilbenes with ortho-hydroxyl groups was three-fold higher as compared to 

hydroxystilbenes with other moieties. Hydroxylated resveratrol analogs exhibited COX-2 

inhibition, while methoxylated resveratrol did not exhibit these effects. In addition, 

resveratrol derivatives such as 3’,4′,3,5-tetrahydroxy-trans-stilbene (piceatannol), 3,4,4′,5-

tetrahydroxy-transstilbene and 3,4,5,3′,4′,5′-hexahydroxy-trans-stilbene (Fig. 4B,C,E) 

demonstrated a 6,600-fold anti-radical activity above resveratrol. In another study, Lee et al. 
[174] found that the hydroxyl group at the meta position of the B-ring is crucial for 

MEK/ERK inhibition in the resveratrol analogue, 3,5,3′,4′,5′-pentahydroxy-trans-stilbene 

(Fig. 4D), which acts by inhibiting cell transformation. An accumulating body of evidence 

has demonstrated that increasing the number of hydroxyl groups on the ring-structure further 

enhances the cytotoxic and free-radical-scavenging effects of resveratrol [172–175]. 

Furthermore, Murias et al. [172, 173] reported that hexahydroxystilbene (M8) (Fig. 4E) was 

the most effective resveratrol analogue against various cancer cell lines including melanoma 

through inhibition of deoxynucleosidetriphosphate formation (dATP and dTTP) by 

inhibition of enzyme ribonucleotide reductase. Moreover, hexahydroxystilbene (M8) was 

active in inhibiting the melanoma growth in two different melanoma animal models. Wachek 

et al. [176] demonstrated that hexahydroxystilbene (M8) was effective in sensitizing 

malignant melanoma in vivo as a single compound and in combination with dacarbacine. In 

this study, animals that were treated with a combination of hexahydroxystilbene (M8) and 

decarbacine were found to be tumor free due to synergistic action of these compounds. 

Furthermore, hexahydroxystilbene (M8) inhibited cell migration in matrigel assays. In 

addition, hexahydroxystilbene (M8) inhibited melanoma tumor growth and prevented 

metastasis of melanoma cells to distant lymph nodes in the SCID mouse model [177–179]. 

Monohydroxylated resveratrol (also, piceatannol) possesses better anti-tumor activity than 

resveratrol itself and is a potent COX-2 inhibitor. Piceatannol has also been found to induce 

apoptosis of SK-MEL-28 melanoma cells by downregulating cyclins A, E and B1 (causing 

cell cycle arrest at the G2 phase) and by inhibiting NFκB signaling [152]. In fact, Ashikawa 

et al. [180] demonstrated that the hydroxyl groups of stilbenes are critical for suppression of 

NFκB activation. Studies using human melanoma cells demonstrated that 3,4,5,4′-

tetramethoxystilbene (DMU-212) (Fig. 4F) exerts it anti-mitotic effect by ERK1/2 activation 

[181]. Moreover studies have demonstrated that methylation at key positions of the cis-

resveratrol (Fig. 4G) form results in more potent methylated analogs of cis-resveratrol 

(cis-3,5,4′-trimethoxystilbene) (Fig. 4H) with enhanced anti-cancer properties [182].

3.4. Curcumin

Curcumin (Fig. 5A) is a hydrophobic, polyphenolic, bioactive compound extracted from the 

rhizome of the dietary spice turmeric (Curcuma longa). Turmeric, commonly found in curry 

powder, has been used for centuries in indigenous medicine as it possesses wide-range of 

anti-inflammatory, antioxidant, and anti-cancer properties [183]. The chemotherapeutic 

potential of curcumin is evident by its known abilities to induce apoptosis and cell adhesion 
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as well as inhibit angiogenesis in cancer cells. Phase I and phase II clinical trials have 

established its safety and therapeutic efficacy in cancer patients [184]. The compound was 

found to exert its anti-cancer effects by targeting AKT [185], NFκB [186], AP-1 [187], and 

c-Jun N-terminal kinase [188].

In melanoma cells, curcumin has been found to induce apoptosis through several 

mechanisms including upregulation of p53, p21(Cip1), p27(Kip1), and checkpoint kinase 2. 

It also decreases cancer cell survival by downregulating NFκB, iNOS, and DNA-dependent 

protein kinase catalytic subunit expression [189]. Furthermore, curcumin treatment of 

melanoma cells attenuated NFκB binding activity without suppressing the BRAF kinase 

pathway or AKT phosphorylation. Evidence suggests that curcumin decreases tumor growth 

by inhibiting glutathione S-transferase, inducing apoptosis through the Fas receptor/

caspase-8 pathway, inhibiting COX enzymes, and by downregulating NFκB signaling [190–

192]. Endoplasmic reticulum (ER) stress triggers curcumin to activate death pathways 

through p23 cleavage and downregulation of the anti-apoptotic Mcl-1 protein in melanoma 

cells [193]. Furthermore, the anti-metastatic potential of curcumin worked by 

downregulating collagenase activity, FAK expression, and MMP-2 function. It also 

modulated integrin receptors and upregulated the expression of E-cadherin [194]. Curcumin 

also has the potential to reverse melanoma cell multi-drug resistance by inhibiting 

glutathione-S-transferases [195, 196]. Elevated expression of the phosphatase of 

regenerating liver 3 (PRL-3), a member of tyrosine phosphatase family, has been found in 

highly metastatic melanomas. PRL-3, an oncogene that promotes tumor cell motility and 

invasion [197, 198], was downregulated by curcumin [199], thus raising its profile as a 

possible anti-cancer agent.

Curcumin suppresses osteopontin (OPN)-induced IκBα phosphorylation and degradation by 

inhibiting the IKK activity in B16F10 murine melanoma cells. Furthermore, curcumin 

inhibited the OPN-induced translocation of NFκBp65, NFκB-DNA binding, and NFκB 

transcriptional activity along with reduction of MMP activities. As a consequence of 

reduction in the NFκB signaling pathway, it synergistically induced apoptosis by inhibiting 

OPN-induced cell proliferation, migration and invasion. More importantly, curcumin 

suppressed the OPN-induced tumor growth in nude mice [200, 201]. Oral administration of 

curcumin in melanoma-tumor-bearing mice has been found to inhibit the lung metastasis of 

melanoma by as much as 80%, thus lengthening the survival of mice by 144% [202, 203].

3.4.1. Bioavailability of Curcumin—Pharmacological studies have shown that curcumin 

is non-toxic and effective in the treatment and prevention of many diseases. Epidemiological 

and scientific evidence have shown its beneficial health effects as antioxidant, anti-

inflammatory and anti-cancer agent [204]. In one study, oral administration of curcumin 

2g/kg in experimental rats resulted in 1.35±0.23 µg/ml peak serum concentration after 0.83 

hr, though the same dose in humans resulted in very low serum levels (0.006±0.005 µg/ml) 

after 1 hr [205]. In another study, Cheng et al. [206] reported that 4–8 g/kg oral 

administration of curcumin to humans resulted in 0.41–1.75µM/ml peak plasma 

concentration after 1 hr. Clinical trials demonstrated a 11.1 nmol/L plasma concentration in 

participants one hour after 3.6 g/kg oral administration of curcumin [207]. However, 
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intravenous administration of curcumin in rats showed a 50-fold higher serum concentration 

when compared to oral administration [208].

3.4.2. Structure Activity Relationship of Curcumin—Curcumin, a natural diaryl 

heptanoid, can be obtained from substituted aryl aldehydes and acetylacetone, which enables 

the synthesis of a diverse set of curcumin analogs. Numerous analogs have been synthesized 

and are being tested against known biological targets to improve upon the pharmacological, 

absorption, distribution, metabolism and secretion profile by modifying substitutions on its 

aromatic rings, the β-diketone moiety, and the two flanking double bonds that are 

conjugated to the β-diketone moiety. This has led the way for researchers to further study the 

structure-activity relationship of curcumin in medicinal chemistry [209, 210]. Interestingly, 

Pisano et al. [211] recently showed that a new curcumin analog alpha,beta-unsaturated 

ketone D6 [(3E,3'E)-4,4'-(5,5',6,6'-tetramethoxy-[1,1'-biphenyl]-3,3'-diyl)bis(but-3-en-2-

one)] (Fig. 5E) was more effective at inhibiting melanoma cell growth and inducing 

apoptosis in vitro and in vivo when compared to curcumin [211, 212]. Other curcumin 

analogs (FLLL32 and FLLL62) (Fig. 5C–D) reduced STAT3 phosphorylation resulting in 

apoptosis induction at micromolar concentrations in human melanoma cell lines. 

Furthermore, treatment with these analogs inhibited STAT3 target genes expression, 

uncoupled mitochondrial membrane potential and induced caspase-mediated apoptosis [213, 

214]. The DM-1 compound (Sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3- oxo-penta-1,4-

dienyl]-2-methoxy-phenolate) (Fig. 5B) is a curcumin analog that possesses curcumin’s anti-

proliferative, anti-tumor, and anti-metastatic characteristics [215]. A recent study by Zhang 

et al. [216] demonstrated that EF24 (diphenyl difluoroketone) (Fig. 5F) suppressed 

melanoma cell migration and EMT by targeting HMGA2.

3.5. Proanthocyanidins

Proanthocyanidins, the secondary metabolites of plants are present in various fruits and 

plant-derived beverages such as cocoa, grapes, apple, tea and red wine [183, 217, 218]. 

Proanthocyanidins belong to a class of condensed tannins made of (+)-catechin, (−)-

epicatechin and other flavonoid oligomers and polymers. Linkages between these oligomers 

and polymers typically consist of B type (C4→C6 or C8) or A-type bonds (C2→O7). Grape 

seed extract proanthocyanidins (GSPs), the most common proanthocyanidin consumed by 

humans, contain B-type linkages. Grape seeds are considered as a good source of 

polyphenolic proanthocyanidins and procyanidins. GSPs exhibit antioxidant and anti-

inflammatory properties [183, 219, 220]. GSPs are predominantly composed of 

proanthocyanidin, catechin or epicatechin oligomers [219]. Although GSPs have been shown 

to have antioxidant, photo-protective, and anti-tumor effects, their chemotherapeutic/

preventive effects on melanoma are yet to be explored. In a recent study, Vaid et al. [221] 

demonstrated the effect of GSPs on melanoma cell invasion and delineated the molecular 

mechanism underlying these effects. GSPs inhibited melanoma cell invasion through 

decreased COX-2 expression and PGE2 production. It also decreased cellular migration and 

phosphorylation of ERK1/2 induced by 12-O-tetradecanoylphorbol-13-acetate. GSPs also 

inhibited the activation of NFκBp65. Inhibition of melanoma cell invasion by GSPs 

increased the levels of epithelial biomarkers with a concomitant loss of mesenchymal 

biomarkers in melanoma cells, indicating that inhibition of invasion was related with 
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reversal of the EMT process [221]. In addition, a murine study found grape seed extract 

administration to be associated with significantly fewer metastatic pulmonary melanoma 

nodules (a 26% decrease) when compared to controls [222].

3.5.1. Bioavailability of Proanthocyanidins—In the United States, the average dietary 

intake of proanthocyanidins has been estimated to be 58 mg/day [223, 224]. Absorption of 

monomeric flavonoids including (+)-catechin and (−)-epicatechin following the 

consumption of dietary proanthocyanidins has been reported in humans and animals, either 

as parent compounds or conjugated metabolites. There have been limited and conflicting 

bioavailability studies of larger proanthocyanidins to-date [225, 226]. In a study, Deprez et 
al. [227] demonstrated that human microbiota degrade proanthocyanidins to low molecular 

weight phenolic compounds. Moreover, appearance of simpler compounds such as benzoic 

acids, phenylpropionic acids, phenylacetic acids, phenylvaleric acids, phenylpropionic acids, 

and phenylacetic acids in the plasma and urine have been reported after proanthocyanidin 

melabolism [228, 229]. Animal and human studies have demonstrated the detection of 

unconjugated procyanidin B2 in plasma 30 min following consumption of proanthocyanidin 

extracts or proanthocyanidin-rich seeds. Levels of unconjugated procyanidin B2 were found 

to peak approximately 2 hrs after high-dose oral proanthocyanidin administration with an 

associated 63% excreted in the urine within 4 days of administration [224–226]. However, 

the bioavailability of larger proanthocyanidins is still unclear [226, 230].

3.5.2. Structure Activity Relationship of Proanthocyanidins—Structural analogs of 

proanthocynidins have been synthesized and evaluated for anti-cancer potential due to their 

unique structures and significant biological activities. Kashiwada et al. [231] reported on the 

cytotoxic potential of proanthocyanidins in an analysis of 57 tannin-related compounds such 

as gallotannins, ellagitannins and condensed/complex tannins. These compounds exhibited 

weak cytotoxicity against RPMI-7951 human melanoma cells while being less active against 

several other cell lines [231, 232]. Synthesis and evaluation of anti-tumor activity of 

proanthocynidin was first reported by Kozikowski et al. [233]. Numerous compounds were 

synthesized and their efficacy was tested against various human cancer cell lines. 

Kozikowski et al. [234] synthesized procyanidin epicatechin oligomers and evaluated for 

anti-tumor potential. Cytotoxic effects were observed based on the induction of cell cycle 

arrest in the G0/G1 phase was associated with high degree of oligomerization and activity 

was observed for the epicatechin dimer, trimer and tetramer. Prodelphinidin B1, B2 and B4 

showed significantly better cytotoxic activity than EGCG and prodelphinidin B3 (Fig. 6A–

D). Prodelphinidin B3 and C2 were almost the same as EGCG (Fig. 6D,E) [235].

3.6. Silymarin

Silymarin, a flavanolignan extracted from the milk thistle plant (Silybum marianum L. 

Gaertn) [236, 237], possesses important therapeutic potential. Silymarin exists as a mixture 

of three flavonolignans, silybin, silydianin and silychristin with silybin serving as the most 

abundant (70–80%) and most biologically active component [238]. Pharmacological studies 

have shown that silymarin is safe even at higher physiological doses, which may translate to 

safety for human use. Silymarin possesses antioxidant, anti-inflammatory, cytoprotective, 
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and anti-carcinogenic properties [239, 240]. An accumulating evidence suggests that both 

silymarin and silybin exhibit similar chemopreventive properties [241, 242].

Silymarin has been found to inhibit migration and invasion of melanoma cells by targeting 

the β-catenin signaling pathway. It inhibited nuclear translocation of β-catenin, increased 

levels of casein kinase 1α, upregulated glycogen synthase kinase-3β (GSK-3β), enhanced 

β-catenin phosphorylation and thus increased binding of phosphorylated β-catenin with β-

transducin repeat-containing proteins (β-TrCP) [102]. Furthermore, silymarin reduced 

MMP-2 and MMP-9 levels, which are down-stream effectors of β-catenin signaling 

pathway. In another study, Lee et al. [243] reported that silybin induces cell cycle arrest at 

G1 phase and inhibits MEK1/2, ribosomal S6 Kinase 2 signaling and phosphorylation of 

ERK1/2 in melanoma cells. Furthermore, it reduced NFκB, AP-1 and STAT3 activation in 

melanoma cells in vitro and in vivo. In addition, silymarin increased apoptosis of melanoma 

cells by upregulating Fas-associated proteins with death domain (FADD) expression and 

enhancing procaspase-8 cleavage [244].

3.6.1. Bioavailability of Silymarin—In a study Schandalik et al. [245] demonstrated 

that, after single dose of oral administration of 120 mg silybin in 14 patients demonstrated 

that it was quickly absorbed from the gastrointestinal tract and levels of free drug peaked 

within 3 hrs. Total (free + conjugated) silybin levels (≥400 ng/ml) reached a peak at about 3 

to 4 hrs were >40 fold higher than the free silybin and maintained up to 24 hrs. After 

reaching peak concentration at about 3 to 4 hrs, free silybin levels were declined and at 12 

hrs reaches to limit of quantification (2 ng/ml). Administration of single dose of silipide and 

silymarin (120 mg, as silybin) demonstrated a several-fold higher serum concentration of 

silipide after 4 hrs versus silymarin. Forty-eight hours after oral silipide and silymarin 

administration, 11% and 3% silybin was observed in bile, respectively [246]. This study 

confirmed that silybin (derived from silipide) has superior bioavalability as compared to 

silymarin. Furthermore, Weyhenmeyer et al. [247] demonstrated a linear dose-response 

relationship in a human investigation of oral silybin administration. Approximately 10% of 

total silybin in plasma was found to be unconjugated within 4–6 hrs. Moreover, elimination 

half-life for total silybin was ~6 hrs and about 5% of the silybin administered was excreted 

into the urine indicating the good renal clearance. More importantly, silymarin is very well 

tolerated in humans without any adverse health effects [247, 248].

3.6.2. Structure Activity Relationship of Silymarin—Since silymarin is a mixture of 

three isomers with silybin (Fig. 7A) acting as the most active as hepato-protective agent, 

Ahmed et al. [249] synthesized different analogous and evaluated them for structure activity 

relationship. The most hepato-protective analog contained a hydroxymethyl group at 

position 2 of the dioxanes ring. In a recent study, Agarwal et al. [250] synthesized and 

characterized a series of silybin derivatives namely 2,3-dehydrosilybin (DHS), 7-O-

methylsilybin (7OM), 7-Ogalloylsilybin (7OG), 7,23-disulphatesilybin (DSS), 7-O-

palmitoylsilybin (7OP), and 23-O-palmitoylsilybin (23OP). In an investigation of the anti-

cancer activity of these compounds, 2,3-dehydrosilybin (DHS), 7-O-methylsilybin (7OM), 

7-Ogalloylsilybin (7OG) (Fig. 7B–D) exhibited improved growth inhibitory effects 

compared to silybin. Results from their study clearly suggest that structural modifications 
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can improved the anti-cancer efficacy of silybin. Furthermore, many water-soluble semi-

synthetic analogs of silybin were prepared by various laboratories but increased in water 

solubility led to decrease in the activity.

3.7. Apigenin

Apigenin (4',5,7-trihydroxyflavone) (Fig. 8A), a flavonoid belonging to the flavone 

structural class, is found in plants such as parsley, celery, artichokes and chamomile. A 

growing body of evidence has shown that apigenin possess antioxidant, anti-mutagenic, anti-

carcinogenic, anti-inflammatory, and anti-proliferative properties [251]. In addition, 

preparations from chamomile have been historically used to treat cutaneous inflammation 

and other dermatological diseases [251]. Apigenin has been identified as a cancer 

chemopreventive agent owing to its potent antioxidant, anti-melanoma and anti-

inflammatory activities with low toxicities [252, 253]. In two separate studies, Caltagirone et 
al. [154] and Piantelli et al. [254] found that apigenin inhibited melanoma tumor growth 

(B16-BL6 melanoma cells) in vivo and inhibited VEGF secretion by downregulating 

ERK1/2 and PI3K/AKT signaling in vitro [252]. Moreover, apigenin significantly decreased 

the invasion of melanoma cells in vitro and inhibited lung metastasis in vivo by reducing 

lung colonization of B16-BL6 cells in mice [154, 254]. In a recent study, Das et al. [255] 

observed that apigenin inhibits cell growth and induced apoptosis in A375 melanoma cells 

with no concomitant toxicity to peripheral blood mononuclear cells. Further, apigenin’s 

therapeutic efficacy was enhanced by the poly-lactic-co-glycolide formulation, since this 

vehicle readily enters cancer cells, intercalates with dsDNA, and induces conformational 

change [256].

3.7.1. Bioavailability of Apigenin—Apigenin’s low intrinsic toxicity and anti-cancer 

potential have gained attention in recent years. The pure form of apigenin is unstable and 

least soluble in water and organic solvents. In nature, apigenin exists in the form of water-

soluble glycoside conjugates and acylated derivatives [257, 258]. The absorption and 

bioavailability of apigenin is determined by conjugated moiety, since the compound 

undergoes enzymatic cleavage by mammalian or microbial glucosidases before absorption. 

It has been found that apigenin remains bound to β-galactoside in its natural form, which 

provides its best bioavailability [259–261]. In the gut, apigenin is metabolized via uridine 5'-

diphospho-glucuronosyltransferase UGT1A1 as glucoroside and sulfate conjugates, which 

are more easily excreted in bile or urine. Gradolatto et al. [259] have shown that apigenin 

appeared in the blood 24 hrs after oral intake of a single dose of radio labeled apigenin. In 

rats, oral intake after a single dose of radio-labeled apigenin resulted in 51% detection of 51, 

12, 1.2, 0.4, 9.4, 1.2, and 25% of the radioactive compound in urine, feces, blood, kidneys, 

intestine, liver, and the remaining tissues, respectively, within 10 days. Furthermore, kinetics 

of apigenin in blood exhibited a relatively high elimination half-life of 91.8 hrs (slow 

excretion) compared to other dietary flavonoids [258, 261]. These results clearly 

demonstrated the limited bioavailability of apigenin, though slow pharmacokinetics may 

lead to possible accumulation of this flavonoid in the tissues to effectively impart its 

chemopreventive effects [259–262].
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3.7.2. Structure Activity Relationship of Apigenin—Protoapigenone, a natural 

apigenin derivative, has demonstrated a 10-fold greater anti-tumor activity than apigenin in 
vitro and in vivo [143, 263, 264]. Several apigenin derivatives have been synthesized and 

studied for their anti-cancer potential [265, 266]. Derivatives such as 1'-O-alkyl-

protoapigenone and protoapigenone 1'-O-butyl ether (Fig. 8B,C) exerted significantly 

stronger activity than the non-substituted analog protoapigenone. On the contrary, β-

naphthoflavone derivatives containing same pharmacophore when substituted with an O-

alkyl side-chain at position 1 showed decreased cytotoxic activities. Furthermore, Liu et al. 
[267] demonstrated that nitrogen-containing apigenin analogs (R= ethylamino, propylamino, 

isopropylamino etc.) showed better anti-cancer and antioxidant potential (Fig. 8D).

3.8. Capsaicin

Capsaicin (Fig. 9A), a pungent component of chili peppers, is one of the most commonly 

used spices in the world [268]. Though capsaicin has historically been used for its anti-

inflammatory and analgesic abilities [268], it is receiving increasing attention for its anti-

tumor properties [269]. Evidence suggests that capsaicin induces A375 melanoma cell 

apoptosis by activating caspases 3, 8, and 9, which is accelerated by its downregulation of 

Bcl-2 [270]. It also reduces melanoma cell survival by decreasing NFκB activity [271, 272]. 

The compound was found to inhibit growth and increase apoptosis of A375 and SK-MEL-28 

melanoma cells by inhibiting plasma membrane NADH oxidase activity [273]. It also 

inhibited the migration of B16-F10 melanoma cells through inhibition of the PI3K/AKT/

Rac-1 pathway [268]. The compound’s effects on VEGF are currently under debate, 

however. While Patel et al. [271, 272] found that capsaicin decreased cell proliferation 

through enhanced VEGF production in A375 melanoma cells. Min and colleagues [274] 

observed its ability to decrease angiogenesis in cultured human endothelial cells. Despite the 

current uncertainty of capsaicin’s effects on VEGF production, the body of evidence 

suggests that capsaicin promotes apoptosis, decreases survival, and inhibits migration of 

melanoma cells.

3.8.1. Bioavailability of Capsaicin—Capsaicin is a lipophilic compound that has 

demonstrated fast absorption and a short half-life in humans. In addition, the compound 

resists diffusion and in vitro studies have shown that it exhibits a slow cutaneous 

biotransformation in humans [275, 276]. After intragastric administration of 15 mg/kg body 

weight capsaicin in rats, the plasma concentrations peaked to approximately 10 ng/ml after 

the first hr and then declined rapidly, with an absolute bioavailability of orally administered 

capsaicin to be 0.106% [277, 278]. According to Chaiyasit et al. [279] oral administration of 

capsaicin (26.6 mg) in humans resulted in maximum plasma concentration of 47.1 (2.0) min 

with T1/2 of 24.9 (5.0) min, and 2.5 (0.1) ng ml−1 of Cmax. In another study conducted by 

Suresh and Srinivasan [280], oral administration of 30 mg/kg body weight capsaicin in rats 

demonstrated 94% bioavailability. In a recent study, Rollyson et al. [281] demonstrated that 

orally administered capsaicin resulted in detectable levels in the liver, lungs, kidney and 

serum of the mice within 15 min after oral administration. The maximum concentration was 

observed at 60 min and the lungs exhibited the greatest absorption.
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3.8.2. Structure Activity Relationship of Capsaicin—The cytotoxic potential of 

vanilloid compounds was evaluated by modifying vanilloid ring pharmacophores and 

nonivamide analogs of capsaicin versus the transient receptor potential vanilloid-1 (TRPV1). 

Specific regions of the compound including the aromatic “A-ring”, the hydrogen bond-

donating group in the “B-region” and the hydrophobic hydrocarbon “C-region” tail are 

required for maximum potency at TRPV1 [282–285]. Analogs with “A-ring” modification 

such as 6-iodo-nordihydrocapsaicin (Fig. 9B) and 3-methoxy-4-hydroxybenzyl have been 

identified as the most potent. Removal of the 4-OH or 3-MeO moieties or modification of 

positions 2, 5 and 6 of the “A-ring” has been found to significantly reduce its activity [277, 

286, 287].

3.9. Genistein

Genistein (4',5,7-trihydroxyisoflavone) (Fig. 10A), a phytoestrogen and isoflavone found in 

soybeans with structural and functional similarities to estrogen, has anti-inflammatory and 

antioxidant effects with ongoing investigation into its ability to prevent and treat cancer, 

metabolic syndrome, diabetes, and chronic inflammatory diseases. Genistein has been found 

to inhibit angiogenesis, promote apoptosis, reduce tumor metastasis, and decrease 

proliferation in various malignancies ranging from neuroblastoma to breast cancer [100, 

288, 289]. It has been found, however, to promote melanoma cell differentiation through 

stabilization of protein-linked DNA strand breakage in SK-MEL-131 cells [290, 291]. 

Genistein has been shown to have beneficial effects against various melanoma cells by 

inhibiting cell cycle progression and inducing apoptosis while inhibiting tumor growth and 

metastasis potential of B164A5 melanoma cells in C57BL/6J mouse model [289, 292, 293]. 

Genistein inhibited cell cycle progression in melanoma cells by targeting cellular p53, p21, 

checkpoint kinase 2 (Chk2) [294–297]. Furthermore, it inhibited invasion, cell adhesion and 

lung metastasis of melanoma cells in mice [298–300]. It also inhibited angiogenesis in 

mouse model of melanoma [288, 301]. Moreover, it induced differentiation of mouse and 

human melanoma cells [302–304].

3.9.1. Bioavailability of Genistein—Genistein’s high lipid solubility, significant first-

pass metabolism and fast gut transit time strongly limit its bioavailability [305, 306]. 

However, Coldham et al. [307] observed a peak serum concentration 30 min after an oral 

administration of 4 mg/kg. In another study, Steensma et al. [308] were able to detect serum 

genistein 15 min after portal vein administration. Oral treatment yielded a 5.49 µM 

maximum concentration after 15 min. In another study, Kwon et al. [309] found that 4, 20 

and 40 mg/kg genistein oral administration resulted in 39, 24 and 31% bioavailabilities, 

respectively. Oral genistein treatment (40 mg/kg) yielded a Tmax, Cmax and AUC(0−∞) of 2 

hrs, 4880 ng/ml and 0.03 mg hr/ml, respectively. It is suggested that in infants, consumption 

of 4–7 mg/kg per day of total genistein will result in 1–5 µM of total circulating genistein. 

Adults can safely consume 1mg/kg of genistein per day resulting in ~0.5 µM serum 

concentration. An accumulating body of evidence has shown that genistein is safe and very 

well tolerated in humans [310–312].

3.9.2. Structure Activity Relationship of Genistein—Several synthetic analogs of 

genistein have been developed to explore its potential beneficial effects [313]. Ullah et al. 
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[314] found that genistein possessed greater antioxidant and DNA-protective effects than its 

methylated structural analogue biochanin A (Fig. 10B). Genistein derivatives with 

substitutions at the C7 hydroxyl group of the A-ring exhibited anti-mitotic activity while 

analogs substituted at the 4′-position of the B-ring (Fig. 10C) induced p53-independent G1 

cell-cycle arrest and autophagy [315]. In addition, genistein derivatives have been found to 

be non-genotoxic [316]. Several studies have shown that genistein glycoconjugates (Fig. 

10D) exhibit anti-proliferative potential [313, 317, 318] and even induce cell cycle arrest 

[319, 320]. Interestingly, some of these analogs also inhibited microtubule assembly [318, 

319, 321].

3.10. Indole-3-Carbinol

Indole-3-carbinol (I3C) (Fig. 11A) is a bioactive metabolite of glucosinolate glucobrassicin, 

a substance found at high concentrations in vegetables from the family Cruciferae including 

broccoli, cauliflower, and Brussels sprouts [322, 323]. The compound has been found to 

inhibit proliferation through various mechanisms in various cancer cell lines [322]. Animal 

models have also demonstrated the promise of I3C in the prevention of chemical-induced 

tumorigenesis of breast, liver, lung, cervical, and gastrointestinal tract tissues [324]. Thus 

far, I3C has only been found to promote apoptosis in melanoma cell lines. In addition, I3C 

sensitized G361 melanoma cells to UVB radiation through decreased anti-apoptotic Bcl-2 

expression [325]. Another study found that I3C induces apoptosis in SK-MEL-5 melanoma 

cells by down-regulation of MITF [326]. Furthermore, I3C-mediated anti-proliferative effect 

was through interaction with neuronal precursor cell-expressed developmentally down 

regulated 4 and wild-type PTEN degradation in human melanoma cells [327]. I3C 

consumption was also associated with increased sensitivity to chemotherapy in a study of 

mice with B16 melanoma [328]. I3C is a promising compound that may be effective in 

melanoma therapy, especially since evidence suggests that it decreases the expression of 

MITF, a signaling molecule known to be over-activated in resistant cases of melanoma 

[326].

3.10.1 Bioavailability of Indole-3-Carbinol—Consumption of vegetables from the 

cruciferous family serves as a good source of the I3C precursor, glucobrassicin. Mechanical 

damage to cells from these plants (e.g., during chewing or chopping) results in the formation 

of I3C from the interaction between myrosinase and glucobrassicin [186, 323]. After oral 

ingestion, I3C combines with gastric HCl to form a complex mixture of biologically active 

compounds such as a 3,3'-diindolylmethane dimer and a cyclic trimer. However, acid 

condensation products are less likely to form in the more alkaline environment of the 

intestine. To date, there have been few animal studies investigating the bioavailability of I3C 

[329, 330]. A phase 1 clinical trial demonstrated undetectable plasma concentrations of I3C 

in women who received 400 to 1200 mg oral doses. However, DIM levels (Fig. 11B) were 

detectable with a Cmax of 61 ng/mL and 607 ng/mL after 400 and 1000 mg doses, 

respectively [329, 330].

3.10.2. Structure Activity Relationship of Indole-3-Carbinol—Due to its significant 

anti-cancer potential but weak acid stability, several successful attempts have been made to 

synthesize structural analogs of I3C such as (p-substituted phenyl)-diindoylmethanes 
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peroxisome proliferator-activated receptor γ agonists [331–335], SR13668 (Fig.11H) as an 

AKT inhibitor [336, 337], and an I3C tetrameric derivative (Fig. 11C) as a CDK6 inhibitor 

[338]. Acid-catalyzed condensation resistant analog OSU-A9 ([1-(4-chloro-3-

nitrobenzenesulfonyl)- 1H-indol-3-yl]-methanol) (Fig. 11G) exhibited significantly 

improved pro-apoptotic (100-fold higher) and anti-tumor properties than I3C in vitro and in 
vivo [324, 339]. In addition, I3C-based N-alkoxy derivatives produced a marked increase in 

cell cycle arrest and apoptosis. Furthermore, the inhibitory potential of 3-

methoxymethylindole and 3-ethoxymethylindole (Fig. 11D–E) was similar to I3C. The 

hydroxymethyl group at the C-3 position of the indole ring is likely important in I3C’s 

ability to induce cell cycle arrest since substitutions at that position was found to inactivate 

the compound [340]. Another I3C analog, 1-benzyl-I3C (Fig. 11F), displayed an 

approximate 1000-fold stronger abilities to inhibit proliferation, induce cell cycle arrest and 

down-regulate the production of ERα protein in estrogen responsive cancer cells [341].

3.11. Luteolin

Luteolin (Fig. 12A) is a flavanoid found in a wide variety of dietary sources such as carrots, 

peppers, celery, olives, peppermint, thyme, rosemary, and oregano with known antioxidant, 

anti-inflammatory, and anti-tumor activities. It has been found to inhibit angiogenesis, 

promote apoptosis, and sensitize cells to anti-cancer therapy in a variety of malignancies 

[342]. The compound was found to induce melanogenesis and reduce invasive potential of 

B16F10 melanoma cells by decreasing EMT through inhibition of the β3 integrin/FAK 

signal pathway [343–345]. Luteolin protected DNA, inhibited cell cycle progression and 

promoted apoptosis in A375 melanoma cells in a different investigation [346–348]. In 

addition, the compound was found to inhibit cell growth and increase apoptosis (B16 and 

4A5 melanoma cells) via Bcl-2 downregulation and Bax upregulation [349]. An in vitro 
study of B16 melanoma cells showed that the flavanoid decreased ERK1/2 signaling [350]. 

This compound exhibits promising preliminary activity against melanoma, though further 

investigation will be necessary to confirm its efficacy in the management of the disease.

3.11.1. Bioavailability of Luteolin—Shimoi et al. [351] observed free luteolin and its 

conjugates present in plasma after administration of the compound to rats and humans. 

Plasma concentrations of luteolin and its conjugates peaked between 15 and 30 min after 

treatment with luteolin. Luteolin was absorbed more rapidly when administered with 

propyleneglycol versus 0.5% carboxymethyl cellulose. Furthermore, Zohu et al. [306] 

reported that the absorption rate constant of pure luteolin (5.0 microg/mL) was markedly 

higher in the duodenum and jejunum than the colon and ileum. Luteolin was likely passively 

absorbed given that it was taken up in an ATP-independent manner. Furthermore, oral 

administration in rats resulted a peak concentration and AUC of 1.97 ± 0.15 microg/mL and 

10.7 ± 2.2 microg/mL/hr, respectively [306].

3.11.2. Structure Activity Relationship of Luteolin—Though luteolin is known for 

its antioxidant, anti-inflammatory, and anti-tumor activities, limited studies on its structure-

activity relationship have been conducted. In one study, Cheng et al. [352] synthesized 

luteolin analogs by replacing hydroxy groups at C-3' and C-4' with alkynyl groups using 

neutral, electron-deficient, electron-rich and heteroaromatic (4-pyridine, imidazole alkynes) 
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at the C-4' position. This luteolin analog LA-12 (Fig. 12B), more efficiently sensitized cells 

to TNFα-induced cell death than did luteolin.

4. CONCLUSIONS AND FUTURE DIRECTIONS

Melanoma, with its unique ability to metastasize early, is the most deadly skin cancer 

affecting humans. Patients with metastatic melanoma face a median survival time of only six 

months and have very few targeted chemotherapies available to them. Although personalized 

chemotherapies targeting common mutations such as BRAF and MEK have been developed 

recently, these drugs have only been found to extend progression free survival by a few 

months. Patients who attempt these treatments frequently develop resistance and succumb to 

their disease. Recent studies of combination chemotherapies for the prevention and 

treatment of melanoma give us hope that achieving a cure is indeed possible. If ongoing 

investigations continue their current trajectory, the anti-cancer properties of phytochemicals 

may yield complimentary chemotherapies to augment today’s treatments. Accumulating 

evidence has recently begun to illuminate the various pathways by which these bioactive 

molecules promote apoptosis, inhibit proliferation and suppress EMT of melanoma cells. By 

targeting multiple disrupted signaling molecules critical to the pathogenesis of melanoma, 

phytochemicals such as fisetin, EGCG, silymarin, proanthocyanidin, resveratrol, curcumin, 

apigenin, capsaicin, lupeol, genistein, indole-3-carbinol and luteolin may one-day serve as 

necessary adjuvant chemotherapies to successfully treat metastatic melanoma with minimal 

toxicity. This review highlights the largely untapped anti-cancer potential that 

phytochemicals possess. The obvious need for effective combination therapies to combat 

melanoma and the therapeutic promise that phytochemicals offer grant us a glimpse at a cure 

for melanoma. Ongoing studies are needed to evaluate various combinations of 

phytochemicals with existing drugs such as BRAF and MEK inhibitors. Numerous 

combinations of phytochemicals and targeted chemotherapies will need to be evaluated to 

determine which pairings yield the greatest synergy so that translational studies may then be 

attempted.
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LIST OF ABBREVIATIONS

AP-1 Activator protein-1

CDKN2A Cyclin-dependent kinase inhibitor 2A

COX Cyclooxygenase

EMT Epithelial-mesenchymal transition

FAK Focal adhesion kinase

FLIP Cellular FLICE-like inhibitory protein

GSK-3β Glycogen synthase kinase-3β
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GTP Guanosine-5-triphosphate

MAPK Mitogen-activated protein kinase

MITF Microphthalmia-associated transcription factor

MMP Matrix metallopeptidase

mTOR Mammalian target of rapamycin

NFκB Nuclear factor kappa B

NLRP1 Nuclear localization leucine-rich-repeat protein 1

PGE2 Prostaglandin E2

PI3K Phosphatidylinositol 3-kinase

PTEN Phosphatase and tensin homolog

Rb Retinoblastoma

RGP Radial growth phase

STAT3 Signal transducer and activator of transcription 3

VGP Vertical growth phase

α-MSH Alpha-melanocyte-stimulating hormone
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Fig. 1. 
Signal transduction pathways altered by selected phytochemicals. Fis inhibits PI3K, AKT, 

mTOR, NFκB, MEK, ERK, Wnt, β-catenin, MITF; EGCG inhibits NFκB; Res inhibits 

AKT, mTOR, NFκB, MEK, ERK, β-catenin, MITF, STAT3, c-kit, c-Jun, α-MSH; Sil 

inhibits NFκB, MEK, ERK, β-catenin, STAT3; Cur inhibits PI3K, AKT, NFκB, ERK, 

STAT3; Pro inhibits NFκB, ERK; Cap inhibits PI3K, AKT, mTOR, NFκB; Gen inhibits 

AKT, p38; I3C inhibits AKT, MITF; Lut inhibits α-MSH; Api inhibits PI3K, AKT, ERK, 

MITF, p38. p53 is upregulated by Res, Cur, Gen, Api.

Abbreviations: Fis=Fisetin, EGCG=Epigallocatechin gallate, Res=Resveratrol, 

Sil=Silymarin, Cur=Curcumin, Pro=Proanthocyanidin, Cap=Capsaicin, Gen=Genistein, 

I3C=Indole-3-carbinol, Lut=Luteolin, Api=Apigenin
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Fig. 2. 
Fisetin and its structural analogs.
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Fig. 3. 
EGCG and its structural analogs.
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Fig. 4. 
Resveratrol and its structural analogs.
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Fig. 5. 
Curcumin and its structural analogs.
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Fig. 6. 
Proanthocyanidin and its structural analogs.
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Fig. 7. 
Silybin and its structural analogs.
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Fig. 8. 
Apigenin and its structural analogs.
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Fig. 9. 
Capsaicin and its structural analogs.
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Fig. 10. 
Genistein and its structural analogs.
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Fig. 11. 
Indol-3-carbionol and its structural analogs.
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Fig. 12. 
Luteolin and its structural analogs.
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Table 1

Phytochemicals and their cellular targets

Name Sources Targets References

Fisetin Onion, cucumber, 
apple, persimmon, 
strawberry

• Inhibits cell growth, EMT and invasion

• Induces cell cycle arrest and apoptosis

• Inhibits PI3K, AKT, mTOR, NFκB, MEK1/2, 
ERK1/2, Wnt, β-catenin, and MITF

[106, 108, 110–112]

EGCG Green tea • Inhibits cell growth, EMT and invasion

• Induces cell cycle arrest and apoptosis

• Inhibits NFκB signaling pathway

[124–127, 129, 130]

Resveratrol Peanut, grape skin, 
mulberry

• Inhibits cell growth, EMT and invasion

• Induces cell cycle arrest and apoptosis

• Inhibits AKT, mTOR, NFκB, MEK1/2, 
ERK1/2, β-catenin, MITF, STAT3, c-kit, AP-1/
JunD, c-Jun and α-MSH

[152,153,155–163,171]

Curcumin Turmeric • Inhibits cell growth

• Induces cell cycle arrest and apoptosis

• Inhibits PI3K, AKT, NFκB, ERK1/2 and 
STAT3

[185–203]

Proanthocyanidins Cocoa, grape, 
apple, tea, red wine

• Inhibits cell growth

• Inhibits NFκB and ERK1/2

[220–222]

Silymarin Milk thistle • Inhibits cell growth

• Induces cell cycle arrest and apoptosis

• Inhibits NFκB, MEK1/2, ERK1/2, β-catenin, 
STAT3, AP-1/JunD and c-Jun

[102,243,244]

Apigenin Chicory, clove, 
apple, cherry, 
grape, beans, 
broccoli, celery, 
leeks, onion, 
barley, parsley, 
tomato, tea

• Inhibits cell growth

• Induces cell cycle arrest and apoptosis

• Inhibits PI3K, AKT, ERK1/2, MITF, MAPK 
p38 and JNK

[154,252–256]

Capsaicin Chili pepper • Inhibits cell growth, invasion and angiogenesis

• Induces cell cycle arrest and apoptosis

• Inhibits PI3K, AKT, mTOR and NFκB

[268, 270–273]

Genistein Soybean • Inhibits cell growth and invasion

• Induces cell cycle arrest and apoptosis

• Inhibits signal transduction: AKT, MAPK p38 
and JNK

[289–302]

Indole-3-carbinol Broccoli, 
cauliflower, 
Brussels sprouts

• Inhibits cell growth

• Induces cell cycle arrest and apoptosis

• Inhibits AKT and MITF

[325–327]
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Name Sources Targets References

Luteolin Carrot, pepper, 
celery, olive, 
peppermint, thyme, 
rosemary, oregano

• Inhibits cell growth

• Induces cell cycle arrest and apoptosis

• Inhibits α-MSH

[343–350]
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