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Abstract: Brain functional connectivity (FC) network, estimated with resting-state functional magnetic
resonance imaging (RS-fMRI) technique, has emerged as a promising approach for accurate diagnosis
of neurodegenerative diseases. However, the conventional FC network is essentially low-order in the
sense that only the correlations among brain regions (in terms of RS-fMRI time series) are taken into
account. The features derived from this type of brain network may fail to serve as an effective disease
biomarker. To overcome this drawback, we propose extraction of novel high-order FC correlations that
characterize how the low-order correlations between different pairs of brain regions interact with each
other. Specifically, for each brain region, a sliding window approach is first performed over the entire
RS-fMRI time series to generate multiple short overlapping segments. For each segment, a low-order
FC network is constructed, measuring the short-term correlation between brain regions. These low-
order networks (obtained from all segments) describe the dynamics of short-term FC along the time,
thus also forming the correlation time series for every pair of brain regions. To overcome the curse of
dimensionality, we further group the correlation time series into a small number of different clusters
according to their intrinsic common patterns. Then, the correlation between the respective mean corre-
lation time series of different clusters is calculated to represent the high-order correlation among differ-
ent pairs of brain regions. Finally, we design a pattern classifier, by combining features of both low-
order and high-order FC networks. Experimental results verify the effectiveness of the high-order FC
network on disease diagnosis. Hum Brain Mapp 37:3282–3296, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Alzheimer’s disease (AD), a serious brain disorder, is
the most prevalent form of dementia in elderly people
worldwide, accounting for about 50% to 80% of dementia
cases [Association, 2012]. Due to the aging of society, it
was predicted that 1 in 85 people will be affected by this
disease by 2050 [Brookmeyer et al., 2007]. The predomi-
nant clinical symptoms of AD include a decline in some
important brain cognitive and intellectual abilities, such as
memory, thinking, and reasoning. It becomes even worse
over time due to the degeneration of specific nerve cells,
presence of neuritic plaques, and neurofibrillary tangles
[McKhann et al., 1984]. This disease severely interferes the
daily life of (AD) patients, and eventually causes death,
without any effective clinical treatment so far. Mild cogni-
tive impairment (MCI), as an intermediate stage of brain
cognitive decline between AD and normal aging, shows
mild symptoms of cognitive impairment. Individuals with
MCI may progress to probable AD with an average con-
version rate of 10% to 15% per year, and more than 50%
within 5 years [Gauthier et al., 2006; Petersen et al., 2001].
Due to this high conversion rate, the identification of early
mild cognitive impairment (eMCI) is important to reduce
the risk of developing AD by providing appropriate phar-
macological treatments and behavioral interventions. Thus,
the accurate diagnosis of eMCI has drawn much attention
of researchers during the last decades. However, the diag-
nosis of eMCI is very challenging and much more difficult
due to its mild clinical symptoms. Under such circum-
stance, extensive research efforts [Bishop, 2006; Hastie
et al., 2001] have been dedicated to aid the diagnosis of
AD and MCI/eMCI, by analyzing neuroimaging data with
different modalities, such as Magnetic Resonance Imaging
(MRI) [Cuingnet et al., 2011; Davatzikos et al., 2011] and
Positron Emission Tomography (PET) [Foster et al., 2007].
The widely-used classification algorithms include support
vector machine (SVM) [Jie et al., 2014b; Zhang et al., 2011],
Bayesian network [Seixas et al., 2014], multi-task and
sparse learning [Huang et al., 2010; Suk et al., 2014a], deep
neural networks [Li et al., 2015; Liu et al., 2015; Suk et al.,
2013, 2014b], and so forth.

Recently, resting-state functional Magnetic Resonance
Imaging (RS-fMRI), which uses the blood-oxygenation-
level-dependent (BOLD) signal as neurophysiological
index, has been successfully applied to early diagnosis of
AD/eMCI before the clinical symptoms [Smith et al., 2011;
Sporns, 2011; Wee et al., 2013, 2015, 2012a,b]. The BOLD
signal is sensitive to spontaneous and intrinsic neural
activity within the brain thus can be used as an efficient
and noninvasive way for investigating neurological disor-
ders at a whole-brain level. Functional connectivity (FC),
defined as the temporal correlation of BOLD signals in dif-
ferent brain regions, can exhibit how structurally segre-
gated and functionally specialized brain regions interact
with each other [Friston et al., 1993; Greicius, 2008]. In the
literature [Jie et al., 2014a; Wee et al., 2013, 2015, 2012a],

FC is often modeled as a network using graph theoretic
techniques. Differences between normal and disrupted FC
networks caused by pathological attacks, in terms of both
topological structure and connection strength, provide an
important biomarker to understand pathological underpin-
nings of AD/eMCI. Therefore, modeling FC network plays
an essential role for accurate diagnosis. So far, several dif-
ferent modeling methods [Jie et al., 2014a,b; Wee et al.,
2015, 2012a] have been proposed, where their main differ-
ences lie in the definition of network structure and also
the correlation computation. Herein, network structure
refers to the representation of network vertex and edge
while the correlation computation means how to define an
appropriate weight for each edge. For network structure in
nearly all existing methods, a vertex is always correspond-
ing to a specific brain region, and an edge is used to char-
acterize the FC between brain regions, in terms of
correlation of their regional mean RS-fMRI (BOLD) time
series. For correlation computation, different methods
have been explored, among which the pairwise Pearson’s
correlation coefficient [Jie et al., 2014b; Wee et al., 2012a]
and the sparse representation [Jie et al., 2014b; Tibshirani
et al., 2005; Wee et al., 2015; Wright et al., 2009] are the
two popular approaches. The advantage of pairwise Pear-
son’s correlation coefficient is its simplicity in computa-
tion. In contrast, although sparse representation requires
much more computational time, it may lead to networks
with better discriminability.

However, computing the correlation based on the entire
time series of RS-fMRI data simply measures the FC
between brain regions with a scalar value, which is fixed
across time. This actually implicitly hypothesizes the sta-
tionary interaction patterns among brain regions. As a
result, this method may overlook the complex and
dynamic interaction patterns among brain regions, which
are essentially time-varying. In fact, some recent research
studies [Allen et al., 2014; Damaraju et al., 2014; Hutchison
et al., 2013; Leonardi et al., 2013] have indicated that the
FC contains rich dynamic temporal information. For exam-
ple, Damaraju et al. [2014] used static FC based on the full
time courses and dynamic FC computed based on sliding
windows respectively to analysis schizophrenia disease
and advocated the use of dynamic analysis to better
understand FC. Leonardi et al. [2013] assumed non-
stationary FC can reflect additional and rich information
about brain organization. They estimated whole-brain
dynamic FC using sliding windows and then used princi-
pal component analysis to reveal hidden patterns of coher-
ent FC dynamics across multiple subjects. Following this
line, Wee et al. [2013, 2015] also utilized a sliding window
approach to partition the entire time series of RS-fMRI
data into multiple overlapping segments of subseries.
Then, a set of temporal FC networks, one for each seg-
ment, is constructed for each subject. Note that all vertex
for those temporal FC networks are still corresponding to
the same brain regions, while the weights for all networks
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are computed simultaneously based on the inverse covari-
ance estimation [Friedman et al., 2008; Huang et al., 2010]
regularized by different kinds of prior penalties [Danaher
et al., 2014; Yang et al., 2015], that is, making the adjacent
networks have similar topology and connection strength.
By taking account of the dynamic property of the FC, this
method succeeds in discovering rich discriminative infor-
mation for eMCI diagnosis. However, for each subject, this
approach needs to solve a sparsity regularized inverse
covariance estimation problem for obtaining the weights
of all networks, which demands a specialized optimization
algorithm. More importantly, the weight matrix of each
temporal FC network depends on its relative position in
the whole time series, when all temporal networks are esti-
mated simultaneously. Thus, if the relative positions of
two temporal FC networks are switched, the weight matri-
ces of all temporal FC networks could be changed. There-
fore, this approach is inherently sensitive to the
chronological order of temporal FC networks, and may
cause the phase mismatch among different subjects.

Recently, due to the breakthrough of deep neural net-
works [Hinton and Salakhutdinov, 2006] in the areas of
speech, signal, image, and video recognition [Graves et al.,
2013; Krizhevsky et al., 2012], researchers realize that fea-
ture learning [Bengio et al., 2013] plays a more and more
important role in pattern recognition systems. Specifically,
deep neural networks is able to automatically learn the
discriminative representations or features from the raw
data in a greedy layer-by-layer manner, in which high-
level features can be derived from low-level features to
form a hierarchical representation. In such a way, the fea-
tures generated in high-level layers usually contain more
abstract and semantic information of the raw data, thus
greatly improving the classification accuracy. However,
deep models, including the popular deep belief network
[Hinton et al., 2006] and convolutional neural network
[LeCun et al., 1998], usually involve a huge number of
parameters. This makes the training process, performed
particularly via back propagation [Rumelhart et al., 1986],
very computationally expensive, and also requires a large
amount of training samples. As a result, the direct applica-
tion of deep learning for AD and eMCI diagnosis is very
challenging due to the limited sample size. However, this
feature learning strategy sheds light on the importance of
generating high-level features from low-level features in
pattern recognition.

Inspired by the above methods, we propose in this arti-
cle the novel notions of high-order correlation and high-
order FC network, and further develop a simple but effec-
tive framework for eMCI classification. As we have
described above, the conventional FC network treats brain
region or the associated RS-fMRI time series as a vertex, in
either a dynamic [Wee et al., 2013, 2015] or static [Wee
et al., 2013, 2015] fashion, and then computes their correla-
tion to represent the interaction between brain regions. In
this study, this kind of correlation is called low-order

correlation, and the corresponding network is called low-
order FC network. Remarkably different from the low-
order FC network, each vertex of the high-order FC net-
work (we propose) corresponds to one pair (or even multi-
ple pairs) of brain regions, with each edge characterizing
how pairs of brain regions interact with each other. In this
way, the high-order FC network is able to reveal higher-
level and more complex interaction relationships than the
conventional low-order FC network approaches. Impor-
tantly, the high-order FC network is invariant to the chro-
nological order of temporal low-order FC networks, thus
allowing the consistent and meaningful comparisons
across different subjects. Furthermore, following the prin-
ciple of our proposed method, we can further extend the
high-order correlation in a greedy layer-by-layer manner,
as in deep neural networks, so that more abstract and
complex interaction patterns can be extracted from the
raw RS-fMRI time series. Also, it is worth noting that, dif-
ferent from deep learning models, which usually involve
many parameters (weights connecting neurons in different
layers) and require massive training data and expensive
computational resource to optimize these parameters, our
high-order correlation can model complex interaction rela-
tionships among brain regions without introducing too
many parameters, thus avoiding over-fitting to a certain
extent in the case of small samples. Moreover, both low-
order and high-order FC networks can be further inte-
grated to yield the improved performance.

In summary, our method based on both high-order and
low-order FC networks has the following advantages:
(1) it takes into account the time-varying properties of
intrinsic FC; (2) it characterizes higher-level and more
complex interaction patterns among brain regions; (3) it
owns preferable invariance to the chronological order of
temporal low-order FC networks; (4) it is simple and easy
to implement; and (5) it has high discriminability in dis-
criminating eMCIs and healthy controls.

The rest of the article is organized as follows. In Materi-
als and Method section, we introduce the proposed learn-
ing framework for construction of high-order FC network
and also its combination with low-order FC network for
eMCI classification. Then, we describe experiments and
report respective results in Experimental results and dis-
cussion section. Finally, we discuss and conclude this
study in Conclusion section.

MATERIALS AND METHOD

Data Acquisition

In this study, we used the publically available neuroimag-
ing data from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database [Jack et al., 2008]. ANDI was launched
in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the
Food and Drug Administration, private pharmaceutical
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companies and nonprofit organizations. Initially, the goal
of ADNI is to define biomarkers for use in clinical trials
and to determine the best way to measure the treatment
effects of AD therapeutics (adni.loni.ucla.edu). Now, its
goal has been extended to detect AD at a pre-dementia
stage using biomarkers. Multiple biomarkers, including
MRI, PET, and related neuropsychological assessments
are combined together to detect the progression of eMCI
and early AD. Determining sensitive and specific bio-
markers can facilitate the development of new treatments,
reduce the time and cost of clinical trials, and promote
our understanding of the biological underpinnings of
AD/eMCI.

In this work, we used the same dataset as in [Wee et al.,
2013], which is briefly described as follows. Twenty nine
eMCI subjects (13F/16M) and 30 normal controls (NCs)
(17F/13M) were selected from ADNI 2 dataset. Subjects
from both groups were age-matched (P 5 0.6174) with
mean age (year) for eMCI and NC groups as 73.6 6 4.8
and 74.3 6 5.7. All subjects were scanned with the same
scanning protocol at different centers using 3.0T Philips
Achieva scanners. The following parameters were used:
TR/TE 5 3,000/30 mm, flip angle 5 808, imaging
matrix 5 64 3 64, 48 slices, 140 volumes, and slice
thickness 5 3.3 mm. The first 10 volumes of each subject
were discarded to ensure magnetization equilibrium. The
generated RS-fMRI time series was preprocessed using
SPM8 software (https://www.fil.ion.ucl.ac.uk/spm/soft-
ware/spm8/), with further correction and normalization.
RS-fMRI was regressed to reduce the effects of nuisance
signals including ventricle, white matter signals and six
head-motion profiles. Then, automated anatomical labeling
template was used to parcellate the regressed RS-fMRI
images into 116 regions-of-interest (ROIs), that is, brain
regions. The mean RS-fMRI time series of each brain
region, which contains 130 volumes, was calculated and
band-pass filtered (0.01� f� 0.08Hz). For more detailed
data processing procedure, please refer to [Wee et al.,
2015].

Proposed Framework

Typical procedures of FC-based eMCI classification usu-
ally include the following components: network construc-
tion, feature extraction and selection, and classification.
This study mainly focuses on the first step, that is, net-
work construction, and thus simple existing methods are
applied to implement other steps.

In Figure 1, we provide the flowchart of the high-order
FC network construction and its application in eMCI iden-
tification. Specifically, the proposed framework includes
the following eight steps: (1) partition the entire RS-fMRI
time series into multiple overlapping segments of subs-
eries; (2) construct a collection of temporal low-order FC
networks/matrices, one for each segment; (3) stack all tem-
poral low-order FC networks/matrices of all subjects

together [Leonardi et al., 2013] to obtain a correlation time
series for each element in the same location of those
stacked matrices; (4) group all these correlation time series
into different clusters using clustering algorithm; (5) con-
struct a high-order FC network for each subject, by taking
the mean correlation time series for each cluster as a new
vertex and the pairwise Pearson’s correlation coefficient
between each pair of these new vertices as weight; (6) cal-
culate weighted-graph local clustering coefficients [Rubi-
nov and Sporns, 2010] as a simple feature representation
for the high-order FC networks; (7) select a subset of dis-
criminative features from the high-order features (local
clustering coefficients) with the sparse learning [Tibshirani,
1996]; and (8) construct a SVM model [Cortes and Vapnik,
1995; Vapnik, 1998] on the selected subsets of high-order
features for classification.

In addition to the construction of above high-order FC
network, we also construct a conventional low-order FC
network over the entire RS-fMRI time series for each sub-
ject. Then, following the same Steps (6)–(8), we extract
low-order features (local clustering coefficients) from this
low-order FC network, perform feature selection, and
build another SVM model based on these low-order fea-
tures. Finally, the classification scores of two SVM models
are fused by the weighted averaging to produce the final
classification.

In the following subsections, we describe the above
steps in detail. Steps (1) and (2) are described in Construc-
tion of temporal low-order FC networks subsection, Steps
(3)–(5) are described in Construction of high-order FC net-
work subsections and Reduction of high-order FC network
by clustering subsection, and Steps (6)2(8) are described
in Feature extraction, selection and classification
subsection.

Construction of temporal low-order FC networks

Suppose the regional mean RS-fMRI time series associ-
ated with the i-th ROI of the l-th subject is expressed as
x

lð Þ
i 2 RM, where M is the total number of temporal image

volumes. Let the correlation between the i-th and the j-th
ROIs of the l-th subject be:

C
lð Þ

ij 5corr x
lð Þ

i ; x
lð Þ

j

� �
(1)

Then, a FC network G
lð Þ

L 5ðfx lð Þ
i g; fC

lð Þ
ij gÞ can be estab-

lished using the conventional method by treating fx lð Þ
i g as

vertices and fC lð Þ
ij g as the weights of edges, each connect-

ing each pair of vertices. Different from this global
method, in [Wee et al., 2015], the entire mean time series
x

lð Þ
i is partitioned into multiple segments of overlapping

subseries using a sliding window approach. Each segment
describes the RS-fMRI series during a relatively shorter
time period.
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Specifically, suppose the length of the sliding window
is N and the step size between two successive windows

is s. Let x
lð Þ

i kð Þ 2 RN denote the k-th segment of subseries

extracted from x
lð Þ

i , which comprises N image volumes.

The total number of segments generated by this
approach is given by K5 M2Nð Þ=sb c11, thus we have
1 � k � K. For the l-th subject, the k-th segment of
subseries in all R ROIs can be expressed in a matrix

form as X lð Þ kð Þ5 x
lð Þ

1 kð Þ; x lð Þ
2 kð Þ; � � � ; x lð Þ

R kð Þ
h i

2 RN3R, where

R is the total number of ROIs. Then, the entry for the k-th

temporal FC matrix C lð Þ kð Þ for the l-th subject is computed as:

C
lð Þ

ij kð Þ5corr x
lð Þ

i kð Þ; x lð Þ
j kð Þ

� �
(2)

which represents the pairwise Pearson’s correlation coeffi-
cients between the i-th and the j-th ROIs of the l-th subject

using the k-th segment of subseries. For the l-th subject,

the larger the value of jC lð Þ
ij kð Þj, the stronger the associated

correlation between the i-th and the j-th ROIs in the k-th

window. Taking x
lð Þ

i kð Þ
n o

as vertices and C
lð Þ

ij kð Þ
n o

as the

weights of edges connecting each pair of vertices, we can estab-

lish K temporal FC networks G
lð Þ

L kð Þ5 x
lð Þ

i kð Þ
n o

; C
lð Þ

ij kð Þ
n o� �

k51; 2; � � � ;Kð Þ for the l-th subject, which describe the
temporal variation of the connection strength for all ROI
pairs.

For each ROI pair i; jð Þ in the l-th subject, we can concat-

enate all C
lð Þ

ij kð Þ for 1 � k � K to obtain a correlation time

series y
lð Þ

ij 5 C
lð Þ

ij 1ð Þ;C lð Þ
ij 2ð Þ; � � � ;C lð Þ

ij Kð Þ
h i

2 RK. Given R

ROIs, the total number of the correlation time

series y
lð Þ

ij j1 � i � R21; i11 � j � R
n o

is R R21ð Þ=2 for the

Figure 1.

Framework for construction of high-order FC network. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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l-th subject, considering the symmetry of correlation coeffi-
cients. It should be emphasized that the correlation time

series y
lð Þ

ij is different from the regional mean RS-fMRI

time series x
lð Þ

i . The former characterizes the variation of

correlation between ROI pair i; jð Þ along the time, whereas

the latter just records the variation of mean BOLD signal
within the i-th ROI during an RS-fMRI scanning period.

As a result, the correlation time series y
lð Þ

ij is able to reveal

more detailed temporal interaction information between
different brain regions.

Construction of high-order FC network

As stated in the Introduction section, the main goal of
this article is to reveal the intrinsic relationship between

correlation time series y
lð Þ

ij

n o
, not just the original RS-fMRI

time series x
lð Þ

i

n o
as in all existing methods. To achieve

this goal, we propose to calculate Pearson’s correlation
coefficients for the l-th subject as follows:

H
lð Þ

ij;pq5corr y
lð Þ

ij ; y
lð Þ

pq

� �
(3)

for each pair of correlation time series y
lð Þ

ij and y
lð Þ

pq . Thus,

H
lð Þ

ij;pq indicates how the correlation between the i-th and

the j-th ROIs influence the correlation between the p-th

and the q-th ROIs. As a result, the correlation in Eq. (3)

can extract interaction information from up to four differ-

ent ROIs, whereas the correlation C
lð Þ

ij kð Þ in Eq. (2) involves

only two different ROIs. In other words, the correlation

coefficient H
lð Þ

ij;pq is able to characterize more complex and

abstract interaction patterns among brain regions. More
importantly, due to the element-wise computation for

Pearson’s correlation, H
lð Þ

ij;pq is invariant to the order of ele-

ments in y
lð Þ

ij and y
lð Þ

pq , thus owning better robustness

against subject differences. Thus, taking y
lð Þ

ij

n o
as new ver-

tices and H
lð Þ

ij;pq

n o
as the weights of new edges, each con-

necting vertices y
lð Þ

ij and y
lð Þ

pq , we can finally obtain a new

high-order FC network G
lð Þ

H 5 y
lð Þ

ij

n o
; H

lð Þ
ij;pq

n o� �
. As H

lð Þ
ij;pq

n o

is the correlation computed based on each pair of the cor-

relation time series in y
lð Þ

ij

n o
, we refer H

lð Þ
ij;pq

n o
as the high-

order correlation and the corresponding network G
lð Þ

H as

the high-order FC network. On the contrary, C
lð Þ

ij kð Þ is

termed as the low-order correlation and the associated net-

work G
lð Þ

L kð Þ as the temporal low-order FC network. To

give a comprehensive comparison, Figure 2 illustrates the
computation procedure from the low-order correlation to

the high-order correlation. Table I displays the concepts of
the low-order and the high-order FC networks.

Reduction of high-order FC network by clustering

As discussed above, the total number of the correlation

time series y
lð Þ

ij

n o
for the l-th subject is proportional to R2.

Then, the total number of the high-order correlation coeffi-

cients H
lð Þ

ij;pq

n o
in Eq. (3), which are calculated based on

paired correlation time series, is proportional to R4. In our
case, R5116, which will lead to a large-scale high-order FC
network, containing at least thousands of vertices and mil-
lions of edges. This is mainly because, given a fixed num-
ber of ROIs, the scale of high-order FC network increases
exponentially with the range of interaction. Consequently, it
will cause serious computational issues. On one hand, it
will result in very high computation complexity in both the
network construction and the subsequent feature extraction
stage. On the other hand, the generalization performance of
the learning system trained by such a large-scale network
can be aggravated by the curse of dimensionality, inter-
subject variability, and noisy features.

To deal with these issues, we propose a network reduc-
tion strategy to significantly reduce a large-scale high-
order FC network into a small-scale one, thus mitigating
the curse of dimensionality to a large extent. The main
idea is to group the correlation time series within each
subject into different clusters for discovering the intrinsic
common interaction patterns. Then, the correlation calcula-
tion between the original correlation time series can be
converted into that between the respective mean correla-
tion time series in clusters. In such a way, we can directly
construct a small-scale high-order FC network instead of
the original large-scale one, largely without losing vital
interaction information. As a result, this strategy not
only cuts down the computation time and the storage
requirements but also significantly improves the general-
ization performance of the high-order FC network. Essen-
tially, this whole procedure is similar to dimensionality

Figure 2.

Calculation of the high-order correlation from the low-order

correlation layer by layer. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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reduction [Chen et al., 2014] for high-dimensional data,
and thus it can be termed as network reduction in this
article. An illustration of network reduction is shown in
Figure 3.

To be specific, in order to group the correlation time series

y
lð Þ

ij

n o
for the l-th subject into different clusters, and mean-

while guarantee the consistency of clustering results across

different subjects, y
lð Þ

ij

n o
for all subjects l51; 2; � � � ; Lð Þ are

first stacked together, i.e., yij5 y
1ð Þ

ij ; y
2ð Þ

ij ; � � � ;y
Lð Þ

ij

h i
2 RKL.

Then, an unsupervised clustering algorithm [Chen et al.,

2014; Ward, 1963] is utilized to divide the resulting yij

n o

into different clusters X1;X2; � � � ;XUf g, where Xu consists of
the index pair i; jð Þ if yij is included in the u-th cluster, and U

is the total number of clusters, 1 � u � U. Those yij assigned

to the same cluster will have the similar pattern of variation
along the time, while different clusters will show large dif-
ferences. Then, the mean correlation time series of the u-th
cluster in the l-th subject can be calculated by averaging of
those correlation time series assigned to this cluster, that is,

�y lð Þ
u 5

P
i;jð Þ2Xu

y
lð Þ

ij

jXuj
(4)

where jXuj denotes the number of elements in Xu. Finally,

taking �y
lð Þ

u

n o
as vertices, we can calculate the pairwise

Pearson’s correlation coefficient between �y
lð Þ

u and �y
lð Þ

v as:

�H
lð Þ

uv5corr �y lð Þ
u ; �y

lð Þ
v

� �
(5)

In such a way, we can build a much smaller high-order

FC network �G
lð Þ

H 5 �y
lð Þ

u

n o
; �H

lð Þ
uv

n o� �
than the original G

lð Þ
H .

Note that the total number of edges in G
lð Þ

H is proportional

to R4, but the reduced �G
lð Þ

H contains only U2 edges. A com-
plete comparison of four FC networks as discussed in this
article is summarized in Table I.

Feature extraction, selection, and classification

After FC networks have been established, we use the
weighted-graph local clustering coefficients [Rubinov and
Sporns, 2010; Watts and Strogatz, 1998] to extract features
from each network. The weighted-graph local clustering
coefficient is computed for each vertex in a network to
quantify the probability that the neighbors of this vertex
are also connected to each other. It describes the local con-
nectivity or “cliqueness” of a network. For the sake of
brevity, suppose we are given a network with T vertices.
The weight of the edge connecting vertex i and vertex j is
denoted by wij 1 � i; j � Tð Þ. Then, the weighted-graph
local clustering coefficient for vertex i is defined as:

fi5
2
P

j:j2Di
wij

� �1
3

jDij jDij21ð Þ (6)

where Di denotes the set of vertices directly connected to
vertex i, and jDij is the number of elements in Di. As we
finally construct two FC networks (G

lð Þ
L and �G

lð Þ
H ) for each

subject, two groups of features can be generated using Eq.
(6). Here, the feature vector derived from the low-order
FC network G

lð Þ
L is referred to as low-order feature vector,

while that derived from the high-order FC network �G
lð Þ

H is

TABLE I. Comparison of four types of low-order and high-order functional connectivity networks

Name G
lð Þ

L G
lð Þ

L kð Þ G
lð Þ

H
�G

lð Þ
H

Network Type Low-order Low-order High-order High-order

Vertex Entity Brain region Brain region Brain region pair Multiple brain region pairs
Notation x

lð Þ
i x

lð Þ
i kð Þ y

lð Þ
ij �y

lð Þ
u

Number R R R2 U

Meaning RMTS Windowed RMTS CTS mean CTS
Edge/Weight Notation C

lð Þ
ij C

lð Þ
ij kð Þ H

lð Þ
ij;pq

�H
lð Þ

uv

Number R2 R2 R4 U2

Meaning Correlation between
entire RMTS

Correlation between
windowed RMTS

Correlation
between CTS

Correlation between
mean CTS of clusters

RMTS: Regional mean time series.
CTS: Correlation time series.

Figure 3.

High-order FC network reduction. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

r Chen et al. r

r 3288 r

http://wileyonlinelibrary.com


referred to as high-order feature vector. Specifically, the
former consists of 116 clustering coefficients, one for each
parcellated ROI. The latter consists of U clustering coeffi-
cients, one for each cluster generated in network
reduction.

The feature vector extracted from FC networks possibly
contains some irrelevant or redundant features for eMCI
diagnosis. To reduce the effect of those irrelevant or
redundant features for improving the generalization per-
formance, we adopt l1-norm regularized least squares
regression, known as LASSO (Least Absolute Shrinkage
and Selection Operator) [Tibshirani, 1996], to select a small
set of crucial features relevant to eMCI disease, due to its
simplicity and efficiency. Specifically, the feature vector
extracted from the FC networks of each subject is used as
a predictor to regress the associated category label for
this subject, i.e., 11 for eMCI and 21 for NC. Moreover,
l1-norm (instead of the traditional squared l2-norm regula-
rization [Bishop, 2006]) is imposed on linear regression
coefficients to shrink many of them toward zero, implying
that the associated features do not contain useful discrimi-
native information for classification. In such a way, we can
jointly achieve the fitting error minimization as well as
sparse variable selection, and a hyperparameter k is intro-
duced to control the strength of l1-norm regularization.

After selecting important features with LASSO, we use
SVM [Chen et al., 2011; Cortes and Vapnik, 1995; Vapnik,
1998] with a simple linear kernel for disease identification.
SVM seeks a maximum margin hyperplane to separate the
samples of one class from those of other class. The empiri-
cal risk on training data and the complexity of the model
can be balanced by the hyperparameter C, thus guarantee-
ing good generalization ability on unseen data. Herein, we
construct two SVM models, one for low-order features and
another for high-order features. Then, the decision scores
from the two SVM models are further fused by linear com-
bination, with a weight a, to give the final classification
results.

Evaluation Methodology

Because of the limited number of samples, in this work,
we use leave-one-out cross-validation (LOOCV) to evaluate
the generalization performance of our proposed classifica-
tion approach. As the performance of our approach is
dependent on some hyperparameters, such as U in cluster-
ing, k in feature selection, C in SVM model, and a in deci-
sion fusion, it is important to adjust these hyperparameters
to proper values. We use a nested LOOCV procedure to
determine optimal values for these hyperparameters in
the following ranges: U 2 200; � � � ; 500½ �, k 2 0:2; � � � ; 0:5½ �,
C 2 1; � � � ; 16½ �, and a 2 0:5; � � � ; 0:8½ �. Specifically, suppose
the whole dataset consists of L subjects. Then, L21 subjects
are used for training, to find the optimal classification
model. The rest one is used for testing, to evaluate the classi-
fication accuracy of the above model. We repeat the above

procedure L times, each time leaving out a different subject
for testing. In such a way, we can have L classification
results, one for each subject. Finally, the average accuracy
across L subjects is computed as performance measurement.
To determine the optimal hyper-parameters, in each repeat
of the above procedure, we perform another LOOCV on the
L21 training samples. That is, for each combination of values
for hyperparameters, we select one subject from L21 train-
ing subjects for testing and the rest L22 are used for training.
This procedure will repeat L21 times, which can yield the
average classification accuracy under a specific combination
of hyperparameter values. Then, the hyperparameter values
that lead to the highest performance across L21 tests are
selected and used to construct the optimal model based on
all L21 training subjects. The constructed model will be
finally applied to the left-out testing subject.

EXPERIMENTAL RESULTS AND DISCUSSION

Classification Accuracy

In this work, we compare the proposed eMCI diagnosis
framework with three closely related methods, including
the partial correlation network (PAC), Pearson’s correla-
tion network (PEC), and sparse temporally dynamic net-
work (STDN) [Wee et al., 2015]. PAC and PEC
characterize the correlation between brain regions using
the entire RS-fMRI time series. In contrast, STDN and our
method both apply sliding windows to partition the time
series, thus establishing multiple dynamic (time-varying)
FC networks. All the methods use weighted-graph local
clustering coefficients as features of FC networks and the
linear SVM as the classification method. Note that STDN
needs to concatenate the features extracted from all low-
order FC networks, thus generating a long feature vector,
especially in the case of dense sliding windows. Therefore,
t-test and SVM recursive feature elimination are combined
to accurately select features. In contrast, due to the net-
work reduction, the number of features in our case is
much less than that in STDN and sparse learning is used
for feature selection because of its simplicity and high effi-
ciency. The proposed learning framework was imple-
mented on MATLAB R2012b. The LASSO feature selection
algorithm was performed using SLEP toolbox [Liu et al.,
2009], and SVM classification was implemented using
LIBSVM [Chang and Lin, 2001]. Similar to [Wee et al.,
2015], we set s51 and N570 in our sliding window
approach, thus generating total 61 windows. To compare
different methods, we use the following performance
indexes: accuracy (ACC), area under ROC curve (AUC),
sensitivity (SEN), specificity (SPE), Youden Index (You-
den), F-score, and balanced accuracy (BAC). The experi-
mental results are reported in Table II, where HON
denotes the high-order FC network, and FON denotes the
combination of the high-order and low-order FC networks.
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As we can see from Table II, the performance of
time-varying networks remarkably outperforms the con-
ventional methods, that is, PAC and PEC. This indicates
the temporal patterns contained in FC network are a sig-
nificant disease biomarker for improving the diagnosis
performance between eMCI patients and NCs [Allen et al.,
2014; Chang et al., 2013; Smith et al., 2012]. Moreover, our
proposed learning framework achieves better results in
terms of all performance indexes, in comparison with
STDN. For instance, it improves the diagnosis accuracy by
at least 6%. The combination of low-order and high-order
FC networks further improves the performance by 8%.
The area under receiver operating characteristic curve
(AUC) reaches 0.9299 for the combined low-order and
high-order FC networks. Besides, by following DeLong’s
test [DeLong et al., 1988] which allows for the comparison
of two AUCs calculated on the same dataset, we have also
performed non-parametric statistical significance test to
compare different methods. The results show that our pro-
posed methods can significantly outperform both PEC and
PAC under 95% confidence interval. However, our meth-
ods are not significantly better than STDN (with P-val-
ue 5 0.097 for FON, and 0.128 for HON) although our

methods improve the AUC by more than 13%. We specu-
late that this is mainly caused by the small number of sub-
jects used in our study, thus the correct classification of
two or more testing subjects can remarkably increase the
accuracy and AUC. In the future, we will continue to eval-
uate our proposed methods on the larger dataset.

Low-Order FC Network

Figure 4 illustrates the average low-order FC network
across all eMCI and NC subjects, respectively. As can be
seen, the difference between two networks is not remark-
able, implying poor performance of the low-order network
in discriminating between eMCI and NC subjects as
shown in Table II. Note that the positive correlation coeffi-
cients in Figure 4 reflect synchronized activity between
brain regions, while negative correlation coefficients reflect
a kind of anti-correlation or competitive relationship
between brain regions. This phoneme has been noticed by
many works [Fox et al., 2009; Uddin et al., 2009] and both
positive and negative correlations reflect genuine physio-
logical processes [Goelman et al., 2014]. The low-order FC
network of one example subject using pairwise Pearson’s

TABLE II. Performance comparison between our proposed learning framework and three other

methods in eMCI classification

Method ACC AUC SEN SPE Youden F-score BAC

PAC [Wee et al., 2015] 0.6271 0.6598 0.6552 0.6000 0.2552 0.6333 0.6276
PEC [Wee et al., 2015] 0.6610 0.6138 0.5517 0.7667 0.3184 0.6154 0.6592
STDN [Wee et al., 2015] 0.7966 0.7920 0.7586 0.8333 0.5920 0.7857 0.7920
HON 0.8644 0.9000 0.8621 0.8667 0.7287 0.8621 0.8644
FON 0.8814 0.9299 0.8621 0.9000 0.7621 0.8772 0.8810

The numbers marked bold indicate the best performance.

Figure 4.

Averaged low-order FC networks for all eMCI subjects (a) and NC subjects (b), respectively.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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correlation coefficients is shown in Figure 5a. This network
provides a global view for the interaction relationship
between different brain regions. The correlation between a
pair of brain regions is simply a positive or negative value,
with no any temporal change. To gain more insights about
temporal information contained in RS-fMRI time series,
the sliding window approach is applied to produce a col-
lection of temporal low-order FC networks, some of which
are depicted in Figure 5b–g. Comparing Figure 5a,b–g, we
can find that the temporal low-order FC network can char-
acterize temporal variation of the correlation patterns
between different brain regions.

Clustering and High-Order FC Network

In the experiments, we use Ward’s linkage clustering
[Chen et al., 2014; Ward, 1963], a widely used hierarchical
clustering algorithm, to group the correlation time series
into U different clusters. An important advantage of this
clustering method is that it does not involve initialization,
reduces the dependence on extra hyperparameters, and
meanwhile enhances the robustness of clustering results.
In Figure 6a, some ROI pairs are selected and their corre-
sponding correlation time series are depicted. We can see
that, for many ROI pairs, their temporal correlations

Figure 5.

Static and temporal low-order FC networks for one eMCI subject. (a) static network; (b–g)

temporal networks generated by sliding window approach. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

Some selected correlation time series and clustering results for one eMCI subject. (a) Original cor-

relation time series; (b) Three different clusters of correlation time series; (c) the mean correla-

tion time series of each cluster. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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actually undergo large variation over the entire duration
of RS-fMRI scan. For example, both the magnitude and the
direction of correlation relationship have significant
changes for some ROI pairs. Figure 6b illustrates the corre-
sponding clustering results of these correlation time series
when U5300. Note that three clusters with different colors
are depicted for the sake of simplicity. Figure 6c further
shows the mean correlation time series computed from the
clusters. It is obvious that the correlation time series with
similar temporal dynamics are classified into the same
cluster while those with dissimilar dynamic patterns are
partitioned into different clusters. In such a way, we can
discover the dominant dynamic pattern underlying all cor-
relation time series. Therefore, we can use the mean corre-
lation time series of each cluster as a vertex in the high-
order FC network, to remarkably reduce the network scale
and computation complexity. The resulting high-order FC
networks averaged across all eMCI and NC subjects are
shown in Figure 7a,b, respectively.

Influence of Clustering on Accuracy

The effectiveness of the FC network is essential to the
diagnosis accuracy of the proposed learning framework. If
the constructed network is poor (in the sense that the bio-
markers for distinguishing eMCI from normal aging can-
not be identified), the final diagnosis accuracy of eMCI
cannot be guaranteed (no matter what feature selection or
classification methods are used in the subsequent stages).
Hence, we should also investigate how the variation of the
constructed network affects the performance of the whole
diagnosis system. In this experiment, we mainly focus on
the impact of clustering number U on the identification
accuracy, as this is an important factor distinguishing our
high-order FC network from the existing temporal low-
order FC network STDN [Wee et al., 2015]. Accordingly,
we change the value of U from 100 to 700 with a Step 100,
and report the diagnosis performances of HON and FON

in Figure 8. As we can see, the high-order FC network
yields a relatively robust and preferable performance,
when U varies between 300 and 400. But, when U
becomes too small or too large, the diagnosis accuracy
decreases gradually. This can be understood from two
aspects. First, when U is too small, numerous correlation
time series even with fundamentally different temporal
dynamics are probably classified into the same cluster. It
can seriously reduce the purity of each cluster, thus make
the high-order correlation (calculated based on the mean
of each cluster) unreliable. Second, when U is too large,
similar correlation time series may be partitioned into dif-
ferent clusters. This will increase the number of features
extracted from the high-order FC network, thus leading to

Figure 7.

Averaged high-order FC networks for all eMCI subjects (a) and NC subjects (b), respectively.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8.

The variation of recognition accuracy against different number

of clusters. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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more redundant features and making the feature selection
difficult.

Most Discriminative Regions and Clusters

As described in the Evaluation methodology section, the
proposed framework is evaluated by nested LOOCV, thus
yielding different training set and different hyperpara-
meter values in each leave-one-out fold. As a result, differ-
ent set of features could be selected in each fold, from the
low-order and the high-order FC networks, and fed into
the SVM for classification. Hence, we define the most dis-
criminative brain regions and clusters as the ones with
larger normalized weight during the construction of the
optimal SVM models corresponding to the low-order and
the high-order FC networks, respectively. The selected
brain regions and clusters, as well as the associated nor-

malized weights from the low-order and the high-order
FC networks (U5300), are shown in Figure 9. Note that,
for the high-order network, we use a clustering technique
to reduce its scale, and thus the entire cluster, which may
contain multiple ROI pairs, will be selected.

In summary, the top 10 most discriminative brain
regions selected from the low-order FC network are listed
in Table III. We also provide some citations showing the
importance of corresponding brain regions. We can see
that many of these selected brain regions are consistent
with the observations reported in the previous literatures
[Ech�avarri et al., 2011; Jacobs et al., 2012; Kosicek and
Hecimovic, 2013; Salvatore et al., 2015]. For example,
Ech�avarri et al. [2011] have observed that parahippocam-
pal gyrus and hippocampus are important biomarkers,
while the former can discriminate better than the latter in
terms of AD diagnosis. Asrami [Asrami, 2012] found that

Figure 9.

Feature selection results. (a) ROI selection from the low-order FC networks; (b) cluster selec-

tion from the high-order FC networks. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

TABLE III. ROIs selected from the low-order FC network

No. ROI index ROI name Citations

1 85 Middle temporal gyrus left [Kosicek and Hecimovic, 2013]
2 40 ParaHippocampal gyrus right [Ech�avarri et al., 2011]
3 25 Orbitofrontal cortex (medial) left [Salvatore et al., 2015]
4 37 Hippocampus left [Ech�avarri et al., 2011; Salvatore et al., 2015]
5 26 Orbitofrontal cortex (medial) right [Salvatore et al., 2015]
6 60 Superior parietal gyrus right [Jacobs et al., 2012; Kosicek and Hecimovic, 2013]
7 9 Orbitofrontal cortex (middle) left [Salvatore et al., 2015]
8 62 Inferior parietal lobule right [Jacobs et al., 2012; Kosicek and Hecimovic, 2013]
9 39 ParaHippocampal gyrus left [Ech�avarri et al., 2011]
10 12 Inferior frontal gyrus (opercular) right [Salvatore et al., 2015]
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middle temporal gyrus is one of the most important
regions for AD/MCI prediction. In addition, we also note
that some brain regions are selected on one hemisphere
but not the other one. This is also observed in some works
[Wee et al., 2012a; Zhu et al., 2014]. It may be because fea-
ture selection using sparse regression can filter out some
regions which are redundant or highly correlated. As for
the high-order FC network, as each cluster usually com-
prises of multiple ROI pairs, we use the same color to
depict the ROI pairs of the same cluster in Figure 10. It
should be emphasized that Figure 10 is not a correlation
matrix, but shows the importance of each selected cluster,
according to Figure 9b.

CONCLUSION

In this article, we propose a high-order FC network and
its combination with the conventional low-order FC net-
work for eMCI diagnosis. This work is motivated from
two aspects. The first is from the fact that the intrinsic
interaction patterns between different brain regions are
temporally nonstationary, thus evaluating the correlations
over the entire period of an RS-fMRI scanning period
could ignore the rich information contained in each local
time. The second is from the assumption that different
pairs of brain regions could influence each other, and their
high-order correlation could contain important discrimina-
tive information for diagnosis of neurodegenerative dis-
eases. But this is consistently overlooked in the existing
methods, as all of them just characterize the correlations
among brain regions with respect to the raw RS-fMRI time
series, either globally or locally. Following these motiva-
tions, we put forward an interesting approach for

constructing the high-order FC network. Specifically, the
sliding window approach is utilized first to partition the
entire RS-fMRI time series into multiple overlapping seg-
ments of subseries. Then, multiple low-order FC networks
are established for each subject, thus also forming the cor-
relation time series for each pair of brain regions. Then,
the correlation between correlation time series can be cal-
culated, from which the discriminative features can be
derived. Finally, SVM is used to perform the final classifi-
cation. In addition, a decision-level fusion method is also
used to combine the scores from the high-order and the
low-order FC networks to boost the final classification
accuracy.

One limitation of this work is the loss of interpretability
of high-order FC networks, because a clustering technique
is used to reduce the scale of high-order FC networks. The
clustering coefficients, in such a case, reflect the local con-
nectivity in terms of clusters which consists of multiple
brain regions with similar temporal dynamics. In the
experiments, we found only a small number of clusters
are informative for diagnosis. A possible solution to han-
dle this problem is to select a small number of correlation
time series before constructing high-order FC networks. In
such a way, we can retain the interpretability of the result-
ing networks and at the same time reduce the computation
and storage cost. Another method is to perform an addi-
tion selection over the correlation time series within each
selected clusters. Then, we can gain some insight about
which correlation time series are important. In the future
work, we will investigate these strategies to further
improve high-order FC networks.
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