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ABSTRACT

The recent explosive outbreak of Zika virus (ZIKV)
infection has been reported in South and Central
America and the Caribbean. Neonatal microcephaly
associated with ZIKV infection has already caused a
public health emergency of international concern. No
specific vaccines or drugs are currently available to
treat ZIKV infection. The ZIKV helicase, which plays a
pivotal role in viral RNA replication, is an attractive tar-
get for therapy. We determined the crystal structures of
ZIKV helicase-ATP-Mn?* and ZIKV helicase-RNA. This is
the first structure of any flavivirus helicase bound to
ATP. Comparisons with related flavivirus helicases have
shown that although the critical P-loop in the active site
has variable conformations among different species, it
adopts an identical mode to recognize ATP/Mn?*. The
structure of ZIKV helicase-RNA has revealed that upon
RNA binding, rotations of the motor domains can cause
significant conformational changes. Strikingly, although
ZIKV and dengue virus (DENV) apo-helicases share
conserved residues for RNA binding, their different
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manners of motor domain rotations result in distinct
individual modes for RNA recognition. It suggests that
flavivirus helicases could have evolved a conserved
engine to convert chemical energy from nucleoside
triphosphate to mechanical energy for RNA unwinding,
but different motor domain rotations result in variable
RNA recognition modes to adapt to individual viral
replication.

KEYWORDS Zika virus, helicase, ATP, crystal structure,
flavivirus

INTRODUCTION

Zika virus (ZIKV) belongs to the Flavivirus genus which
contains important human pathogens such as dengue
(DENV), yellow fever (YFV), West Nile (WNV), Japanese
encephalitis (JEV) and tick-borne encephalitis (TBEV) viru-
ses (Pierson and Diamond, 2013). ZIKV was first isolated in
1947 from a febrile sentinel rhesus monkey in the Zika forest
of Uganda (Wikan and Smith, 2016). As an arthropod-borne
flavivirus, ZIKV is transmitted by multiple Aedes mosquitoes
(Dick et al., 1952). Typically, human infection by ZIKV
caused a mild and self-limiting illness, characterized with
fever, headache, arthralgia, myalgia, and maculopapular
rash (loos et al., 2014). In April 2007, a large epidemic of
Asian genotype ZIKV broke out in Yap Island and Guam,
Micronesia, bringing ZIKV to global attention (Duffy et al.,
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2009; Haddow et al., 2012). From 2013 to 2014, the Asian
genotype was also confirmed as the culprit for numerous
epidemics among several Pacific Islands, including French
Polynesia, New Caledonia, Cook Islands, Tahiti, and Easter
Island (Lazear and Diamond, 2016). In 2015, widespread
ZIKV infection was reported in Brazil and other parts of
South America, with an estimated case counts of 1.3 million
cases (Hennessey et al., 2016; Mlakar et al., 2016). Recent
studies showed that ZIKV was identified in fetal brain tissue,
presumably accounting for the sharp increase of congenital
microcephaly in the epidemic areas (Brasil et al., 2016;
Mlakar et al., 2016; Rodrigues, 2016). Upon ZIKV infection,
significant cellular death of neural stem cells was shown to
be responsible for the inhibitory role of ZIKV on fetal brain
development (Tang et al., 2016). However, no effective
vaccines or therapies are currently available to prevent or
treat ZIKV infection. With the increasing case numbers and
potential risk of global spread, ZIKV is becoming a great
challenge to the public health of the Western Hemisphere as
well as the whole world (Lazear and Diamond, 2016).

The genome of ZIKV is composed of a positive-sense
single strand RNA. Viral replication begins with the transla-
tion of its RNA genome into a large polypeptide, which is
then proteolytically cleaved into 3 structural proteins (C,
prM/M, and E), and 7 non-structural proteins (NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5) (Pierson and Diamond,
2013). The NS3 protein plays an essential role in viral
polypeptide processing and genomic replication, with a
protease domain at its N-terminus and a helicase domain at
the C-terminus. Upon RNA binding, the helicase domain
exhibits intrinsic nucleoside triphosphatase activity, which
then provides the chemical energy to unwind viral RNA
replication intermediates to facilitate replication of the viral
genome together with RNA-dependent RNA polymerase
(NS5) (Lindenbach and Rice, 2001). Given its essential role
in genome replication, ZIKV helicase could be an attractive
target for drug development against ZIKV (Noble et al.,
2010). Recently, we have reported the apo-helicase of ZIKV
(Tian et al., 2016), but the mechanisms of how ZIKV helicase
recognizes nucleoside triphosphate and viral RNA is still
largely unknown, hindering the development of antiviral
drugs. Here we report the crystal structures of ZIKV heli-
case-ATP-Mn?* and ZIKV helicase-RNA, which help eluci-
date how ZIKV recognizes its substrates during replication
and provide structural insight for rational drug design.

RESULTS AND DISCUSSION
ATP hydrolysis and RNA unwinding assays

Flavivirus helicases have both ATP hydrolysis and RNA
unwinding activities. For structural studies, we have made
two constructs (helicasei7o_g17 and helicase go_g17) tO
express the ZIKV helicase. The kinetic parameters of ATP
hydrolysis for the long form of the ZIKV helicase7,_g17 were
determined using the Malachite green assay as reported

previously (Lanzetta et al., 1979). The resulting data show
that ZIKV helicase displays ATPase activity with
Ky = 191 + 26 pmol/L and ket = 2.3 £ 0.1 87" (Fig. 1A). The
short form of the ZIKV helicaseqgo_s17 Can also hydrolyze
ATP and the activity difference between the short form and
the long form are negligible. The RNA unwinding activity was
assayed using radiolabeled double-stranded (ds) RNA, in
the presence of Mg?*, ATP, and various concentrations of
enzyme (Fig. 1B). It demonstrated that ZIKV helicase dis-
played strand displacement activity for dsRNA as other fla-
vivirus helicases.

Structure determination

To elucidate the molecular mechanisms of ZIKV helicase in
recognizing ATP/Mn?* and RNA, we determined the crystal
structures of ZIKV helicase1go_g17 complexed with ATP/Mn?*
and ZIKV helicaseq7o_617 complexed with a 7-mer RNA
(5'-AGAUCAA-3') at 2.2 A and 1.7 A, respectively (Table S1).
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Figure 1. The ATPase and RNA unwinding activities of
ZIKV helicase. (A) Determination of ATP hydrolysis activity
of ZIKV helicase. The ATPase assay was carried out with
20 nmol/L of enzyme in the presence of the indicated
concentrations of ATP for 20 min at 25°C. The double-
reciprocal plot was fitted according to the Michaelis-Menten
equation. (B) Measurement of dsRNA unwinding activity of
ZIKV helicase. RNA unwinding activity of ZIKV helicase
was assayed using a radiolabeled dsRNA substrate. The
first lane is the positive control (heat-denatured duplex) and
the second lane is the negative control (without ZIKV
helicase).
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Figure 2. Structure of the ZIKV helicase in complex with ATP/Mn
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representation of apo form (white) overlaid to the complex (the three domains are colored respectively). The ATP is drawn as sticks
and mesh; Mn?* as green sphere. A detailed comparison for the ATP binding sites of the two structures is depicted in the zoomed
view below. (B) A close-up view of the NTPase active site. P-loops are represented by superimposition of the structures of ZIKV
(white, with the P-loop highlighted in red) and DENV4 (cyan) apo-helicases in the left panel and their complexes in the right panel.
The DENV4 helicase complex was bound to AMPPNP and Mn?* (PDB code 2JLR). (C) Interactions at NTPase active site by

superposition of the ZIKV helicase complexed with ATP and Mn?*

The structure of the ZIKV helicase in complex with ATP
and Mn?*

Due to the nucleotide hydrolysis activity, there is no structure
reported for any flavivirus helicase complexed with ATP.
Instead, the nucleotide analog 5'-adenylyl-B, y-imidodiphos-
phate (AMPPNP) has been used to study helicase-nucleotide
interaction (Luo et al., 2008). Fortunately, we captured the
ZIKV helicase gg_g17 in an ATP-bound state, which is the first
structure of any flavivirus helicase bound to ATP, even though
it displays NTPase activity. The overall structure of the ZIKV
helicasego_g17 i complex with ATP/Mn?* is similar to that of
its apo-form (overall RMSD 0.557 A), except for the move-
ment of the P-loop (residues 193-203) towards the inner core
and lateral movement of main-chain residues 411-416 to
better accommodate ATP (Fig. 1A and 1B). As we have
reported previously, the P-loop, which is critical for NTP
binding and catalysis, has a variety of structural conforma-
tions among flavivirus apo-helicases (Tian et al., 2016). It is
worthwhile to note that upon nucleotide binding, ATP/Mn?*
induced marked conformational change of the P-loop, also

(solid) with its apo enzyme (semitransparent, PDB code 5JMT).

seen in DENV4 helicase (Luo et al., 2008) (Fig. 2B). Inter-
estingly, we found that the P-loop and other elements which
constitute the NTP binding pockets of ZIKV and DENV4
helicases undergo different local rearrangements, but then
adopt an identical mode to recognize ATP/Mn?*. However,
their apo-conformations are distinct from each other. This
suggests that flavivirus helicases have evolved a conserved
molecular engine to convert chemical energy into mechanical
energy for unwinding viral RNA during replication.

In the ZIKV helicaseqgo_g17-ATP-Mn2" tertiary structure,
ATP/Mn?* are located at the cleft between Domain | and Il
(Fig. 2A and 2C). Substrate binding causes an inward
reorientation of side-chain of K200 to stabilize the triphos-
phate moiety of ATP and a flipping of the side-chain of R202
towards the solvent to leave room for sugar moiety. The
triphosphate moiety of ATP adopts an extended conforma-
tion as seen in DENV4 helicase in complex with AMPPNP
(Luo et al., 2008). The Mn?* ion is coordinated in an octa-
hedral geometry by side chains of E286 (motif Il) and T201,
two ordered water molecules and two oxygen atoms from the
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Figure 3. Structure of the ZIKV helicase in complex with RNA. (A) Cartoon representation of overall fold of the ZIKV helicase-
RNA complex with three domains colored and marked respectively. The ssRNA is shown in orange sticks and meshes. (B) Overlay of
the ZIKV helicase-RNA complex structure and its apo form (grey). The RNA is shown in orange. (C) Overlay of the DENV4 helicase-
RNA complex structure and its apo form (grey). The RNA is shown in yellow. The rotations of domain Il and Il upon RNA binding are
depicted accordingly. (D) Schematic illustration of the different modes of domain rotations for ZIKV and DENV4 helicases upon RNA

binding.

B/y phosphate groups of the ATP molecule, which stabilize
the nucleoside triphosphate. The ATP molecule makes
additional contacts with G197, K200, R202 (P-loop), R459,
R462 (motif VI) and other ordered water molecules (Fig. 2C).
Among them, K200 is responsible for interacting with the
y-phosphate of the nucleotide during transition state. The
3'-OH group of the ribose forms hydrogen bonds with the
carbonyl oxygen of R462 and the side chain amide group of
N330. The ribose group of ATP bulges out from the binding
pocket and no clear electron densities are observed for the
adenine group, suggesting that the ZIKV helicase may not
have nucleotide specificity for its NTPase activity.

The structure of ZIKV helicase in complex with RNA
Overall structure

In the structure of the ZIKV helicase 72_g47 in complex with a
7-mer RNA, the single-stranded (ss) RNA runs through

Domain Il to Domain | in an extended conformation with the
bases stacked against each other, separating these two
domains from Domain Ill. The 3' end of ssRNA binds to
Domain I, while the 5" end mainly interacts with Domain II.
Nucleotides 1-5 are well ordered and the electron densities
are mostly invisible for nucleotides 6-7 (Fig. 3A).

Conformational changes upon RNA binding

Compared with its apo-form, the ZIKV helicase undergoes
obvious conformational changes, largely due to a rotation of
Domain Il and Domain Ill, once it binds to ssRNA. Domain Il
rotates about 9° away from Domain | in a rigid-body rotation
mode along axis Il in the direction as noted in Fig. 3B and
3D. However, Domain lll rotates about 9° away from Domain
| in the opposite direction along axis lll, which is approxi-
mately parallel to axis Il (Fig. 3B and 3D). This rotor domain
rotation caused two a-helices (residues 365-379, and resi-
dues 390—400) in Domain Il and two a-helices (residues
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Figure 4. RNA recognition modes for ZIKV and DENV4 helicases. (A) Superposition of ZIKV (domains colored respectively) and
DENV4 (white) apo-helicases. (B) Superposition of ZIKV (domains colored respectively and RNA in orange) and DENV4 (black and
RNA in yellow) helicase-RNA complex. The distance between the sugar groups of nucleotide 1 in ZIKV and DENV4 helicases is
marked in red. (C and D) show the conformation of subsite 1 of the ZIKV helicase-RNA complex (C) and the DENV4 helicase-RNA
complex (D) in a 90° rotated view of (B). RNAs are shown in sticks and proteins are shown in ribbon with domains colored differently.

525-537, and residues 602—-615) in Domain Il to move away
from the RNA binding groove in an opposite direction,
enlarging the groove to accommodate the ssRNA. This
natural design functions like a double-leaf swing gate with
each leaf opening in a reverse direction to the other (Fig. 3B
and 3D). Interestingly, the motor domain rotation mode in the
ZIKV helicase is distinct from that in the DENV4 helicase
structure (Luo et al.,, 2008). In the DENV4 helicase, the
rotation axis for Domain Il, however, is almost vertical to that
for Domain Ill, but the rotation directions are identical
(Fig. 3C and 3D).

RNA recognition

At first glance, the residues for RNA binding are well con-
served in both the ZIKV and DENV apo-helicases (Fig. 4A).
Additionally, similar to the DENV helicase, the ZIKV helicase
binds to ssRNA by a positively charged tunnel identified

along the domain boundary of Domain Ill, which directly
interacts with Domain | and Domain Il as well (Figs. 3-5).
However, to our surprise, the exact RNA recognition mode
differs markedly between these two structures due to the
distinct motor domain rotation upon ssRNA binding. Com-
pared with the structure of the DENV4 helicase complexed
with a 12-mer RNA (Luo et al., 2008), the sugar-phosphate
backbone of nucleotides 1-3 is more extended in the ZIKV
helicase. The sugar group of nucleotide 1 (A) in the ZIKV
helicase is ~5 A away from that in the DENV4 helicase
(Fig. 4B). This causes different conformations of subsite 1 in
the ZIKV and DENV4 helicases to better fit the adenine. In
particular, the side chain of K431 in the ZIKV helicase points
to the inner core, forming a salt bridge with the side chain of
D410 and a weak hydrogen bond with N3 atom of the ade-
nine base (Fig. 4C). The corresponding residue (K430) in the
DENV4 helicase, however, projects its side chain towards
the solvent (Fig. 4D). In addition, as seen in both the ZIKV

566 © The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn



The complex structures of Zika virus helicase

RESEARCH ARTICLE

ZIKV helicase + ssRNA

L430 | P432
V366N .. 5 B S6010y
T T ~Z 'HZ’

P OHO ,g al ‘o"____.R598Nn1
BOOVD--.... Oh{ NS 48N
R388N -~ 5 e T --[K431NC
K389N NI 0 g e D410051

- P3640
IR~ L430N

Q- SDPET: JHRREN
R3BENT o D291052
R388NN2 . _...---D5400

0.

R226N.__\. 807 onePWa A5EAN
V227N*.\\°--—’ P224O
CZGZN.__\Q - EEE—
M2440-""", g u. SR A T2650y1
T26501" ..o SV SO S2680y
T2450y1° 9" .-‘M5360
Toa6N <22~ D540051
S . K5370

- IK537NZ

Domain | Domain Il Domain Il

...... Hydrogen bond .+ Hydrophobic

DENV4 helicase + ssRNA

L443  P431
R5990-. 5 TN
o u@----HO °
DGO3N ;o i I LN L4290
K366NJ-----o, % A P3630
I365N - S0P HOs S T e
...... Pl "
oo N el
T4080y1. o <N !N A" ::/D290051
G ONH3
... o ... --D409052
R387NN2---. .. _%,,F\: OH*""NH,
N A
R387NN2. o <L ] /)N -
R225N-.. -« S o
NS (PP i P2230
T2640y1. Osp OH-™"
. -3 |
casin.. . >0 NNHZ /T2670y1
o) e
Q243N Ec?/erN o3
(o evreiitl
T2440YT - 2§ Oppssizioeeseeree T2640y1
o  ~~¢°
o_ N NH Q2430¢1
%
Q@ OoH
R
Domain | Domain I Domain Il

...... Hydrogen bond

.- Hydrophobic

© The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn 567

o
&
o
=
(<))
)
o
|
o




©
&)
]
=
()
e
o
| 99
o

RESEARCH ARTICLE

Hongliang Tian et al.

<« Figure 5. Comparison of protein-RNA interactions for ZIKV
and DENV4 helicases. Left panels are for ZIKV helicase-RNA
complex and right panels for DENV4. (A) The electrostatic
surface representations showing the tunnel for RNA binding.
Positive potentials are colored blue and the negative are
colored red. The nucleic acids are shown in orange (ZIKV
helicase) and yellow (DENV4 helicase). (B) Interactions in RNA
binding tunnels. Proteins are shown in ribbon and colored
according to domains. RNAs and interacting residues from the
helicases are shown in sticks. Water molecules are shown in
red spheres. (C) Detailed view for the protein-ssRNA
interactions.

and DENV4 helicase structures, a complex network of water
molecules is important for ssSRNA binding, yet these water
molecules may play different roles in recognizing an indi-
vidual nucleotide. The specificity of the ZIKV helicase for
RNA relies on multiple hydrogen bonds between the 2'-OH
moieties from the ssRNA and the carbonyl oxygen of D410,
side chain oxygen of T265, and six water molecules (W1-6)
(Fig. 5B and 5C). In the DENV4 helicase, however, P363,
P223, D409, T264 and the other three water molecules are
responsible for interacting with 2'-OH moieties in the RNA,
suggesting that the ZIKV helicase might depend more on the
water network in discriminating between RNA and DNA than
the DENV4 helicase (Fig. 5B and 5C). The detailed differ-
ence between ZIKV and DENV4 helicases for RNA interac-
tion is shown in Fig. 5C.

Because of its essential role for replication, a viral heli-
case is an attractive target whose accurate mechanism is
still largely unknown. Flavivirus helicases possess nucle-
oside triphosphatase activity, which enables the enzyme to
convert chemical energy to unwind viral RNA replication
intermediates. Our structures presented here can help dee-
pen our understanding of this process and provide structural
basis for rational drug design. Interestingly, although there
exists conformational variety in the NTP binding pocket of
apo-helicases among different flaviviruses, they undergo
conformational changes to adopt an identical mode to bind
NTPs, which may result from the natural selection for the
same function of hydrolyzing NTPs. On the other hand, to
our surprise, although the residues are well conserved for
RNA binding between different flavivirus apo-helicases,
distinct rotations of motor domains would cause different
manners to recognize their individual RNAs during replica-
tion. These findings suggest that flaviviruses could have
evolved a conserved engine to convert chemical energy to
mechanical energy, but variable RNA recognition modes to
adapt to their individual replication.

MATERIALS AND METHODS
Cloning and expression

The cloning and expression of the ZIKV helicase 7217 (residues
172 to 617) has been described previously (Tian et al., 2016). The

short form of catalytic domain4go_g17 (residues 180 to 617) was
amplified by PCR using the forward primer 5-CGCGGATCC-
GAGCCGTCAATGTTGAAG-3' and the reverse primer 5-CCGC
TCGAGTTACCGTTTTCCGGCTGCGAA-3'. The underlined regions
correspond to BamH| and Xhol sites, respectively. The coding
sequence for helicase gp_g17 Was cloned into the vector pET.32M.3C
and fused at its N-terminus to thioredoxin and a (His)e tag followed
by PreScission Protease (GE) cleavage site. Transformed Escher-
ichia coli BL21 (DE3) clones were grown in LB medium at 37°C and
then induced by 0.2 mmol/L isopropyl-B-D-thiogalactopyranoside at
16°C. After overnight growth, cells were harvested via centrifugation.

Protein purification

The purification of ZIKV helicase 7,_¢17 has been described previ-
ously (Tian et al., 2016). Briefly, the Trx-(His)s-helicaseq7o_g17 wWas
purified by Ni Sepharose (GE) affinity chromatography and cleaved
with PreScission Protease, followed by anion-exchange chro-
matography and size exclusion chromatography. The purification of
ZIKV helicaseqgo_g17 Was described below. Cells resuspended in
lysis buffer A (20 mmol/L Na,HPQO,, pH 8.0, 0.5 mol/L NaCl and
20 mmol/L imidazole) were lysed by high pressure homogenization
and the lysate was clarified by centrifugation at 30,000 xg for 40 min
at 4°C. The supernatant was purified by Ni Sepharose (GE) affinity
chromatography equilibrated with buffer A. Proteins were eluted
using buffer A supplemented with 250 mmol/L imidazole. After
concentration by ultrafiltration and dilution in buffer B
(20 mmol/L NayHPO,, pH 8.0, 0.5 mol/L NaCl), the fraction con-
taining Trx-(His)e-ZIKV helicase gp_¢17 Was cleaved with PreScis-
sion Protease at 4°C for approximately 12 h. The cleavage mixture
of ZIKV helicaseqgo_g17 Was loaded onto a HiTrap S 5 mL column
(GE) pre-equilibrated with buffer C (50 mmol/L HEPES, pH 7.0,
50 mmol/L NaCl and 5% glycerol) and also eluted using a linear
NaCl concentration gradient. The concentrated proteins of interest
were subjected to a final gel-filtration purification step through a
HiLoad 16/600 Superdex 200™ PG column (GE) in buffer D
(10 mmol/L Tris-HCI, pH 8.0, 150 mmol/L NaCl, 5 mmol/L dithio-
threitol and 5% glycerol).

ATPase activity assay

The ATP activity assay was carried out using the QuantiChromTM
ATPase/GTPase Assay Kit (BioAssay Systems). The ZIKV heli-
caseq72_g17 Was preincubated at a concentration of 20 nmol/L in
20 pL assay buffer (40 mmol/L Tris, 80 mmol/L NaCl, 8 mmol/L
MgAc,, 1 mmol/L EDTA, pH 7.5) in a 96-well plate. The reaction was
carried out with 10 yL ATP at various concentrations for 20 min at
25°C and then terminated by adding 200 uL of reagent buffer. Fol-
lowed by incubation with reagent buffer for 30 min at the room
temperature, the absorbance was measured at 620 nm. The K,,, and
kca¢ Of the enzyme were obtained from a double-reciprocal plot with
the GraphPad Prism Software.

RNA unwinding

To obtain the partial dsRNA substrate (11-nucleotide complemen-
tation) for helicase unwinding activity assay, the R1 (5-AGCC
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UAAAUUUCAAUCCCG-3') strand was labeled by using [y->2PJATP
(3000 Ci/mmol, Perkin-Elmer) and T4 polynucleotide kinase
(Thermo scientific) for 1 h at 37°C. After ethanol precipitation, the
labeled R1 was annealed with the R2 (5'-CGGGAUUGAAAGGAC
UUAC-3') strand by heating to 100°C in annealing buffer (10 mmol/L
Tris-Cl, pH 7.5, 100 mmol/L NaCl, 1 mmol/L EDTA) and cooled down
slowly to room temperature. The annealed duplex was purified by a
15% native polyacrylamide gel electrophoresis in TBE buffer
(45 mmol/L Tris, 45 mmol/L boric acid, 2 mmol/L EDTA, pH 8.0) and
dissolved in TE buffer to yield a 10 nmol/L substrate.

The assay was performed using 20 pL reaction mixture con-
taining 50 mmol/L HEPES (pH 7.5), 50 mmol/L NaCl, 2.5 mmol/L
MgCl,, 10 mmol/L ATP, 5 U RNase inhibitor (New England Biolabs),
0.5 nmol/L of RNA substrate and the ZIKV helicase 7,_g47 at various
concentrations or an equivalent volume of the protein storage buffer
(negative control). The mixtures were incubated for 30 min at 30°C
and the reactions were terminated by adding 5 pL-loading dye
(0.25 mol/L EDTA, 0.5% SDS, 50% glycerol, 0.01% bromophenol
blue) to the mixtures. The boil mixture (without helicase) was boiled
in boiling water for 3 min then chilled on ice quickly. All these mix-
tures were subjected to electrophoresis using a 12% native poly-
acrylamide gel. The radioisotopic substrates were detected by
X-OMAT BT Film (Carestream).

Crystallization

Crystals for the ATP (Sangon Biotech) complex were obtained by
cocrystallization of the ZIKV helicasego_g17 at a concentration of
5 mg/mL, with 5 mmol/L MnCl, and 5 mmol/L ATP in 0.1 mol/L
HEPES, pH 7.4 and 9% (wi/v) polyethylene glycol 3350 at 18°C by
the microbatch-under-oil method. The binary complex with ssRNA
(5'-AGAUCAA-3') was also obtained through cocrystallization. Ini-
tially, ZIKV helicaseq7,_¢17 (storage buffer: buffer D) at 5 mg/mL was
incubated with ssRNA (GenePharma) at 0.2 mmol/L (~2-fold molar
excess) at 18°C for 1 h. Subsequently, the crystals of ZIKV heli-
caseq72_617-RNA complex were grown at 18°C by the microbatch-
under-oil method and the crystallization condition contained 0.2 mol/L
potassium sodium tartrate tetrahydrate pH 7.4 and 20% (w/v) polyethylene
glycol 3350.

Crystal data collection, structure determination and refinement

Crystals were cryoprotected using the crystallization buffer with
30% glycerol and flash-frozen in liquid nitrogen. Diffraction data
were collected at 100 K at Shanghai Synchrotron Radiation
Facility (SSRF) beamLine BL19U1 at a wavelength of 0.97853 A.
Diffraction data were processed using HKL3000 (Minor and
Otwinowski, 1997). Crystals for both complexes belong to space
group P2, and the data statistics are summarized in Table S1.
The structures were solved by molecular replacement using the
apo structure of ZIKV helicase (PDB ID 5JMT) as a search model.
The program PHASER (McCoy et al.,, 2007) was used for the
molecular replacement search. The initial models were auto-built
by Buccaneer (Cowtan, 2006) and refined through iterative rounds
of TLS and restrained refinement using Refmac5 (Murshudov
et al.,, 2011), followed by rebuilding manually using Coot (Emsley
and Cowtan, 2004). The refinement statistics are summarized in
Table S1.

Protein structure accession number

The refined coordinates have been deposited in the PDB under
accession number 5GJB and 5GJC.
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