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ABSTRACT: Here, we demonstrate a method to capture local dynamics on a
time scale 3 orders of magnitude beyond state-of-the-art simulation approaches.
We apply accelerated molecular dynamics simulations for conformational
sampling and extract reweighted backbone dihedral distributions. Local
dynamics are characterized by torsional probabilities, resulting in residue-wise
dihedral entropies. Our approach is successfully validated for three different
protein systems of increasing size: alanine dipeptide, bovine pancreatic trypsin
inhibitor (BPTI), and the major birch pollen allergen Bet v 1a. We demonstrate
excellent agreement of flexibility profiles with both large-scale computer
simulations and NMR experiments. Thus, our method provides efficient access
to local protein dynamics on extended time scales of high biological relevance.

1. INTRODUCTION

Macromolecules in solution steadily undergo conformational
changes at room temperature.1 Various structural studies on
diverse model systems have shown that the conformational
plasticity of proteins plays a key role in molecular mechanisms
such as catalytic activity,2 biomolecular recognition,3−5 and
allosteric regulation.6 Thus, characterizing dynamics of bio-
logical macromolecules is crucial to understanding their
biological activity and function.7,8 Molecular dynamics (MD)
simulations have proven to be an efficient tool to capture the
flexibility of macromolecules.9 Yet, state-of-the-art MD
simulations routinely capture dynamics on the nanosecond to
microsecond time scale, while many biologically significant
motions appear on the millisecond time scale or slower.10

Inherent limitations in conformational sampling can either be
overcome by usage of dedicated simulation hardware11 or by
application of enhanced sampling algorithms.12,13 Accelerated
MD (aMD) is a promising enhanced sampling technique,
which improves the efficiency of conventional MD (cMD)
simulation without a priori knowledge of the potential energy
surface.14 Introduction of a continuous, non-negative bias
potential increases escape rates from local energy basins. Thus,
the conformational space is sampled more extensively at
negligible computational overhead costs.15,16 Subsequently, the
original energy landscape can be reconstructed by Boltzmann
reweighting.17−19

The versatile applicability of aMD simulations has repeatedly
been proven on manifold macromolecular systems.20−25

Current aMD studies predominantly focus on analyzing the
global dynamics of the obtained conformational ensem-
bles.26−28 Yet, for a comprehensive understanding of
biomolecular properties, it is crucial to be able to localize
flexibility in specific protein domains.29−33

Current approaches estimating local dynamics in aMD
simulations are limited to expensive large-scale calculations of
amide-order parameters from multiple aMD trajectories on
various acceleration levels.34,35 Rather than approximations of
NMR observables, a straightforward approach based on the
thermodynamics of a system would be desirable. So far, no
metric is available to directly quantify local flexibility from aMD
trajectories based on the captured thermodynamics of the
system. We propose residue-wise dihedral entropy as the first
methodology to efficiently characterize local dynamics of
macromolecules from aMD simulations.36,37 To confirm the
validity and efficiency of our approach, we apply the metric to
the model systems alanine dipeptide (Di-Ala) and bovine
pancreatic trypsin inhibitor (BPTI). The conformational
dynamics of BPTI have been investigated thoroughly in
NMR experiments38−41 as well as in large-scale computer
simulations.11 It has already been demonstrated in previous
studies that metrics for local flexibility in a 1 ms cMD
simulation of BPTI track the characteristic motions of BPTI,
known from NMR and global flexibility studies.29,38−42 Here,
we show that residue-wise dihedral entropies deriving from a
500 ns aMD and a 1 ms cMD simulation of BPTI correlate
remarkably. Application of our metric on aMD trajectories
provides a possibility to track low-frequency local dynamics on
the millisecond time scale.
Additionally, we apply our metric to cMD and aMD

simulations of the major birch pollen allergen Bet v 1.0101
(Bet v 1a). Bet v 1a is a highly immunogenic storage protein
and most prominent for causing seasonal pollen allergy in the
Northern Hemisphere.43,44 Despite a sequence similarity of
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more than 95%45,46 and minor differences in their 3D
structures, the more than 13 reported isoforms of Bet v 1a
vary strongly in their immunogenicity.47 Investigations on
differences in proteolytic stability and ligand binding of
different isoforms and mutants of Bet v 1a suggest a linkage
between immunogenic potential and conformational flexibil-
ity.47−49

The accuracy of our results is underlined by comparison to
NMR data,47 displaying analogous trends in experimentally and
computationally estimated flexibility. Our results show that
dihedral entropies from aMD simulations are an efficient tool
to describe local protein dynamics on the millisecond time
scale.

2. METHODS
MD simulations were performed with the AMBER14
simulation package.50 All structures were prepared in MOE
(Molecular Operating Environment, Chemical Computing
Group, version 2014.0901)51 using the protonate3D tool.52

With tleap of the AmberTools1550 package, all three systems
were soaked into a truncated octahedral solvent box of TIP3P
water molecules.53 For Di-Ala, the minimum wall distance was
set to 12 Å and for BPTI and Bet v 1a to 10 Å. Parameters for
all three systems derive from the AMBER force field 99SB-
ILDN.54 All systems were carefully equilibrated using a
multistep equilibration protocol.55 Precedent cMD simulations
as well as all aMD simulations were performed in NpT
ensemble using pmemd.cuda.56 Bonds involving hydrogen
atoms were restrained by applying the SHAKE algorithm,57

allowing a time step of 2.0 fs. Atmospheric pressure of the
system was preserved by weak coupling to an external bath
using the Berendsen algorithm.58 The Langevin thermostat59

was used to maintain the temperature during simulations at 300
K for Di-Ala and BPTI and 310 K for Bet v 1a (human body
temperature).
All aMD simulations were performed using the dual-boost

protocol60 implemented in pmemd.cuda.56 Thereby the total
potential is accelerated and an extra boosting is applied to the
dihedral potential. It has been shown that dual-boost aMD
simulations sample the diffusive solvent motions more
extensively. Ensemble averages as well as entropy estimates
converge faster than in dihedral-boost aMD simulations.26,60 All
simulations were analyzed using cpptraj61 in AmberTools15,50

the reweighting protocol provided by Miao et al.,18 and in-
house scripts. The free energy profile was reconstructed from
the aMD simulations via Boltzmann reweighting using a
Maclaurin series expansion (up to the tenth order) as the
approximation for the exponential term, as suggested in
previous studies.15

The local backbone flexibility profiles were estimated from
the resulting reweighted one-dimensional free energy profiles
and state populations, respectively, of the backbone dihedrals Φ
and Ψ. The entropy is calculated by integration of the
reweighted state populations of a given dihedral. A high
entropy of a residue backbone dihedral indicates high local
backbone flexibility.29,36

In the presented work, we prioritized dihedral entropies SΨ
over SΦ in the representation protein dynamics as they
captured the backbone dynamics more comprehensively.62,63

Yet, SΨ alone does not reflect the entire backbone dynamics,
and dihedral entropies SΦ were calculated as well (SI).
Alanine Dipeptide. For the reference cMD simulation of

alanine dipeptide (Di-Ala), a 10 μs trajectory comprising

100,000 frames, previously performed in our group, was
reanalyzed.29 Residue-wise dihedral entropies of the reference
cMD simulations were calculated from probability density
functions reconstructed by nonparametric kernel density
estimation.36,37 As proposed by Botev et al.,64 we optimize
the bandwidth of the kernel function by cross validation,
resulting in a continuous probability density function for each
dihedral. We periodically duplicate our data to minimize the
overestimated flexibility at the boundaries. The entropy for
each dihedral Sx was calculated by integration of kB · p(x) ·
log(p(x)) on its probability density function p(x) as described
in Huber et al.36,37 The standard deviations were calculated by
splitting the trajectory into 100 segments.
For the aMD calculations, the solvated and equilibrated Di-

Ala system was simulated for 1 μs and stored as 500,000 equal-
spaced snapshots (2 ps spacing). The aMD boosting
parameters were calculated as suggested in previous studies15

(see SI for further information). To minimize the statistical
noise (and capture dynamics corresponding to 10 μs of cMD),
the resulting trajectory was divided into 200 segments of 5 ns
each (2500 frames) using the segments for averaging (SI,
Figure S4). From the reweighted dihedral populations, a
Ramachadran plot was created to ensure sufficient and accurate
sampling of conformational space (SI, Figure S1).
To compare aMD and cMD free energies, we calculated the

free energy of the cMD trajectory using the reweighting
protocol by Miao et al.18 We investigated several different bin
sizes, and the jaggedness of the cMD profile disappears only
using a bin size above 20° (SI, Figure S2). However, as also
suggested by Miao et al.,18 we observe a bin size of 6° to be a
reasonable compromise between accuracy and statistical noise.

BPTI. D. E. Shaw Research kindly provided us with a long
time scale 1.03 ms trajectory comprising 4,140,000 snapshots as
a cMD reference.11 We used the same joint neutron/X-ray
refined structure of BPTI (PDB: 5PTI)38 as Shaw et al. as the
starting structure for our large scale cMD and aMD simulations.
A 500 ns aMD simulation was performed, and the trajectory
was stored as 250,000 snapshots. The aMD boosting
parameters were calculated as suggested by Pierce et al.15 and
can be found in the Supporting Information. To localize the
observed dynamic hot spots, we calculated dihedral entropies as
described earlier for 1 ms and 1 μs of cMD and 500 ns of aMD
sampling time.

Bet v 1a. On the basis of the crystal structure of Bet v 1a
with PDB ID 4A88,65 we sampled 3 μs of cMD simulations on
Bet v 1a. Suitable aMD boosting parameters for Bet v 1a were
determined by a systematic search (SI). We performed a 1 μs
aMD simulation stored as 100,000 equally spaced snapshots.
The trajectory was split in 50 segments of 20 ns each (2000
snapshots) and reweighted as described above. Subsequently,
dihedral entropies were calculated and averaged over all 50
segments. NMR order parameters were kindly provided by
Grutsch et al.; the experimental setup has been described
elsewhere.47

3. RESULTS
Alanine Dipeptide. To establish our approach, we

calculated backbone dihedral entropies for Φ and Ψ of alanine
dipeptide from 5 ns aMD sampling and used a 10 μs cMD
simulation as a reference (Figure 1). We find a significant
reproduction of local minima and overall shape of the potential
energy surface for the backbone dihedral Φ of Di-Ala. As
reported before,18 we also observe a shift in the extrema of
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backbone dihedral Ψ to smaller Ψ values in aMD simulations.
Exemplary, in the cMD simulation, an energy minimum is
found at −24°, while the corresponding minimum in the aMD
results is recovered at −42°. Still the overall energy landscape
of the reweighted aMD trajectory is in reliable agreement with
the cMD results.
Considering these errors, the resulting dihedral entropies,

SΦ,aMD = 41.03 (±2.95) J/(mol K) and SΨ,aMD = 45.42 (±3.25)
J/(mol K), agree very well with those of the cMD ensemble,
SΦ,cMD = 40.20 (±0.60) J/(mol K) and SΨ,cMD = 42.08 (±0.39)
J/(mol K).
BPTI. To benchmark our local flexibility metric, we analyzed

a 500 ns aMD simulation of BPTI and compared it to a 1 ms

cMD simulation provided by D. E. Shaw Research11 (Figure 2).
It has been demonstrated previously that 500 ns of BPTI aMD
simulation cover a conformational space equivalent to a 1 ms
cMD.15 In addition to the findings of Pierce et al., we observe
equal assessment of local backbone flexibility for the 500 ns
aMD and 1 ms cMD simulation. In the 1 ms reference, cMD
maxima of SΨ are found in regions from residues 10−20 and
32−44 and the C-terminal residues from 54−58. Each flexibility
hot spot is reproduced in SΨ from 500 ns of aMD sampling.
The high similarity of local flexibility in both simulation
protocols is reflected in a Spearman rank correlation over the
protein length of r = 0.93 for SΨ between cMD and aMD.
Comparable agreement between the aMD and reference cMD
simulations is also found for SΦ (SI, Figure S5). In contrast,
when looking at dihedral entropies from a 1 μs cMD
simulation, notable differences are found for SΨ in the regions
of residues 10−14 and 32−44. In 1 μs of cMD sampling, no
elevation in conformational plasticity is captured in these
domains, though this is clearly observed on the millisecond
time scale as well as in the aMD-derived ensemble. The
deviation of the local dynamics pattern results in a Spearman
rank correlation of r = 0.65 for SΨ in 500 ns of aMD and 1 μs
cMD sampling.
For the dihedral entropies SΨ and SΦ captured in 500 ns of

aMD, we find a correlation of r = 0.77. The high correlation of
SΨ and SΦ supports the assumption that a similar extent of
flexibility is captured in both backbone dihedral angles.
In Figure 3, the flexibility hot spots displayed in Figure 2 are

color coded and projected on the BPTI fold. The differences in
flexibility captured in 500 ns of aMD (B) and 1 μs cMD (C)
are highlighted in (D). Here, SΨ of the 1 μs cMD simulation
was subtracted from SΨ resulting in 500 ns aMD. Positive
values (blue) indicate domains, which are more flexible in the
aMD than in the cMD simulation of 1 μs sampling length.
When looking at the structure, the most prominent deviation
between 500 ns aMD and 1 μs cMD simulations lies in the local
flexibility of the loop regions. Clearly, the dynamic nature of the
loop involving residues 32−44 found in the millisecond
simulation is not adequately sampled in 1 μs cMD but is
accurately represented in aMD sampling of 500 ns length.

Bet v 1a. With 159 residues, the major birch pollen allergen
Bet v 1a is the largest system in our study. A 1 μs aMD
simulation was split into 50 segments, 20 ns each. A 3 μs cMD
simulation and order parameters S2 from backbone amide
NMR relaxation experiments47 act as references for our metric
to quantify local motions in aMD simulations (Figure 4). Order
parameters range from zero to one, indicating no or full
constriction of internal mobility of backbone amide groups on
the ps- to ns-time scale.66 Thus, an anticorrelation is expected
since high entropy indicates lower order. As observed for the
BPTI system, the aMD-derived ensemble shows higher
backbone flexibility for all residues compared to the cMD-
derived one. The general flexibility patterns are conserved for
most parts of the protein in both simulations. However,
especially in the region from α1 to β2 (residues 15−45),
enhanced dynamics are visible in aMD, which are not reflected
in the cMD simulation. Order parameters S2 show the expected
anticorrelation with dihedral entropies of the core domains, i.e.,
α3-helix and β-sheets 4−7 (residues 70−159). Yet, in contrast
to experimental findings, we obtain lowered local dynamics for
the α1-helix and the β2-sheet, while for the loop region in
between elevated flexibility is observed. These opposing
qualitative observations are reflected in a Spearman rank

Figure 1. From a reweighted aMD trajectory to dihedral entropies of
alanine dipeptide: State populations p are calculated from free energy
profiles of the backbone dihedral Ψ of a 10 μs cMD (black) and a
reweighted 5 ns aMD (red) trajectory. Integration of the resulting state
populations leads to the dihedral entropy SΨ,cMD = 42.08 J/(mol K)
and SΨ, aMD = 45.42 J/(mol K).
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correlation between the Ψ dihedral entropies from aMD
simulations and amide order parameters S2 of r = −0.35 for the
whole fold. When restricting the correlation analysis to the core
helix α3- and β-sheets 5−7 (residues 70−159), the rank
correlation is strengthened to r = −0.61.

4. DISCUSSION
Local flexibility is decisive for biomolecular recognition
mechanisms like protein−protein interactions and ligand
binding, as well as for protein folding.2−4,6 It has been shown
that the flexibility patterns of Bet v 1 are linked to its fold-
stability49 and allergenicity.47 Furthermore, studies on the

dynamics of proteases found a remarkable correlation between
substrate specificity and local flexibility of protease active sites.5

The associated dynamics include motions from the nanosecond
to the millisecond time scale.10 Metrics to quantify the amount
of global and local motions are indispensable for a holistic
understanding of macromolecular interactions.29 Several
expedient metrics have been developed to account for global
and local flexibility in cMD simulations, such as root-mean-
square fluctuation, locally and globally aligned b-factors, or
torsional entropies.29,36,67 Dynamics from aMD simulations are
currently predominantly described on a global level
only.26−28,68 In our study on three model systems of increasing
size, we establish an alignment-free internal coordinate-based
metric estimating local flexibility in aMD simulations. As
expected, enhanced local dynamics are captured using
enhanced sampling. As demonstrated for global movements,
we are able to describe local protein flexibility on the
millisecond time scale after several hundred of nanoseconds
of aMD sampling. The residue-wise quantification of motion in
a protein backbone is constructed from torsional free energy
profiles of reweighted aMD trajectories via calculation of
dihedral entropies.36

Investigations on the smallest system in our study, Di-Ala,
illustrate the applied work flow. As already outlined in a
previous study,18 we also find a shift of minima in the free
energy landscape of Ψ in the reweighted aMD trajectory
compared to the cMD results. This deviation is most probably
generated by the reweighting step when using the Maclaurin
series of the tenth order as approximation for the exponential.
As shown by Miao et al. for alanine dipeptide, reweighting
using cumulant expansion to the second order reconstructs the
free energy surface of aMD simulations accurately. Yet, this
approach requires the distribution of the boost potential to be
exactly Gaussian.69 This may be approximately the case for a
small system like Di-Ala, but we observed that it is less
successful for larger biomolecular systems such as BPTI (SI,
Figure S7). Previous studies on BPTI and other proteins
showed accurate results for Maclaurin series expansion of the

Figure 2. Comparing local flexibility of BPTI captured in cMD and aMD simulations. Residue-wise dihedral entropies SΨ from a 1 ms cMD
simulation (black) and 500 ns aMD simulation of BPTI (red) show remarkable rank correlation (r = 0.93). Local flexibility observed in a 1 μs cMD
simulation (turquoise) clearly differs from the aMD results (r = 0.65).

Figure 3. Flexibility hot spots of BPTI: Residue-wise dihedral
entropies for Ψ (SΨ) from the 1 ms cMD (A), 500 ns aMD
simulation (B), and 1 μs cMD (C) are projected on the structure of
BPTI (PDB-ID: 5PTI). In panels A, B, and C, the color coding ranges
from red (SΨ ≤ 30 J/(mol K)) via yellow to green (SΨ ≥ 45 J/(mol
K)). Thus, the most rigid residues are pictured in red, whereas the
most flexible ones are colored green. Part D shows the differences in
SΨ between 500 ns aMD and 1 μs cMD (ΔSΨ = B − C). The color
coding in D ranges from red (ΔSΨ ≤ 15 J/(mol K)) to white to blue
(ΔSΨ ≥ 15 J/(mol K)); i.e., blue indicates regions where the aMD
simulation captures a higher local flexibility. Thus, the cMD simulation
clearly underestimates the conformational dynamics of BPTI in the
region of residues 10−14 and 32−44.
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tenth order.15,27 Thus, we prefer to use Maclaurin series
expansion for all systems in our study for consistency.
Overall, a quantitative reproduction of the positions of the

local extrema is not essential for our methodology since their
exact location has no influence on the resulting entropies. The
state probability distribution is generally broader in the aMD
ensemble but results in statistically equal dihedral entropies.
Thus, the same dynamic tendencies are estimated from the
aMD and reference cMD simulation.
BPTI is widely used as a test system for NMR and protein

dynamics in general and has been investigated thoroughly over
the last decades.41 The group of D. E. Shaw performed large-
scale computer simulations and extensive studies on the
dynamics of this model system.11 We have demonstrated in
previous studies that metrics of local flexibility in a 1 ms cMD
simulation of BPTI capture characteristic motions, known from
NMR and global flexibility studies.29 These prominent
movement motifs comprise the isomerization of a disulfide
bridge involving Cys-14 and Cys-38. With our metric, we
quantified local flexibility for a 500 ns aMD and a 1 ms cMD
simulation of BPTI with a striking Spearman rank correlation of
r = 0.93 for SΨ. Thus, we are able to quantify and localize
millisecond dynamics with aMD simulations of several hundred
nanoseconds length. When compared to a 1 μs cMD
simulation, it is evident that these results cannot be obtained
with state-of-the-art simulation protocols of the same length (r
= 0.65). The differences in captured molecular motions in 500
ns aMD and 1 μs cMD sampling can be traced back to the loop
regions (residue 10−14 and 32−44), which comprise the
switching disulfide bridge mentioned earlier (SI, Figure S8).
The isomerization of this bond, which is described by NMR
studies and the calculations of the Shaw group, implies an
enhancement of local flexibility in the surrounding region. The
characteristic dynamics of the domain are evidently quantified
by our metric in 500 ns aMD sampling. These results show that
the approach allows access to dynamics of low-frequency
motions. Additionally, our metric provides a tool to localize the
origin of elevated flexibility thereby identifying domains with
prominent dynamics and allowing a residue-wise interpretation.

Bet v 1a is the largest and thereby most challenging system in
our study. The boosting parameters for the Di-Ala and BPTI
simulations were applied as suggested in previous studies.15,18

For Bet v 1a, we set up six simulations on different levels of
acceleration to test the limit of applied acceleration without
unfolding the protein (SI). It has been shown that the choice of
parameter has a crucial impact on the resulting trajectory and
has to be evaluated carefully.16

To estimate the reliability of our findings, we compared a 20
ns aMD trajectory to a conventional 3 μs MD simulation and
NMR-derived NH order parameters S2. Flexibility patterns
recovered from aMD and cMD simulation are overall in good
agreement. Characteristic deviations are observed in the region
from helix α1 to the sheet β2 (residues 15−45). These
observations are reflected by a Spearman rank correlation of r =
0.51 between the aMD and cMD simulations. We hypothesize
that this rather low correlation can primarily be explained by
the different time scales captured. Extrapolating from previous
studies on BPTI, where 500 ns of aMD sampling covers the
dynamics of 1 ms cMD sampling, 20 ns of aMD should
correspond to dynamics of around 40 μs. It can be assumed
that these flexibilities clearly deviate from motions captured in
only 3 μs sampling time.
Comparison of the dihedral entropy profile to order

parameters S2 of the backbone amide66 leads to similar
findings. NMR order parameters S2 are sensitive to ps- to ns-
dynamics, capturing much faster motions than those shown in
aMD data. We expect a coupling between slow backbone
dynamics, profiled by aMD simulation, and fast motions,
captured in NMR data.29 Thus, NMR order parameters S2

represent a method to experimentally probe protein backbone
dynamics on residue resolution and an insightful reference to
estimate the reliability of our approach. As expected, we
observe an anticorrelation between the calculated diheral
entropies and the experimental order parameters. Again
reasonable agreement is visible for the region reaching from
residue 70 to the C-terminus, while for the domain from helix
α1 to the sheet β2 (residues 15−45) almost opposing trends
are found. These qualitative observations become apparent in a

Figure 4. Local flexibility on different time scales in Bet v 1a: Dihedral entropies SΨ from 20 ns aMD (red) and 3 μs of cMD (black) are compared to
experimental ps/ns dynamics66 captured by NMR-derived backbone amide-order parameters S2 (blue)47
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Spearman rank correlation of r = −0.39 between the aMD
dihedral entropies and S2 when considering the whole protein.
This is only a slight improvement over cMD simulations, where
correlations of r = −0.23 for torsional entropies and order
parameters are obtained. This might result from dynamics
captured by aMD being beyond the scope of the NMR time
scale. It has been shown in previous studies that the region
from α1 to β2 undergoes a noticeable rigidification upon ligand
binding.47 Order parameters and relaxation dispersion profiles
of the apo protein confirm the flexible nature of Bet v 1a on a
pico- to nanosecond as well as on a micro- to millisecond time
scale. Residues from α1 to β2 show elevated dynamics in both
experiments. For the remaining parts of the protein (residue
70−159), a correlation of r = −0.61 is found between the aMD
dihedral entropies and S2. Here, the correlation of cMD
simulations and order parameters is still notably lower with r =
−0.35. Additionally, dihedral entropies were calculated from
aMD simulations of varying lengths ranging from 10 ns to 1 μs
(SI, Figure S10). Again, the resulting entropies show similar
flexibility profiles as experimental NMR studies, with exception
of the discussed domain reaching from α1 to β2. This
emphasizes the presence of complex conformational dynamics
on multiple time scales in this area.
With the presented metric, we provide a tool to map low-

frequency conformational dynamics of biomolecules at the
residue level. With increasing system size, reproduction of the
original flexibility profile becomes more challenging. The
decorrelation time of aMD and cMD data has been investigated
extensively in previous studies.16 It has been shown that the
aMD generally reduces the statistical inefficiency of a
simulation. An extensive probing of the acceleration parameter
is crucial for the reliability of any aMD trajectory. Aggressive
boosting enables extensive speedup in conformational explora-
tion, but can lead to a substantial loss of accuracy.16 Particularly
the reweighting step is a known but yet not completely solved
challenge.19 Some approaches, like boosting of rotatable
torsions only (RaMD),70 Gaussian aMD,71 or selectively
applied aMD,72 alleviate the impact of the reweighting error.

5. CONCLUSION

With the present study, we introduce and validate a metric to
characterize local protein dynamics on the millisecond time
scale. Accelerated MD simulations provide access to time scales
3 orders of magnitude beyond state-of-the-art sampling time.
Subsequent calculation of dihedral entropies from aMD
trajectories quantifies backbone flexibility of each residue.
The general functionality of our approach is shown on the

model system Di-Ala. We calculated dihedral entropies from a 1
ms cMD simulation of BPTI,11 serving as reference to validate
and benchmark method and metric. We were able to show that
dihedral entropies from only 500 ns of aMD simulation identify
the same flexibility hot spots, as observed in the 1 ms cMD
trajectory. The results are supported by previous NMR
studies,41 which observe local conformational changes in the
same regions characterized as most flexible in our study. We
applied the procedure on the major birch pollen allergen Bet v
1a. Our study shows good agreement with local dynamics
found in a 3 μs cMD simulation as well as with NMR-derived
amide-order parameters.47

We encourage the application of dihedral entropies as a local
flexibility metric on different aMD protocols. We anticipate our
novel metric to facilitate characterizing and thus understanding

the influence of molecular dynamics on biomolecular
recognition and protein folding.
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