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Background
Recently, several new classes of rings have been studied in connection with cod-
ing theory. Many optimal binary linear codes have been obtained from codes over 
these rings via some Gray map. In Yildiz and Karadenniz (2010a, b), the authors intro-
duced the ring F2 +  uF2 +  vF2 +  uvF2 and discussed linear and self-dual codes over 
F2 +  uF2 +  vF2 +  uvF2. Later, the structures of cyclic codes and (1 +  u)-constacyclic 
codes over F2 + uF2 + vF2 + uvF2 were studied and many optimal binary linear codes 
were constructed from such codes in Yildiz and Karadenniz (2011a, b). More generally, 
cyclic codes over the ring Rk were investigated in Dougherty et al. (2012). Although the 
rings mentioned above are not finite chain rings, they have rich algebraic structures 
and produce binary codes with large automorphism groups and new binary self-dual 
codes. This demonstrates that linear codes over such non-chain rings have been received 
increasing attention (see Dougherty et al. 2012; Kai et al. 2012; Shi 2014; Shi et al. 2012; 
Siap et al. 2012; Zhu and Wang 2011). More recently, linear codes over the non-chain 
ring Z4 + uZ4, where u2 = 0, have been explored in Yildiz and Karadenniz (2014). The 
authors defined a linear Gray map from Z4 + uZ4 to Z4

2 and a non-linear Gray map from 
Z4 + uZ4 to (F2 + uF2)2, and used them to successfully construct formally self-dual codes 
over Z4 and good non-linear codes over F2 + uF2. In Yildiz and Aydin (2014), the struc-
ture of cyclic codes over Z4 + uZ4 was determined and many new linear codes over Z4 
were obtained from them. Motivated by the works in Yildiz and Aydin (2014) and Yildiz 
and Karadenniz (2014), we focus on constacyclic codes over Z4 + uZ4 and intend to con-
struct good binary codes from such codes.

Abstract 

Constacyclic codes are an important class of linear codes in coding theory. Many 
optimal linear codes are directly derived from constacyclic codes. In this paper, (1 + u)-
constacyclic codes over Z4 + uZ4 of any length are studied. A new Gray map between 
Z4 + uZ4 and Z4

4 is defined. By means of this map, it is shown that the Z4 Gray image of 
a (1 + u)-constacyclic code of length n over Z4 + uZ4 is a cyclic code over Z4 of length 
4n. Furthermore, by combining the classical Gray map between Z4 and F2

2, it is shown 
that the binary image of a (1 + u)-constacyclic code of length n over Z4 + uZ4 is a 
distance invariant binary quasi-cyclic code of index 4 and length 8n. Examples of good 
binary codes are constructed to illustrate the application of this class of codes.
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The ring Z4 +  uZ4 is a finite commutative ring with characteristic 4, where u2 =  0. 
The purpose of this paper is to investigate a class of constacyclic codes over this ring, 
that is, (1 + u)-constacyclic codes over Z4 + uZ4. Constacyclic codes over finite com-
mutative rings were first introduced by Wolfmann (1999), where it was proved that 
the binary image of a linear negacyclic code over Z4 is a binary cyclic code (not neces-
sarily linear). In Kai et  al. (2012), the authors introduced a composite Gray map from 
F2 + uF2 + vF2 + uvF2 to F2

4 and proved that the image of a (1 + u)-constacyclic code of 
length n over F2 + uF2 + vF2 + uvF2 under the Gray map is a distance invariant binary 
quasi-cyclic code of index 2 and length 4n. It is known that the structure of Z4 + uZ4 is 
similar to that of F2 + uF2 + vF2 + uvF2. It is natural to ask if there exists a Gray map 
such that the Gray image of a linear code over Z4 + uZ4 has good structure. For this, 
we introduce a new Gray map from Z4 + uZ4 to Z4, and explore the images of (1 + u)-
constacyclic codes over Z4 + uZ4 under this Gray map.

(1 + u)‑Constacyclic codes over Z4 + uZ4

Throughout this paper, let R denote the ring Z4 + uZ4 with u2 = 0. Any element in R can be 
written as a + bu, where a, b ∊ Z4. The element a + bu is a unit in R if and only if a is a unit 
in Z4. The ring R is a local Frobenius ring, but not a finite chain ring. It has a total of 7 ideals 
given by I0 = {0} ⊆ I2u = 2u(Z4 + uZ4) = {0, 2u} ⊆ Iu, I2, I2+u ⊆ I2,u ⊆ I1 = Z4 + uZ4, 
where

A code over R of length n is a nonempty subset of Rn, and a code is linear over R of 
length n if it is an R-submodule of Rn. For some fixed unit λ ∊ R, the λ-constacyclic shift τ 
on Rn is the shift τ(c0, c1, …, cn−1) = (λcn−1, c0, …, cn−2). A linear code C of length n over R 
is λ-constacyclic if the code is invariant under the λ-constacyclic shift τ. We identify the 
code-word c = (c0, c1, …, cn−1) with its polynomial representation c(x) = c0 + c1x + ··· + 
cn−1xn−1. Then xc(x) corresponds to a λ-constacyclic shift of c(x) in the ring R[x]/(xn − λ). 
Thus, λ-constacyclic codes of length n over R can be identified as ideals in the ring R[x]/
(xn − λ). From the above discuss, we have the following result.

Proposition 1  A subset C of Rn is a linear cyclic code of length n if and only if C is 
an ideal of An = R[x]

/

(xn − 1). A subset C of Rn is a linear (1+ u)-constacyclic code of 
length n over R if and only if C is an ideal of Bn = R[x]

/

(xn − 1− u).

Now, we determine a set of generators of (1 + u)-constacyclic codes for an arbitrary 
length over R. We begin by recalling a unique set of generators for cyclic codes over Z4.

Lemma 2  [cf. Abualrub and Siap (2006), Theorem 6] Let C be a cyclic code of length n 
over Z4. Then

Iu = u(Z4 + uZ4) = {0,u, 2u, 3u},

I2 = 2(Z4 + uZ4) = {0, 2, 2u, 2+ 2u},

I2+u = (2+ u)(Z4 + uZ4) = {0, 2+ u, 2u, 2+ 3u},

I2,u = {0, 2,u, 2u, 3u, 2+ u, 2+ 2u, 2+ 3u}.
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1.	 If n is odd thenC = �g(x), 2a(x)� = �g(x)+ 2a(x)�, where g(x), a(x) are binary poly-
nomials with a(x)

∣

∣g(x) |(xn − 1) mod 2.
2.	 If n is even then

2.1	 If g(x) = a(x), then C = �g(x)+ 2p(x)�, where g(x), p(x) are binary polynomials 
with g(x)|(xn − 1) mod 2, and g(x)

∣

∣

∣
p(x) (x

n−1)
g(x) ,

2.2	 C = �g(x)+ 2p(x), 2a(x)�, where g(x), a(x) and p(x) are binary polynomials with 
a(x)

∣

∣g(x) |(xn − 1) mod 2, a(x)
∣

∣

∣
p(x) (x

n−1)
g(x)  and deg g(x) > deg a(x) > deg p(x).

For a linear code C of length n over R, we can denote two linear codes of length n over 
Z4 as follows:

1.	 The torsion code Tor(C) = {x ∊ Zn
4|ux ∊ C},

2.	 The residue code Res(C) = {x ∈ Zn
4

∣

∣∃y ∈ Zn
4 : x + uy ∈ C }.

Consider the homomorphism ϕ : R → Z4 defined by ϕ(a+ ub) = a. The map ϕ extends  
naturally to a ring homomorphism ϕ : Rn → Z4(n) =

Z4[x]
(xn−1) defined by

Acting ϕ on C over R, we define a ring homomorphism

We can easily obtain that Kerϕ ≅ Tor(C) and ϕ(C) = Res(C). By the first isomorphism 
theorem of finite groups, we have |C| = |Tor(C)||Res(C)|. It is obvious that the image of 
C under the map ϕ is a cyclic code of length n over Z4. Combining the above discussion 
with Lemma 2, we can obtain the set of generators for cyclic codes of length n over R.

Theorem 3  Let C be a (1+ u)-constacyclic code of length n over R. Then 

1.	 If n is odd then C = �g1(x)+ 2a1(x)+ ub(x),u(g2(x)+ 2a2(x))�, where b(x)  
is a polynomial in Z4[x] and gi(x), ai(x) are binary polynomials with 
ai(x)

∣

∣gi(x) |(x
n − 1) mod 2 for i = 1, 2.

2.	 If n is even then
2.1	 If gi(x) = ai(x), then C = �g1(x)+ 2p1(x)+ ud(x),u(g2(x)+ 2p2(x))� , where  

d(x) is a polynomial in Z4[x], gi(x), pi(x) are binary polynomials with 
gi(x)|(x

n − 1) mod 2 and gi(x)
∣

∣

∣
pi(x)

(xn−1)
gi(x)

, for i = 1, 2;

2.2	 C = �g1(x)+ 2p1(x)+ ue1(x), 2a1(x)+ ue2(x),ug2(x)+ 2up2(x), 2a2(x)� , where  
ei(x) is a polynomial in Z4[x], and gi(x), ai(x), pi(x) are binary  
polynomials with ai(x)

∣

∣gi(x) |(x
n − 1) mod 2, ai(x)

∣

∣

∣
pi(x)

(xn−1)
gi(x)

 and deg gi(x)
> deg ai(x) > deg pi(x), for i = 1, 2.

Proof  We only give the proof of the part (1), and the proof of the part (2) is similar.
Assume that n is odd. Let C be a (1 + u)-constacyclic code of length n over R. Then 

the image of C under the map ϕ is Res(C), which is a cyclic code of length n over Z4. 
By Lemma 2, we have ϕ(C)  =  〈g1(x)  +  2a1(x)〉, where g1(x),  a1(x) are binary poly-
nomials with a1(x)

∣

∣g1(x) |(x
n − 1) mod 2. Thus, there exists b(x)  ∊  Z4[x] such that 

g1(x) + 2a1(x) + ub(x) ∊ C.

ϕ(c0 + c1x + · · · , cn−1x
n−1) = ϕ(c0)+ ϕ(c1)x + · · · + ϕ(cn−1)x

n−1.

ϕ : C → Res(C),ϕ(a+ ub) = a where a, b ∈ Z4.
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Furthermore, note that Kerϕ is a cyclic code of length n over Z4  +  uZ4, 
so Kerϕ  =  u  〈g2(x)  +  2a2(x)〉, where g2(x),  a2(x) are binary polynomials with 
a2(x)

∣

∣g2(x) |(x
n − 1) mod 2. Hence, 〈g1(x) + 2a1(x) + ub(x), u(g2(x) + 2a2(x))〉 ⊆ C.

On the other hand, for any f(x) = f1(x) + uf2(x) ∊ C, where fi(x) ∊ Z4[x], for i = 1, 2, it is 
obvious that f1(x) ∊ ϕ(C). Hence,

Since u(f2(x) − m(x)b(x)) ∊ Kerϕ, we have

This shows that C ⊆ 〈g1(x) + 2a1(x) + ub(x), u(g2(x) + 2a2(x))〉.
Thus, C = 〈g1(x) + 2a1(x) + ub(x), u(g2(x) + 2a2(x))〉.� □

Gray images of (1 + u)‑constacyclic codes over R
A new Gray map

Recall that the Gray map φ1 from Z4 to F2
2 is defined as φ1(z) = (q, q + r) where z = r + 2q 

with r, q ∊ F2. The map φ1 can be extended to Zn
4 as follows:

where zi = ri + 2qi with ri, qi ∊ F2 for 0 ≤ i ≤ n − 1. It is known that φ1 is a distance-
preserving map from Zn

4 (Lee distance) to F2
2n (Hamming distance).

Now, we define a map φ2 from Rn to Z4
4n. First note that each element c ∊  R can be 

expressed as c = a + ub, where a, b ∊ Z4. The map φ2 is defined as

Clearly, this map can be also extended to Rn as follows:

where ci = ai + ubi with ai, bi ∊ Z4 for 0 ≤ i ≤ n − 1.
It is well-known that the homogeneous weight has many applications for codes over 

finite rings and provides a good metric for the underlying ring in constructing superior 
codes. Next, we define a homogeneous weight on R. We first recall the definition of the 
homogeneous weight on a finite ring K.

Definition 4  [cf. Greferath and O’Sullivan (2004), Definition 1.1] A real-valued func-
tion w on the finite ring K is called a (left) homogeneous weight if w(0) = 0 and the fol-
lowing is true:

1.	 For all x, y ∊ K, Kx = Ky implies that w(x) = w(y) holds.
2.	 There exists a real number γ such that ∑y∊Kx w(y) = γ|Kx| for all x ∈ K\{0}.

f (x) = f1(x)+ uf2(x)

= m(x)(g1(x)+ 2a1(x))+ uf2(x)

= m(x)(g1(x)+ 2a1(x)+ ub(x))+ u(f2(x)−m(x)b(x))

f (x) ∈ �g1(x)+ 2a1(x)+ ub(x),u
(

g2(x)+ 2a2(x)
)

�.

φ1 : Z
n
4 → F2n

2

(z0, z1, . . . , zn−1) → (q0, q1, . . . , qn−1, q0 + r0, q1 + r1, . . . , qn−1 + rn−1)

φ2(c) = (b+ 3a, b+ 2a, b+ a, b).

φ2 : R
n → Z4n

4

(c0, c1, . . . , cn−1) → (b0 + 3a0, b1 + 3a1, . . . , bn−1 + 3an−1, b0 + 2a0, b1

+ 2a1, . . . , bn−1 + 2an−1, b0 + a0, b1 + a1, . . . , bn−1 + an−1, b0, b1, . . . , bn−1)
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Right homogenous weight is defined accordingly. If a weight is both left homogenous 
and right homogeneous, we call it simply as a homogeneous weight.

For any element c  =  a  +  ub  ∊  R, we assign the weight, denoted by whom(c), as 
wL(b + 3a, b + 2a, b + a, b), i.e., whom(c) = wL(b + 3a, b + 2a, b + a, b). By simple calcu-
lation, we can obtain the weight of any element x = a + ub ∊ R as follows:

It is easy to verify that the weight defined above meets the conditions of Definition 4, 
hence it is actually a homogeneous weight on R. The homogeneous distance of a lin-
ear code over R, denoted by dhom(C), is defined as the minimum homogeneous weight 
of nonzero codewords of C. It can be checked that the map φ2 is a distance-preserving 
map from Rn (homogeneous distance) to Z4

4n (Lee distance). Using the maps  φ1 and φ2 , 
we can define a composite map φ : R → F8

2 as φ = φ1φ2. Thus, we have obtained three 
distance-preserving maps as follows:

Gray images of (1 + u)‑constacyclic codes

Lemma 5  Let  φ2 be defined as above. Let τ be the  (1+ u)-constacyclic shift on Rn and σ 
be the cyclic shift on Z4

4n. Then φ2τ = σφ2.

Proof  Let c = (c0, c1, …, cn−1) ∊ Rn. Let ci = ai + ubi where ai, bi ∊ Z4 for 0 ≤ i ≤ n − 1. 
From definitions, we have

Hence,

On the other hand,

Thus,

The result follows.� □

whom(x) =







0, x = 0
8, x = 2u
4, otherwise

φ1 :
(

Zn
4 , Lee distance

)

→

(

F2n
2 , Hamming distance

)

,

φ2 :
(

Rn, homogeneous distance
)

→

(

Z4n
4 , Lee distance

)

,

φ :
(

Rn, homogeneous distance
)

→

(

F8n
2 , Hamming distance

)

.

φ2(c) = (b0 + 3a0, b1 + 3a1, . . . , bn−1 + 3an−1, b0 + 2a0, b1 + 2a1, . . . , bn−1

+ 2an−1, b0 + a0, b1 + a1, . . . , bn−1 + an−1, b0, b1, . . . , bn−1)

σφ2(c) = (bn−1, b0 + 3a0, b1 + 3a1, . . . , bn−1 + 3an−1, b0 + 2a0, b1 + 2a1, . . . , bn−1

+ 2an−1, b0 + a0, b1 + a1, . . . , bn−1 + an−1, b0, b1, . . . , bn−2)

τ (c) = ((1+ u)cn−1, c0, c1, . . . , cn−2)

= (an−1 + u(an−1 + bn−1), a0 + ub0, . . . , an−2 + ubn−2)

φ2τ (c) = (bn−1, b0 + 3a0, b1 + 3a1, . . . , bn−1 + 3an−1, b0 + 2a0, b1 + 2a1, . . . , bn−1

+ 2an−1, b0 + a0, b1 + a1, . . . , bn−1 + an−1, b0, b1, . . . , bn−2)
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Theorem 6  A linear code C of length n over R is a (1+ u)-constacyclic code if and only 
if  φ2(C) is a cyclic code of length 4n over Z4.

Proof  If C is a (1 + u)-constacyclic code, then using Lemma 5 we have

Hence, φ2(C) is a cyclic code of length 4n over Z4.
Conversely, if φ2(C) is a cyclic code of length 4n over Z4, then using Lemma 5 again we 
get φ2(τ(C)) = σ(φ2(C)) = φ2(C).

Note that φ2 is injection, so τ(C) = C.
Thus, we immediately have the following result.� □

Corollary 7  The image of a (1+ u)-constacyclic code of length n over R under the map  
φ2 is a distance invariant cyclic code of length 4n over Z4.

Let σ be the cyclic shift. For any positive integer s, let σs be the quasi-shift given by

where a(1),  a(2),  …,  a(s)  ∊  F2
2n and “|”denotes the usual vector concatenation. A binary 

quasi-cyclic code C of index s and length 2ns is a subset of (F2
2n)s such that σs(C) = C.

Lemma 8  Let  φ be defined as above and let τ be the (1+ u)-constacyclic shift on Rn. 
Then  φτ = σ4φ.

Proof  Let r = (r0, r1, …, rn−1) ∊ Rn. Let ri = ai + 2bi + uci + 2udi where ai, bi, ci, di ∊ F2 
for 0 ≤ i ≤ n − 1. Then we have

and so

On the other hand,

σ(φ2(C)) = φ2(τ (C)) = φ2(C).

σs(a
(1)

∣

∣

∣
a(2)

∣

∣

∣
· · ·

∣

∣

∣
a(s) ) = (σ (a(1))

∣

∣

∣
σ(a(2))

∣

∣

∣
· · ·

∣

∣

∣
σ(a(s)) )

φ(r) = (a0 + b0 + d0, . . . , an−1 + bn−1 + dn−1, a0 + d0, . . . , an−1 + dn−1, b0 + d0, . . . , bn−1

+ dn−1, d0, . . . , dn−1, b0 + c0 + d0, . . . , bn−1 + cn−1 + dn−1, a0 + c0 + d0, . . . , an−1 + cn−1

+ dn−1, a0 + b0 + c0 + d0, . . . , an−1 + bn−1 + cn−1 + dn−1, c0 + d0, . . . , cn−1 + dn−1)

σ4φ(r) = (an−1 + dn−1, a0 + b0 + d0, . . . , an−1 + bn−1 + dn−1, a0 + d0, . . . , an−2

+ dn−2, dn−1, b0 + d0, . . . , bn−1 + dn−1, d0, . . . , dn−2, an−1 + cn−1 + dn−1, b0 + c0

+ d0, . . . , bn−1 + cn−1 + dn−1, a0 + c0 + d0, . . . , an−2 + cn−2 + dn−2, cn−1

+ dn−1, a0 + b0 + c0 + d0, . . . , an−1 + bn−1 + cn−1 + dn−1, c0 + d0, . . . , cn−2 + dn−2)

τ (r) = ((1+ u)rn−1, r0, r1, . . . , rn−2)

= ((an−1 + 2bn−1)+ u(an−1 + cn−1)+ 2u(bn−1 + dn−1), a0

+ 2b0 + uc0 + 2ud0, . . . , an−2 + 2bn−2 + ucn−2 + 2udn−2)
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Hence,

This completes the proof.� □

Theorem 9  A linear code C of length n over R is a (1+ u)-constacyclic code if and only 
if  φ(C) is a binary quasi-cyclic code of index 4 and length 8n.

Proof  If C is (1 + u)-constacyclic, then using Lemma 8 we have

Hence, φ(C) is a binary quasi-cyclic code of index 4 and length 8n. Conversely, if φ(C) is 
a binary quasi-cyclic code of index 4 and length 8n, then using Lemma 8 again we get φ
(τ(C)) = σ4(φ(C)) = φ(C).

Also, φ is injection, hence τ(C) = C.� □

From Theorem 9 and the definition of the map φ, we immediately have the following 
result.

Corollary 10  The image of a (1 + u)-constacyclic code of length n over R under the map  
φis a distance invariant binary quasi-cyclic code of index 4 and length 8n.

Now, we can construct some binary codes with good parameters based on the new 
Gray map.

Example 11  Consider (1 + u)-constacyclic codes over Z4 + uZ4 of length 3. In F2[x], 
x3 − 1=(x − 1)(x2 + x + 1).

1.	 In Theorem 3, we take g1(x) = x−1, a1(x) = 1, b(x) = 3x, and g2(x) = a2(x) = x3 − 1. 
Then, we obtain the (1 + u)-constacyclic code C1 over R of length 3 with generator 
polynomial (1 + u)x + 1. That is 〈(1 − u)x + 1〉 = 〈x + (1 + u)〉, It is easy to see that 
both Res(C1) and Tor(C1) have size 16. Moreover, dhom(C1) =  8. By Corollary 7, φ

2(C1) is a Z4-linear code of length 12 with size 256 and Lee distance 8. By Theorem 9, 
φ(C1) is a binary quasi-cyclic code of index 4 and length 24. We find that φ(C1) is a 
non-linear binary code with parameters (24, 256, 8). The code φ(C1) attains the per-
formance of the best-known binary linear code with the same parameters based on 
Grassl’s codetables (Grassl 2007).

2.	 In Theorem 3, g1(x) = x3 + 1, a1(x) = 1, b(x) = 3, g2(x) = x + 1, and a2(x) = x + 1 . 
Then, we obtain the code C2 = 〈3u(x + 1)〉 = 〈u(x + 1)〉. Obviously, Res(C2) = {0} 
and Tor(C2) has size 4. By Corollary 7, φ(C2) is a Z4-linear code of length 12 with size 
4 and Lee distance 16. By Theorem 9, φ(C2) is a binary quasi-cyclic code of index 4 

φτ(r) = (an−1 + dn−1, a0 + b0 + d0, . . . , an−1 + bn−1 + dn−1, a0 + d0, . . . , an−2

+ dn−2, dn−1, b0 + d0, . . . , bn−1 + dn−1, d0, . . . , dn−2, an−1 + cn−1 + dn−1, b0 + c0

+ d0, . . . , bn−1 + cn−1 + dn−1, a0 + c0 + d0, . . . , an−2 + cn−2 + dn−2, cn−1

+ dn−1, a0 + b0 + c0 + d0, . . . , an−1 + bn−1 + cn−1 + dn−1, c0 + d0, . . . , cn−2 + dn−2)

σ4(φ(C)) = φ(τ(C)) = φ(C).
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and length 24. The code φ(C2) is a linear binary code with parameters [24, 2, 16], 
which is optimal based on Grassl’s codetables (Grassl 2007).

Conclusion
We study the structure of (1 +  u)-constacyclic codes over Z4 +  uZ4 of an arbitrary 
length, and obtain the examples of good binary codes from them. Our results show that 
a (1 + u)-constacyclic code of length n over Z4 + uZ4 under certain map is equivalent to 
a cyclic code of length 4n over Z4. Furthermore, we discuss the relation between (1 + u)-
constacyclic codes of length n over Z4 + uZ4 and their binary Gray images. It would be 
interesting to study other constacyclic codes over Z4 + uZ4 and use them to construct 
more good codes over Z4 or F2.
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