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Accelerated insertion of nanocomposites into advanced applications is predicated on the ability to 

perform a priori property predictions on the resulting materials. In this paper, a paradigm for the 

virtual design of spherical nanoparticle-filled polymers is demonstrated. A key component of this 

“Materials Genomics” approach is the development and use of Materials Quantitative Structure-

Property Relationship (MQSPR) models trained on atomic-level features of nanofiller and polymer 

constituents and used to predict the polar and dispersive components of their surface energies. 

Surface energy differences are then correlated with the nanofiller dispersion morphology and 

filler/matrix interface properties and integrated into a numerical analysis approach that allows the 

prediction of thermomechanical properties of the spherical nanofilled polymer composites. 

Systematic experimental studies of silica nanoparticles modified with three different surface 

chemistries in polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) 

(PEMA) and poly(2-vinyl pyridine) (P2VP) are used to validate the models. While demonstrated 

here as effective for the prediction of meso-scale morphologies and macro-scale properties under 

quasi-equilibrium processing conditions, the protocol has far ranging implications for Virtual 

Design.

1. Introduction

The holy grail of materials science and engineering is the ability to predict the properties of 

materials a priori—a goal recently elevated to a Grand Challenge by the Materials Genome 

Initiative.[1] A set of computational tools for a priori prediction would allow for virtual 

exploration of new materials and circumvent the experimental Edisonian approach that 

currently dominates materials development and deployment. The most rigorous approach to 

a priori property prediction is multiscale modeling beginning with ab initio models at the 

atomic and molecular level that are connected across multiple length scales using models 

that preserve the dominant physics at each length scale. Developing and implementing pure 

physics-based scale-bridging methods is, however, fraught with difficulty and limited by 

both the availability of computational power and appropriate scale linking algorithms. An 

alternative approach to bridging length scales is to use heuristic Materials Quantitative 

Structure Property Relationships (MQSPR) methods that are trained using a set of 

descriptors (grounded in the physics appropriate to the smaller length scale) to characterize 

the fundamental controlling features critical to the prediction of behavior at a larger scale.[2] 

Heuristic techniques have been shown, previously, to be very powerful in chemistry and 

biology for predicting, for example, the behavior of drug-like molecules as potential 

therapeutic agents.[3,4]

In this work, we use a heuristic informatics-based approach (MQSPR) coupled with physics-

based continuum models and experimental validation to predict the thermomechanical 

properties of silane-modified spherical nanoparticle filled polymers (nanocomposites) as 

illustrated in Figure 1. This effort represents the first time that MQSPR methods have been 

used to fully connect a set of length scales, and presents a tremendous opportunity to predict 

bulk nanocomposite properties that are related ultimately to the fundamental underlying 

chemistry of the polymer and nanoparticle surfaces and the nanoparticle dispersion state.
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The hypothesis driving this strategy is that the dispersion and distribution of the nanofillers 

as well as the mobility of the polymer chains near the nanoparticles (“filler” and “particle” 

are interchangeably used) can each be predicted beginning with the polar and dispersive 

components of the surface energies of the polymer and functionalized nanofillers. From 

knowledge of the dispersion and distribution of the nanofillers, as well as the relaxation 

times of the polymers in the nanoparticle/matrix interfacial region, a 3D continuum model 

can be used to predict the thermomechanical response of the resulting nanocomposites. 

There is significant qualitative support in the literature for such a strategy,[5–9] and important 

components of this approach have been shown to be quantitatively correct, such as the 

relationship between glass transition temperature (Tg) and dispersion.[10,11]

2. Results and Discussion

2.1. MQSPR to Predict Polymer and Nanoparticle Surface Energies

The first critical jump in length scale within this a priori prediction approach involves 

calculating surface energies for each polymer and functionalized nanoparticle using heuristic 

MQSPR models based on the chemical properties of the constituents rather than using ab 

initio computations to evaluate each new case. Carefully curated literature data for the polar 

and dispersive components of surface energy of 30 polymers[12–22] and 33 functionalized 

silica surfaces,[23–25] all obtained by the contact angle method and geometric mean 

formulation[26] were used to train and validate the surface energy MQSPR models using 

Multiple Linear Regression (MLR), Partial Least-Squares (PLS), or Support Vector Machine 

(SVM) regression, based on “best practices” methods in machine learning and model 

validation.[3] The model with the best performance was then selected for use in the modeling 

workflow system. The descriptors used in the polymer MQSPR models are based on 

electron density distribution topology as well as the distribution of Electrostatic Potential 

(EP) and Active Lone Pair (ALP) potential on the molecular van der Waals surfaces 

evaluated using MOE (Molecular Operating Environment) software (Figure 2a). The 

molecular surface property histogram descriptors that result have been shown in previous 

studies to effectively represent both the electrostatic and hydrophobic characteristics that 

correlate with surface energies.[27] Descriptors used in filler MQSPR models included 

surface property histograms to represent the polar component of surface energy, and the i3D 

suite of descriptors bundled with MOE software to model the dispersive component 

(excluding semi-empirical AM1, PM3, and MNDO descriptors). For filler descriptor 

calculations, filler beads were modeled as spherical filled silica shells with outward-facing–

OH groups functionalized at an approximate density of 1/nm2 (Figure 2c).

All models were validated using a 10×10 bootstrap scheme. Three key findings resulting 

from the polymer matrix MQSPR modeling were observed: 1) End-capped 20-mers (N=20) 

were found to be optimal for producing polymer descriptors appropriate for predicting 

surface energies (balancing accuracy with computational time). As described in the 

Supporting Information, different oligomeric sizes scales were tested to identify the smallest 

system that could consistently represent the properties of the polymer. In these studies, 

despite their slight conformational sensitivity, EP and ALP surface property descriptors were 

found to converge as N increases. 2) Surface distribution of EP was found to be most 
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important in correlating with the polar component of the polymer surface energy. 3) EP, ALP 

and surface electron density distrbution topology descriptors (RECON/TAE descriptors) 

were found to represent the dispersive component of the surface energy. Figure 2b shows the 

correlation between results predicted by bootstrap aggregate MQSPR models for the polar 

(left) and dispersive (right) components of the polymers compared to reported literature 

values. Note that while the model predicting the dispersive component performs better than 

the current version of the polar component model, these models can nevertheless be applied 

to any polymer construct. Corresponding findings from filler MQSPR modeling were: 1) 

Representing filler particles as functionalized spheres allows the underlying silica to 

influence their surface properties, effectively mimicking the planar silica used in surface 

energy experiments.[23–25] 2) As with polymer modeling, EP and ALP distributions were 

found to best predict the polar component of surface energy. 3) MOE i3D descriptors were 

used to model the dispersive component of surface energy. Figure 2d is analogous to Figure 

2b for filler particles.

2.2. Property Prediction Hypothesis

The hybrid predictive modeling approach presented here is predicated on the hypothesis that 

the relative nanoparticle and polymer surface energy components control both nanoparticle 

dispersion and polymer chain mobility near the nanoparticle.[8, 28–30] In this work, we have 

built on that hypothesis and developed quantitative correlations that prove its utility. We note 

that there are three interfacial parameters that can be calculated from the surface energies of 

the interacting species that are used in discussions of dispersion and mobility: The 

equilibrium contact angle, θ, the relative work of adhesion, ΔWa, and the work of spreading, 

Ws.

The contact angle (θ) can be calculated using Equation (1), which is based on a modification 

of Young’s equation[26] and assumes that the polar and dispersive components of the surface 

energy approximately make additive contributions to the total surface energy of a system, 

and that the interaction magnitude between two dissimilar materials can be approximated by 

the geometric mean of their surface tension components.[31,32] While more sophisticated 

approximations for surface energies have emerged in recent years,[33,34] this approach is 

commonly used, and given other uncertainties in this study, is accurate enough to be 

powerful in predicting the response.

(1)

where  and  are the dispersive components of the filler and polymer surface energies 

(respectively);  and  are the polar components of the filler and polymer surface energies 

(respectively); and γF is the total filler surface energy, which is given by the sum of  and 

, as per Fowkes approximation. WPF is the work of adhesion of polymer to filler 

 and WFF is the work of adhesion of filler to filler (2γF). We note, 
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from Equation (1), that the ratio of these terms controls the contact angle. We also note that 

while WPF/WFF can take a continuous range of values, θ is truncated to 0°, for WPF/WFF 

values greater than or equal to 1. The relative work of adhesion, which is a representation of 

the potential energy change of forming a filler/filler and a polymer/polymer interface from 

two filler/polymer interfaces, can be calculated using Equation (2).[35]

(2)

We hypothesize that we can use these two equations to predict dispersion. Figure 3 

illustrates the domains of the energetic parameters for Poly(Methyl Methacrylate) (PMMA) 

for all possible filler surface energies. As suggested by Stöckelhuber,[6,7] composites that fall 

within the complete wetting envelope  and have a small relative work of 

adhesion will have a good intial dispersion that remains good during high-temperature 

processing. Composites that fall outside the wetting envelope (θ > 0°) are all poorly 

dispersed. This framework is consistent with the findings of Starr et al.,[9] who noted that the 

dominant enthalpic factor in dispersion was the ratio between the interaction strength of the 

matrix and particle and the interaction strength between the particle and particle i.e., a 

stronger particle-matrix interaction leads to better dispersions. This interaction strength ratio 

is qualitatively similar to the work of adhesion ratio (WPF/WFF), which defines cosθ as seen 

in Equation (1). Considering these domains, if the contact angle is greater than zero, the 

initial agglomerates will be large. Further agglomeration during annealing will be difficult 

even if the relative work of adhesion is high, since the diffusion constant of agglomerates 

varies inversely with cluster size.[35] However, if θ = 0°, ΔWa controls the degree of 

reagglomeration during annealing. Larger ΔWa will lead to more re-agglomeration.

Turning now to the interface properties, it has been hypothesized[36] that the mobility of the 

polymer chains in the interface is related to the work of spreading (Equation (3)).

(3)

As indicated in Figure 3, for all fillers with surface energies below the threshold Ws = 0 line 

the mobility increases, and thus we hypothesize that the Tg will decrease. Above this 

threshold the opposite holds. The amount of mobility change in the interphase is affected by 

Ws, whereas the amount of interphase present (and thus to a large extent the impact of that 

change in mobility) depends on the dispersion state.

In order to test the aforementioned hypotheses and to train and validate our model linking 

dispersion and interface mobility to energetic parameters, we perform systematic 

experiments on a set of nanocomposites with a wide range of particlepolymer interactions. 

Octyldimethylmethoxysilane, chloropropyldimethylethoxysilane and 

aminopropyldimethylethoxysilane modified 14 nm silica nanoparticles are embedded in 
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polystyrene (PS), PMMA, poly(ethyl methacrylate) (PEMA) and poly(2-vinyl pyridine) 

(P2VP). The details of sample preparation, surface energy measurement and characterization 

are presented in the supporting information. The results in Figure 4, illustrate the role of θ 
and ΔWa in determining dispersion. It is seen that, as θ increases above 0° the dispersion 

abruptly becomes poor (Amino-Silica/P2VP to Amino-Silica/PEMA). In the wetting 

systems (θ = 0°) the dispersion is found to vary with ΔWa. This observation suggests that 

the proposed property prediction hypothesis is qualitatively true.

2.3. Mesoscale to Continuum

The second critical jump in length scale is to use the polar and dispersive surface energy 

components of polymer and nanoparticle, predicted by MQSPR, to create a continuum level 
model of composite properties providing a priori prediction of the bulk properties of a 

polymer nanocomposite. The essential features of the continuum approach are: 1) A 3D 

representation of nanoparticle dispersion and distribution determined by θ and ΔWa, 2) a 

gradient interphase region surrounding the nanoparticles, which has relaxation times 

different from the bulk polymer that are correlated with the work of spreading, Ws, and 3) a 

predictive finite element viscoelastic model shown to be very effective in other 

systems.[11, 37] Since dispersion is a controlling factor for bulk properties, we do not use 

analytical homogenization for continuum predictions. For these trial correlations, we use the 

surface energies of the polymer and nanoparticle calculated using our MQSPR approach.

Dispersion of fillers within the composites can be characterized using morphological 

descriptors, such as mean radius of the fillers or filler aggregates (rc) and mean distance 

between nearest neighbor fillers (rd).[37–42] These parameters can also be used to reconstruct 

a statistically equivalent microstructure for the simulation process using an emperically 

determined two-point correlation function, where the probability that two arbitrary points 

belonging to the same phase is expressed as a function of the relative distance between the 

two points.[38] In order to predict the dispersion state, the morphological descriptors, rc and 

rd, of the various composites are obtained from image analysis of transmission electron 

microscope (TEM) micrographs and the two-point correlation probability is calculated. It is 

found that the two-point correlation function of our samples can be expressed as:

(4)

where VF is volume fraction of fillers, x is the relative distance between two arbitrary points 

in the microscopic image and f(x) is the correlation probability that the two points are both 

in the filler phase. Details of image analysis process can be found in the Supporting 

Information.

The morphological descriptors are then correlated with MQSPR predicted surface energy 

parameters. It is observed from image analysis that large values of rc and rd are found for 

composites outside the wetting envelope, while significantly smaller rc and rd are seen for 

composites within the wetting envelope. In order to capture this trend, an empirical 
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dimensionless energetic parameter xcorr, which is a function of θ and ΔWa, is proposed as 

shown in Equation (5).

(5)

This form of Equation (5) ensures that the value of xcorr is dominated by the cosθ term for θ 
= 0°, thereby keeping the influence of ΔWa term fairly small when large agglomerates form 

during the initial casting. When θ = 0° (i.e., when particle surface energies lie within the 

complete wetting envelope), the value of xcorr is determined purely by ΔWa normalized by 

WPF. Functions relating rc and rd to xcorr, the primary particle size (ro = 14 nm) and VF, 

Equations (6) and (7), are then constructed heuristically.

(6)

(7)

where Ac = 15.7, Bc = 3.1, Ad = 29.7 and Bd = −1.9 are dimensionless parameters obtained 

through least square fitting with rc and rd measured in image analysis.

As shown in Figure 5a,b, predicted rc and rd generally match with the results obtained from 

image analysis with the exception that the predicted rc results for Amino-Silica/PS (xcorr = 

0.60) and Amino-Silica/PMMA (xcorr = 0.59) deviate from values measured from the TEM 

images. Now, using energetic descriptors and Equation (5)–(7), the resulting correlation 

function (Equation (4)) can be determined from which we construct a statistically 

representative 3D microstructure of the composite using a stochastic searching algorithm.[42] 

For this reconstruction, particles are initially placed inside a 3D representative volume 

element (RVE) and their positions sequentially reallocated under the control of a simulated 

annealing algorithm until their dispersion follows the target two-point correlation function 

described by Equation (4). An example of reconstructed 3D geometry is shown in Figure 5d.

To obtain bulk properties of the material, a continuum level FEA simulation is performed on 

the microstructure created from the above process. The polymer and particle properties are 

known and the properties of the interphase surrounding the fillers are based on the 

correlation of the work of spreading to the ΔTg (difference between Tg of composites and 

matrix polymer) for a set of training results. In the simulation, we use a simple two-layer 

gradient interphase model, corresponding to a physical thickness of ≈300 nm,[10] to simulate 

the change in properties of the interfacial polymer away from the particle surfaces. This 

estimated thickness is close to other predictions made earlier.[10,11,43,44] The interphase 

properties are related to those of the bulk polymer matrix by a simple shift in the frequency 

domain, representing a change in mobility of the polymer, similar to the approach taken in 

literature.[10,11,43] In order to determine the amount of shifting (Sd) in the interphase layers, 
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PS with 3 wt% Chloro-Silica is selected as the training set in which Sd is chosen such that 

ΔTg from FEA matches experimental results. It is found that Sd is well expressed by (Ws/

5ΔWa) for the inner layer of interphase and half of this value for outer layer. This relation 

for Sd is then extrapolated and applied directly to the other composite systems. With the 

microstructure and its properties thus fully determined, a simulated DMTA temperature 

sweep test is performed and the relaxation spectra of the polymer composites, E′ (storage 

modulus) and E″ (loss modulus) vs T, are predicted from FEA of the 3D RVE. Tg of the 

composites is obtained as the temperature at which tan δ = E′/E″ reaches a maximum and 

ΔTg is calculated. Figure 6a shows the comparison between predicted ΔTg from FEA and 

experimental ΔTg via DMTA and DSC test. Predicted and experimental E′ and E″ data of 

PMMA with 8 wt% Octyl-Silica are shown in Figure 6b The agreement is remarkable given 

the breadth of systems considered. Thus, we now have a tool for a priori prediction of 

thermomechanical response (in particular ΔTg) in polymer nanocomposites with spherical 

particles. Additionally we have incorporated these models into a web-tool, on whose front 

end, the user can choose a matrix and particle to obtain predicted dispersion states and 

thermomechanical properties.[45] Further details on the webtool are available in the 

supporting information.

3. Conclusion

We have developed a Materials Genome-based approach for predicting the 

thermomechanical properties of spherical nanofilled polymers that can be used for the 

virtual design of new materials. As part of this process, we have also developed tools that 

can be used for predicting a number of other pertinent material properties including:

• An MQSPR method to predict surface energies of polymers and 

functionalized nanoparticles, as well as their compatibilities.

• A quantitative method for using contact angle, relative work of adhesion 

and the work of spreading to predict spherical nanoparticle dispersion 

distributions and change in Tg from bulk.

• An approach to statistically reconstruct 3D microstructures of composites 

based on these energetic parameters.

The hybrid MQSPR tools developed during the course of this work can also be used as a 

starting point for predicting toughness, loss modulus, strength, melting temperature or even 

dielectric properties of materials for energy storage and insulation applications–these 

predictions will require additional analysis to tune the descriptors and relations. With the 

addition of property benchmarks, the flexibility and applicability range of the toolkit 

described above will be aligned with the priorities of the Materials Genome Initiative, and 

provide a new way for material scientists to perform “what if” experiments on potentially 

interesting nanocomposite compounds, and to optimize their thermomechanical properties 

prior to synthesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic showing the genomics approach to predicting the thermomechanical response. 

From left to right shows: MQSPR is used to relate the polymer and nanoparticle surface 

structure to the polar and dispersive components of the polymer and nanoparticle surface 

energy. The surface energies are then used to quantitatively predict the dispersion state of the 

nanoparticles and the properties of the filler/polymer interface. Using Finite Element 

Analysis (FEA), the microstructure is reconstructed and the filler, polymer, and interphase 

properties used as input. The FEA provides an a-priori prediction of the thermomechanical 

properties from MQSPR calculated surface energies.
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Figure 2. 
a) Histogram descriptors for a 20-mer energy-minimized structure of poly(n-butyl acrylate), 

b) Correlation between experimental data and predicted data by bootstrap aggregate MQSPR 

model for polymers. Left: Dispersion. Right: Polar. c) Depiction of silica scaffold used to 

model filler particles. Hydrogens labeled with A1 indicate functional group attachment 

locations. d) Correlation between experimental data and predicted data by bootstrap 

aggregate MQSPR model for filler particles. Left: Dispersion. Right: Polar.
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Figure 3. 
A plot of total surface energy as a function of the polar component of the surface energy for 

PMMA with isocontact angle, iso-work of adhesion and iso-work of spreading lines 

delineated.
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Figure 4. 
A representative schematic showing the effect of the Contact Angle and ΔWa on dispersion. 

An increasing θ is shown to significantly decrease the quality of dispersion. In the wetting 

systems an increasing ΔWa is found to cause agglomeration. The inset TEM micrographs 

were obtained at a magnification of 20 000×. The scale bars represent 1 µm. We note that the 

θ and ΔWa values indicated are calculated from the literature and experimentally measured 

surface energy values for polymer and particles respectively.
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Figure 5. 
a,b) Comparison between rc and rd obtained from analyzing TEM images from experiment 

and Equations (6) and (7). c) An example of the validation of the two-point correlation 

function constructed by Equation (4) with 3 wt% Octyl-Silica/PS. d) A 3D microstructure is 

then reconstructed in FEA with this two-point correlation function.
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Figure 6. 
Summary of comparison of ΔTg between Experiment and FEA simulation is shown in a) for 

polymer composites with 3 and 8 wt% of silica particles as fillers, respectively. b) Results 

from simulated DMTA temperature sweep test showing remarkable agreement between FEA 

and Experiment for 8 wt% Octyl-Silica/PMMA.
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