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Abstract: Previous work has shown that the hippocampus is smaller in the brains of individuals suf-
fering from major depressive disorder (MDD) than those of healthy controls. Moreover, right hippo-
campal volume specifically has been found to predict the probability of subsequent depressive
episodes. This study explored the utility of right hippocampal volume as an endophenotype of recur-
rent MDD (rMDD). We observed a significant genetic correlation between the two traits in a large sam-
ple of Mexican American individuals from extended pedigrees (qg 5 20.34, p 5 0.013). A bivariate
linkage scan revealed a significant pleiotropic quantitative trait locus on chromosome 18p11.31-32
(LOD 5 3.61). Bivariate association analysis conducted under the linkage peak revealed a variant
(rs574972) within an intron of the gene SMCHD1 meeting the corrected significance level (v2 5 19.0,
p 5 7.4 3 1025). Univariate association analyses of each phenotype separately revealed that the same
variant was significant for right hippocampal volume alone, and also revealed a suggestively signifi-
cant variant (rs12455524) within the gene DLGAP1 for rMDD alone. The results implicate right-
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hemisphere hippocampal volume as a possible endophenotype of rMDD, and in so doing highlight a
potential gene of interest for rMDD risk. Hum Brain Mapp 37:191–202, 2016. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Major depressive disorder (MDD) is a common, costly,
and potentially life-threatening illness [Belmaker and
Agam, 2008; Greenberg et al., 2003; Kessler et al., 2003;
Sullivan et al., 2000] that is recognized by the World
Health Organization as one of the leading causes of dis-
ability worldwide [World Health Organization, 2015]. It is
heritable [e.g., Kessler et al., 2003; Sullivan et al., 2000],
and previous family-based linkage studies have identified
quantitative trait loci (QTLs) associated with MDD [Breen
et al., 2011; Neff et al., 2009; Pergadia et al., 2011]. How-
ever, research has so far struggled to find specific genes
that mediate depression risk—the results of many previous
candidate-gene studies appear to have been false positives
[Bosker et al., 2011; Wray et al., 2012], and genome-wide
association (GWA) studies of common genetic variants,
including the latest mega-analysis from the Psychiatric
Genetics Consortium [Ripke et al., 2013], have been largely
unable to identify genes at the level of genome-wide statis-
tical significance [see also Hek et al., 2013; Kohli et al.,
2011; Lewis et al., 2010; Muglia et al., 2010; Rietschel et al.,
2010; Shi et al., 2011; Shyn et al., 2011; Sullivan et al., 2009;
Wray et al., 2012]. Thus, despite substantial research effort,
there has been a dearth of substantive molecular genetic
findings for MDD (for a critical review, see [Flint and Ken-
dler, 2014]).

Given the slow pace of gene discovery for MDD, alter-
native approaches may be necessary. One such approach
is to consider specific subtypes of MDD, such as recurrent
MDD (rMDD). Focusing on subtypes may reduce hetero-
geneity within the sample of affected cases and thereby
improve genetic tractability [Flint and Kendler, 2014].
Indeed, rMDD is generally estimated to be more highly
heritable than MDD [e.g., Kendler et al., 2007; Levinson
et al., 2007; Shi et al., 2011; Sullivan et al., 2000]. Another
approach is to use “endophenotypes,” traits that share
underlying genetic influences with the illness [Gottesman
and Gould, 2003]. Because endophenotypes are typically
quantitative, they vary among individuals regardless of
whether the illness is expressed phenotypically, making
clinically unaffected relatives informative for genetic anal-
ysis [Blangero et al., 2003; Glahn et al., 2014]. In some
cases, the genetic determinates of the endophenotype may
be less complex, and therefore more tractable, than those
of the illness itself [but see Iacono et al., 2014].

Several lines of evidence suggest that hippocampal vol-
ume is a propitious endophenotype of MDD (for reviews,
see [Campbell and Macqueen, 2004; MacQueen and Frodl,

2011]). Perhaps the strongest evidence for a relationship
between the two traits comes from meta-analyses of struc-
tural imaging studies that have shown that patients with
MDD have smaller hippocampal volumes than do healthy
controls [Cole et al., 2011; McKinnon et al., 2009; Schmaal
et al., 2015; Videbech and Ravnkilde, 2004]. Two of these
meta-analyses found that the effect size was larger for
MDD and right-hemisphere hippocampal volumes than
MDD and left-hemisphere hippocampal volumes [Cole
et al., 2011; Videbech and Ravnkilde, 2004], and, via a
meta-regression, one study found that right hippocampal
volume reduction predicted the probability of recurrent
depressive episodes [Videbech and Ravnkilde, 2004]; the
latter result suggests a specific link between rMDD and
the right hippocampus. Finally, in a previous study from
our laboratory, which ranked potential endophenotypes by
their standardized genetic co-variances with rMDD, bilat-
eral hippocampal volume was ranked as the third best
endophenotype out of 85 neuroanatomical measures
[Glahn et al., 2012]. However, since that study only consid-
ered bilateral measures, it is not known whether greater
specificity would have been achieved by considering right
hippocampal volume independently.

In this study, we aimed to investigate the utility of right
hippocampal volume as an endophenotype of rMDD in a
large sample of Mexican American individuals from
extended pedigrees. To this end, we (i) estimated the
genetic correlation between rMDD and right hippocampal
volume; (ii) identified regions of the genome that were
pleiotropically influential on the two traits via univariate
and bivariate linkage; and (iii) more finely localized the
genetic influences on both traits via univariate and bivari-
ate association analysis. This work forms part of a wider
effort to disentangle the molecular influences on depres-
sion risk, in order to improve diagnosis and treatment of
the disorder.

MATERIALS AND METHODS

Participants

Genetic and clinical diagnostic data (including rMDD
diagnoses) were available from a total of 1286 participants
from extended Mexican–American pedigrees (809 female;
age range: 18–97 years; mean age: 46.15 years; family size
range: 1–131; mean family size: 9.72). Neuroanatomical
data (including right hippocampal volumes) were avail-
able from 893 of these individuals. The sample made up a
subset of the cohort from the San Antonio Family Study.
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The selection criteria required that participants were of
Mexican-American ancestry, were part of a large family,
and lived in the San Antonio region [for recruitment
details, see Olvera et al., 2011; McKay et al., 2014]. All par-
ticipants provided written informed consent in accordance
with the institutional review board (IRB) at the University
of Texas Health Science Center, San Antonio.

Diagnostic Assessment

All participants received the Mini-International Neuro-
psychiatric Interview (MINI) [Sheehan et al., 1998], a semi-
structured interview augmented to include items on
lifetime history. Masters- and doctorate-level research staff,
with established reliability for diagnosing affective disor-
ders (j � 0.85), conducted all interviews. All participants
with possible psychopathology were discussed in case con-
ferences that included licensed psychologists or psychia-
trists. Lifetime consensus diagnoses were determined
based on available medical records, the MINI interview,
and the interviewer’s narrative. Consistent with our previ-
ous study [Glahn et al., 2012], rMDD was defined as two
or more distinct episodes of depression meeting DSM-IV
criteria.

MRI Data Acquisition

All images were acquired on a research-dedicated, Sie-
mens 3 T TIM Treo MR scanner and a high-resolution
phase array head coil housed in the Research Imaging
Institute, UTHSCSA. Seven high-resolution T1-weighted
3D turbo-flash sequences with an adiabatic inversion con-
trast pulse were acquired in each subject [TE/TR/
TI 5 3.04/2100/785 ms, flip angle 5 138, 800 lm isotropic
resolution; see Kochunov et al., 2006 for more details].

Image Processing

FreeSurfer [Dale et al., 1999; Fischl et al., 1999] was used
to extract hippocampal volumes. These methods have
been described previously [Fischl et al., 2002, 2004].
Briefly, Fischl et al. developed a procedure for automati-
cally and accurately labelling each voxel as one of 40 sub-
cortical structures; this procedure is based on modeling
the segmentation as a nonstationary anisotropic Markov
Random Field. Probabilities were computed separately at
each position in an atlas, resulting in maximum a posteri-
ori estimation of each voxel’s label in each image. While
manual extraction of subcortical volumes is still consid-
ered the gold standard, automatic FreeSurfer segmentation
has been shown to be reliable enough to reveal differences
in hippocampal volume between depressed individuals
and healthy controls in previous studies [Tae et al., 2008].
Hippocampal volume was extracted separately for each
hemisphere, enabling us to focus specifically on right hip-
pocampal volume.

Data Analysis

Genotyping

The participants were genotyped for approximately
1 million SNPs using Illumina HumanHap550v3,
HumanExon510Sv1, Human1Mv1, and Human1M-Duov3
BeadChips, according to the Illumina Infinium protocol
(Illumina, San Diego, CA). To ensure harmonization across
microarray versions, SNP loci were repeatedly checked for
Mendelian errors utilizing SimWalk2 [Sobel et al., 2002],
and the most likely incorrect genotypes were blanked and
imputed according to Mendelian laws based on available
pedigree data using MERLIN [Abecasis et al., 2002], until
the genotypes for all high-quality genotyped SNPs were
present in all genotyped individuals without any remain-
ing Mendelian inconsistencies. Monomorphic SNPs, SNPs
exhibiting low call rates or requiring excessive blanking
(i.e., if <95% of the genotypes are retained), SNPs whose
minor allele was present in <10 individuals, and SNPs
with Hardy–Weinberg Equilibrium (HWE) test statistics of
p � 0.0001 were eliminated from the analyses. Maximum-
likelihood techniques, accounting for pedigree structure,
were used to estimate allelic frequencies [Boehnke, 1991].
For linkage analyses, multipoint identity-by-descent (IBD)
matrices were calculated based on 28,387 SNPs selected
from the 1 M GWA panel, as follows. Using genotypes for
345 founders, SNPs on each chromosome were selected to
be at least 1 kb apart, MAF �5%, and LD within a 100 kb
sliding window not exceeding |rho| 5 0.15. The resulting
selection averaged 7–8 SNPs/centimorgan. For each centi-
morgan location in the genome, multipoint IBD probability
matrices were calculated using a stochastic Markov Chain
Monte-Carlo procedure implemented in LOKI [Heath,
1997].

Quantitative genetic analyses

All genetic analyses were performed in SOLAR [Almasy
and Blangero, 1998]. SOLAR implements maximum-
likelihood variance decomposition to determine the contri-
butions of genes and environmental influences to a trait
by modeling the covariance among family members as a
function of expected allele sharing given the pedigree.
First, to ensure that right-hippocampal volumes were nor-
mally distributed, volumes were converted to ranks and
the inverse normalization (probit) transformation was
applied. Second, univariate variance decomposition was
applied to rMDD and transformed right hippocampal vol-
umes, allowing estimation of their heritability indices. Sec-
ond, bivariate analysis was applied to the two variables,
wherein the phenotypic covariance between the traits was
decomposed into its genetic and environmental constitu-
ents to determine the extent to which they were influenced
by shared genetic effects. Age, age squared, sex, and their
interactions were included as covariates in these analyses.
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Linkage and association analyses

Quantitative trait linkage analysis was performed to
localize specific chromosomal locations influencing rMDD
and right hippocampal volume [Almasy and Blangero,
1998]. Model parameters were estimated using maximum
likelihood. The hypothesis of significant linkage was
assessed by comparing the likelihood of a classical addi-
tive polygenic model with that of a model allowing for
both a polygenic component and a variance component
due to linkage at a specific chromosomal location (as evi-
denced by the location-specific IBD probability matrix).
The LOD score, given by the log 10 of the ratio of the like-
lihoods of the linkage and the polygenic null models,
served as the test statistic. Genome-wide thresholds for
linkage evidence were computed for this exact pedigree
structure and density of markers, using the method by
Feingold et al. [1993]: an LOD of 1.69 is required for sug-
gestive significance (likely to happen by chance less than
once in a genome-wide scan), and an LOD of 2.90 is
required for genome-wide significance.

Initially, univariate linkage scans were performed for
rMDD and right hippocampal volume separately over the
whole genome. Following the discovery of a potentially
pleiotropic region on chromosome 18 (see Results), this
chromosome was additionally subjected to a bivariate link-
age analysis. For comparison to the univariate results, the
resulting LOD scores from the bivariate scan were con-
verted to a single degree-of-freedom (df) equivalent based
on the p-value for the 2-df test (linkage to both traits ver-
sus linkage to neither [Almasy et al., 1997]). To ensure that
the bivariate LOD scores were truly driven by both and
not one of the traits, we tested the null hypothesis of the
absence of pleiotropy (i.e., co-occurrence of linkage is by
chance) versus the alternative of complete pleiotropy by
comparing the likelihoods of the relevant nested models.
To this end, we maximized two models: one where the
genetic correlation between linkage peaks was allowed to
vary freely; and a null model where this correlation was
constrained to be zero. The likelihoods of these two mod-
els were then compared, the difference between them
being distributed as 1-df v2 distribution. This method has
been established as powerful approach for detecting pleio-
tropic effects [Williams et al., 1999].

The genomic region meeting bivariate genome-wide sig-
nificance for linkage (see Results) was investigated in
greater detail using association analysis of the single-
nucleotide polymorphisms (SNPs) encapsulated by the
linkage peak. The peak was defined as spanning in either
direction from the locus with the maximum LOD score
until the locus-specific LOD dropped below the maximum
minus 1. Statistical significance levels were established
according to the effective number of tested SNPs given the
structure of linkage disequilibrium (LD) within the region.
To this end, the pairwise genotypic correlations were cal-
culated in an effort to establish the effective number of
independent tests carried out during association analysis.

This method, developed by Moskvina and Schmidt [2008],
is considered to be conservative. A corrected p-value was
obtained from a Bonferroni correction based on the total
number of independent tests. Age, age squared, sex, and
their interactions were included as covariates in all linkage
and association analyses.

RESULTS

Both rMDD (h2 5 0.47; standard error 5 0.12;
p 5 9.0 3 1026) and right hippocampal volume (h2 5 0.66;
standard error 5 0.07; p 5 7.0 3 10226) were highly herit-
able, and there was a statistically significant genetic corre-
lation between them (qg 5 20.34; standard error 5 0.14;
p 5 0.013), indicating overlap between the genetic influen-
ces on the two traits.

Univariate linkage analysis for rMDD did not reveal
genome-wide significant QTLs, but there was a sugges-
tively significant QTL on chromosome 4 (LOD
score 5 2.62 at 35 cM). The second strongest QTL was on
chromosome 18 (LOD score 5 1.54 at 10 cM). Univariate
linkage analysis for right hippocampal volume revealed
significant QTLs on chromosome 13 (LOD score 5 3.42 at
53 cM) and chromosome 18 (LOD score 5 2.96, 9 cM), and
a suggestively significant QTL on chromosome 4 (LOD
score 5 2.01 at 122 cM).

Given the potential overlap in the univariate linkage
analyses on chromosome 18, this chromosome alone was
subjected to bivariate linkage. This analysis revealed a
genome-wide significant bivariate QTL (1-df-equivalent
LOD score 5 3.61 at 9 cM). The bivariate linkage signal
was stronger than either univariate signal (see Fig. 1, top
panel), suggesting that the locus mediates both rMDD risk
and right hippocampal volume. The test for pleiotropy
versus coincident linkage confirmed the presence of pleiot-
ropy for the two traits at this locus (v2 5 5.43, p 5 0.010).

Univariate and bivariate association analyses were con-
ducted for rMDD and right hippocampal volume under the
linkage peak on chromosome 18 (defined as 6–12 cM).
There were 794 SNPs in this region in total, and 521.6 effec-
tive SNPs after taking into account LD structure [Moskvina
and Schmidt, 2008], necessitating a Bonferroni-corrected a
of p 5 9.58 3 1025. For the univariate rMDD association
analysis, the top-ranked SNP was rs12455524 within the
gene DLGAP1 (see Fig. 1, bottom panels; Table I). The asso-
ciation reached the level of suggestive significance
(v2 5 14.73, p 5 0.0001; see Fig. 1, top panel). For the uni-
variate hippocampus association analysis, the top-ranked
SNP was rs574972 within SMCHD1, which met the criterion
for peak-wide significance (v2 5 17.7, p 5 2.6 3 1025; Fig.
1, middle and bottom panels). The same SNP was also
peak-wide significant in the bivariate association analysis
(v2 5 18.8, p 5 8.1 3 1025; see Table II).

When the SNP rs574972 was included as a covariate in
the bivariate linkage analysis of rMDD and right hippo-
campal volume at 9 cM, the LOD score was reduced

r Mathias et al. r

r 194 r



Figure 1.

Results of the univariate and bivariate linkage and association analy-

ses. Top panel: Chromosome 18 multipoint plot for univariate and

bivariate linkage analyses. The horizontal dotted line represents the

threshold LOD score for genome-wide significant linkage. Middle

panel: genes under the linkage peak. Bottom panels: QTL-specific

univariate and bivariate association analyses for the QTL region

under the linkage peak. The top-ranked variant rs574972 is indi-

cated by a diamond symbol. Symbol color represents each variant’s

linkage disequilibrium (r2) with rs574972. The horizontal dotted

line represents the threshold for peak-wide significant association.



compared to linkage without the covariate (2.78), and was
no longer significant. This test of linkage conditional on
association provides further support for the association
between rs574972, rMDD, and right hippocampal volume.

Since this study focused specifically on the utility of
right hippocampal volume as an endophenotype of rMDD,
we restricted our whole-genome linkage analyses to these
two traits. However, it was worth investigating whether
left or bilateral hippocampal volumes were also good
endophenotypes of rMDD. We found that right, left,
and bilateral hippocampal volumes were similarly
heritable (left h2 5 0.69, standard error 5 0.07, p 5

6.5 3 10226; bilateral h2 5 0.70, standard error 5 0.07,
p 5 3.16 3 10226). Moreover, each hippocampal trait had a
significant genetic correlation with rMDD (left qg 5 20.39,
standard error 5 0.14, p 5 0.006; bilateral qg 5 20.37,
standard error 5 0.13, p 5 0.006). We therefore performed
univariate linkage analyses for left and bilateral hippocam-
pal volumes, as well as the corresponding bivariate analy-
ses with rMDD, over our significant linkage peak on
chromosome 18 at 9 cM. For left hippocampal volume, nei-
ther the univariate linkage peak for left hippocampal vol-
ume at 9 cM nor the bivariate linkage peak at the same
location reached the threshold for genome-wide statistical
significance (univariate LOD 5 1.15; bivariate LOD 5

2.01). The same was true of bilateral hippocampal volume
(univariate LOD 5 1.87; bivariate LOD 5 2.65). These
results suggest that although right, left, and bilateral
hippocampal volumes were genetically similar, greater

specificity was achieved by considering right hippocampal
volume specifically.

The possible confounding influence of overall intracra-
nial volume was investigated using univariate and trivari-
ate linkages. Univariate linkage revealed little evidence of
genetic influence on intracranial volume on chromosome
18 at 9 cM (LOD score 5 0.53). Moreover, in a trivariate
linkage model of rMDD, right hippocampal volume and
intracranial volume, the linkage peak remained significant
(1-df equivalent LOD score 5 3.01), and the pleiotropy test
supported pleiotropy between rMDD and right hippocam-
pal volume (v2 5 15.87, p 5 3.39 3 1025). Thus, our main
results were not readily explicable by a mediating influ-
ence of intracranial volume.

DISCUSSION

The main findings of this study were as follows: (i) we
observed a significant genetic correlation between rMDD
and right hippocampal volume in a large sample of
Mexican-Americans from extended pedigrees; (ii) bivariate
linkage analysis revealed a QTL on chromosome 18 that
pleiotropically influenced both traits; and (iii) association
analysis under the linkage peak implicated SMCHD1 as
influencing right hippocampal volume. The bivariate asso-
ciation between the top variant within SMCHD1, rMDD,
and right hippocampal volume was also significant, but
likely driven by the relationship between SMCHD1 and

TABLE I. Estimates for the top five variants within the two QTL-specific univariate association analyses (rMDD

alone and right hippocampal volume alone)

Trait SNP v2 p b MAF HWE p

Right hippocampal
volume

rs574972 17.664792 0.000026 0.316781 0.07 0.065
rs8094926 14.646644 0.00013 0.297751 0.07 0.039
rs648105 14.590576 0.000134 0.297188 0.07 0.065
rs622289 11.825838 0.000584 0.266033 0.07 0.062
rs6506038 11.53497 0.000683 20.19521 0.18 0.928

rMDD rs12455524 14.733226 0.000124 0.421027 0.12 0.202
rs1815955 10.584736 0.00114 0.317768 0.14 0.306
rs7235479 10.315824 0.001319 20.2587 0.18 0.320
rs976655 10.260248 0.001359 0.272171 0.19 0.914
rs9966747 9.83018 0.001717 0.310365 0.14 0.180

SNP 5 single-nucleotide polymorphism; MAF 5 minor allele frequency; HWE p 5 Hardy–Weinberg equilibrium p value.

TABLE II. Estimates for the top five variants from the QTL-specific bivariate association analysis

SNP v2 p b (rMDD) b (right hippocampus) MAF HWE P

rs574972 18.84723 0.000081 20.01439 0.325537 0.07 0.065
rs8094926 15.585198 0.000413 0.000432 0.306349 0.07 0.039
rs12455524 15.577936 0.000414 0.407959 20.066439 0.12 0.202
rs648105 15.529434 0.000424 0.000029 0.30582 0.07 0.065
rs3910708 12.593764 0.001842 0.438748 20.219293 0.05 0.90

SNP 5 single-nucleotide polymorphism; MAF 5 minor allele frequency; HWE p 5 Hardy–Weinberg equilibrium p value.
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right hippocampal volume. Within the same region, there
was also a suggestively significant association between the
top variant within DLGAP1 and rMDD alone.

Previous work has established a relationship between
depression and the hippocampus, with many studies
implicating stress as a mediating factor in this relationship
[MacQueen and Frodl, 2011; Campbell and Macqueen,
2004]. The hippocampus is a part of the cortical network
that regulates mood and response to stress, providing
modulation to the hypothalamic–pituitary–adrenal axis
[Jacobson and Sapolsky, 1991]. Excessive exposure to stress
or glucocorticoids (the adrenal steroid hormones secreted
in response to stress) causes deleterious changes to both
the structure and function of the hippocampus in nonhu-
man animals [for a review, see Sapolsky, 2003]. Moreover,
some human studies have reported that individuals who
experienced traumatic events in early life had smaller hip-
pocampal volumes than those who did not experience
trauma [Bremner et al., 1997; Teicher et al., 2002; Vythilin-
gam et al., 2002; cf. Gilbertson et al., 2002]. Although the
existence of a relationship between stress, MDD, and the
hippocampus is no longer under much doubt, the nature
of the relationship is not yet understood. For example, it
could be that hippocampal volume reductions are circum-
stantial to MDD, caused by the same environmental stres-
sors that trigger the illness. Another possibility, however,
is that changes in hippocampal volume reflect a mecha-
nism through which life adversity is transduced into MDD
risk [Campbell and Macqueen, 2004; MacQueen and Frodl,
2011]. The findings of this study provide tentative support
for the latter hypothesis, insofar as that our results could
be explained in terms of an underlying biological mecha-
nism that causes pathology in an individual’s ability to
deal with stress, leading to both smaller right hippocampal
volumes and an increased likelihood of exhibiting rMDD.
However, since our data are not longitudinal, we cannot
determine whether hippocampal volumes were mediated
due to prolonged stress, or were smaller prior to pro-
longed stress, in depressed individuals.

The gene SMCHD1 (structural maintenance of chromo-
somes hinge domain containing 1) has an established role
in maintaining X inactivation, the dosage compensation
mechanism by which the transcription of X-linked genes is
equalized across males and females, which SMCHD1
maintains via hypermethylation of CpG islands (a process
by which a gene is silenced) on the inactive X chromo-
some [Blewitt et al., 2008]. It is likely that SMCHD1 also
has epigenetic functions beyond X inactivation [Mould
et al., 2013]. For example, SMCHD1 acts upon the gene
FSHD2 in such a way that leads to mutations in chromatin
regulatory proteins, which in turn reduces epigenetic
repression and increases expression of the deleterious
gene DUX4, which causes facioscapulohumeral muscular
dystrophy [Jones et al., 2015; Lemmers et al., 2012; Sacconi
et al., 2013; Winston et al., 2015]. This illness may be unre-
lated to rMDD, but there is limited evidence to suggest

that depression may present as a feature of muscular dys-
trophy [Sabharwal, 2014]. Moreover, wnt/b-catenin signal-
ing suppresses the expression of SMCHD1 downstream
target DUX4 [Block et al., 2013]. Not only is wnt/b-catenin
signaling heavily implicated in neurological and psychiat-
ric disorders [Freyberg et al., 2010; MacDonald et al.,
2009], but there is some evidence to suggest that it plays a
major role in affective disorders [Gould et al., 2006; Sani
et al., 2012; Wada, 2009]. Research in mice has implicated
the wnt antagonist Dickkopf-1 as being involved in hippo-
campal damage due to chronic stress, where reduced wnt
pathway activity was associated with neuronal loss and
dendritic atrophy [Matrisciano et al., 2011]. Mice adminis-
tered intracerebroventricularly with GSK-3 inhibitors,
where GSK-3 phosphorylates b-catenin, showed anti-
depressant effects and concomitant increased b-catenin
expression in the hippocampus [Kaidanovich-Beilin et al.,
2004]. Taken together with these previous findings, our
results suggest that SMCHD1 and its downstream signal-
ing events make a plausible and interesting candidate
gene for depression risk.

The top-ranked variant for rMDD alone fell within an
intron of DLGAP1. The DLGAP gene family has an estab-
lished role in the etiologies of several psychiatric ill-
nesses—DLGAP3 has been associated with Tourette’s
Syndrome and obsessive compulsive disorder [Boardman
et al., 2011; Crane et al., 2011; Welch et al., 2007; Zuchner
et al., 2009]; DLGAP2 has been associated with autism
[Pinto et al., 2010]; and DLGAP1, DLGAP2, and DLGAP3
have all been associated with psychosis [Li et al., 2013a,b,].
Given the genetic overlap between psychiatric illnesses, it
is unsurprising that a single gene family has been impli-
cated across multiple diagnoses [Cross-Disorder Group of
the Psychiatric Genomics Consortium, 2013]. This study
adds to this literature by further implicating the DLGAP
gene family in rMDD.

DLGAP genes play a crucial role in the recruitment and
stabilization of synaptic junctions, as well as the regulation
of neurotransmission [Takeuchi et al., 1997]. Genes in this
family encode isoforms of the postsynaptic density 95
(PSD95]-associated SAPAP proteins, and DLGAP1 in par-
ticular encodes SAPAP1 [Cho et al., 1992; Yao et al., 2003].
Postsynaptic densities are clusters of specialized proteins
attached to the postsynaptic membrane which play key
roles in the regulation of synaptic adhesion, transmitter
receptor clustering, and modulation of receptor sensitivity
[Kennedy, 1993]. PSD-95 is concentrated at N-methyl-D-
aspartate (NMDA)-type glutamate receptors [Kornau et al.,
1995]. In the hippocampus, the activation of NMDA recep-
tors contributes to the induction of long-term potentiation
[Ehrlich and Malinow, 2004; Malinow et al., 1989]. Given
the above discussion of the relationship between
SMCHD1, wnt signaling, and long-term potentiation in the
hippocampus, it seems our top-ranked genes converge on
complementary molecular mechanisms of learning and
memory.
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Recently, large-scale GWA studies have identified multi-
ple common genetic variants on chromosome 12 influenc-
ing hippocampal volumes in unrelated individuals [Bis
et al., 2012; Hibar et al., 2015; Stein et al., 2012]. These var-
iants appear to be associated with hippocampal volumes
specifically, rather than global cortical or subcortical vol-
umes. In this study, we did not observe linkage for right
hippocampal volume on chromosome 12. One possible
reason for this is that hippocampal volume may be subject
to polygenic effects throughout the genome. Another pos-
sibility is that our approach may highlight sources of
genetic variation (i.e., rare variants) that are distinct from
those highlighted using GWA (i.e., common variants). The
use of extended pedigrees as here improves the chances of
detecting association with rare variants because Mendelian
transmissions from parents to offspring maximize the
chances that multiple copies of rare variants exist in the
pedigree.

In this study, we propose that the complex genetic
architecture of depression may become more tractable if
we search for genetic loci that jointly influence depression
risk and depression endophenotypes. This idea relies on
the assumption that a small number of the genes that
increase depression risk also influence specific endopheno-
types, and that constraining analyses to these common
genetic factors profitably focuses the search. This study
exploited the evidence for pleiotropy between rMDD and
right hippocampal volume to identify a region on chromo-
some 18 that contains a number of potential genes of inter-
est for depression. This work expands upon our previous
study, which established bilateral hippocampal volume as
a putative endophenotype for rMDD [Glahn et al., 2012],
by examining the right hippocampus specifically and by
providing a novel QTL. In general, our findings support
the endophenotype approach, and highlight a possible
way forward in delineating depression genes.
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