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Abstract In this paper we employ a novel method to find

the optimal design for problems where the likelihood is not

available analytically, but simulation from the likelihood is

feasible. To approximate the expected utility we make use of

approximate Bayesian computation methods. We detail the

approach for a model on spatial extremes, where the goal is

to find the optimal design for efficiently estimating the pa-

rameters determining the dependence structure. The method

is applied to determine the optimal design of weather sta-

tions for modeling maximum annual summer temperatures.

Keywords Simulation-based optimal design �
Approximate Bayesian computation � Importance

sampling � Spatial extremes � Max-stable processes

1 Introduction

Collecting spatial data efficiently (see eg. Müller 2007) is a

problem that is frequently neglected in applied research,

although there is growing literature on the subject. Various

spatial sampling and monitoring situations such diverse as

e.g. for stream networks (Dobbie et al. 2008), water (Harris

et al. 2014) and air quality (Bayraktar and Turalioglu

2005), soil properties (Lesch 2005 and Spöck and Pilz

2010), radioactivity (Melles et al. 2011), biodiversity

(Stein and Ettema 2003), or greenland coverage (Mateu

and Müller 2012) are discussed therein.

Those approaches predominately follow a (parametric)

model-based viewpoint. Here, the inverse of the Fisher

information matrix represents the uncertainties involved

and it is its minimization through a prudent choice of

monitoring sites that is desired. This corresponds to the

selection of inputs or settings (the design) in an experiment

and can thus draw from the rich literature on optimal ex-

perimental design (see eg. Fedorov 1972 or Atkinson et al.

2007). There a so-called design criterion, usually a scalar

function of the information matrix, is optimized by em-

ploying various algebraic and algorithmic techniques.

Often the design criterion can be interpreted as an expected

utility of the experiment outcome (the collected data), and

if this expected utility is an easy to evaluate function of the

design settings, the optimal design can be found

analytically. In Bayesian design, the design criterion is

usually some measure of the expected information gain of

the experiment (see e.g. Hainy et al. 2014), which is also

called the expected utility. As utility function one would

typically use convex functionals of the posterior distribu-

tion, such as the Kullback-Leibler divergence between the

(uninformative) prior and the posterior distribution, to

measure the additional information gained by conducting

the experiment (Chaloner and Verdinelli 1995).

For problems where neither maximization of the design

criterion nor the integration to evaluate the expected utility

can be performed, simulation-based techniques for optimal

design were proposed in Müller (1999) and Müller et al.

(2004). For instance, the expected utility can be
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approximated by Monte Carlo integration over the utility

values with respect to the prior predictive distribution.

In Bayesian design problems, the utility is typically a

complex functional of the posterior distribution. Hence, a

strategy could be to generate values for the parameters by

employing simulation methods like Markov chain Monte

Carlo (MCMC) and use these to approximate the utility

values. However, as one has to generate a sample from a

different posterior for each utility evaluation, this can be

computationally very expensive.

We will further assume that the likelihood is not avail-

able analytically. In that case it is not possible to employ

standard Bayesian estimation techniques. Therefore, we

propose to use approximate Bayesian computation (ABC)

methods for posterior inference. It is our new approach to

utilize these methods for solving optimal design problems.

We will also present a solution to quickly re-evaluate the

utility values for different posterior distributions by using a

large pre-simulated sample from the model.

We illustrate the application of the methodology to

derive optimal designs for spatial extremes models. As

noted in Erhardt and Smith (2012), models specifically

designed for extremes are better suited than standard spa-

tial models to model dependence for environmental ex-

treme events such as hurricanes, floods, droughts or heat

waves. A recent overview of modeling approaches for

spatial extremes data is given in Davison et al. (2012). We

will focus on models for spatial extremes based on max-

stable processes to derive optimal designs for the pa-

rameters characterizing spatial dependence.

Max-stable processes are useful for modeling spatial ex-

tremes as they can be characterized by spectral representa-

tions, where spatial dependence can be incorporated

conveniently. A drawback of max-stable processes is that

closed forms for the likelihood function are typically avail-

able only for the bivariate marginal densities. Hence, infer-

ence using ABC as in Erhardt and Smith (2012) is a natural

avenue. Often the so-called Schlather model (Schlather

2002) is employed, which models the spatial dependence in

terms of an unobservedGaussian process. It usually creates a

more realistic pattern of spatial dependence than the deter-

ministic shapes engendered by the so-called Smith model

(Smith 1990), which is another very popular model for

spatial extremes. Moreover, simulations from the Schlather

model can be obtained fairly quickly compared to more

complex models, which is important when using a simula-

tion-heavy estimation technique such as ABC.

In our application we consider optimal design for the

parameters characterizing the dependence structure of

maximum annual summer temperatures in the Midwest

region of the United States of America. The problem is

inspired by the work of Erhardt and Smith (2014), who use

data from 39 sites to derive a model for pricing weather

derivatives. Our aim is to rank those sites with respect to the

information they provide on the unknown dependence pa-

rameters. In this the paper is comparable to Chang et al.

(2007), who employ a different entropy-based technique in

a similar context. Note, however, that our approach is not

limited to this specific application, but could be easily

adapted for other purposes.

Shortly beforefinalizing afirst technical report on this topic

(Hainy et al. 2013a), we have learned of the then unpublished

paper by Drovandi and Pettitt (2013), wherein similar ideas

havebeendeveloped independently.However,while the basic

concept of fusing a simulation-based method with ABC is

essentially the same, our approach differs in various ways,

particularly on how the posterior for the utility function is

generated. Furthermore, we additionally suggest ways of how

the methodology can be turned sequential so as to be made

useful for adaptive design situations.Averygeneral version of

our concept is introduced in Hainy et al. (2013b), whereas in

the current expositionwegive a detailed explanation of how to

employ it in a specific practical situation.

The paper is structured as follows. Section 2 reviews the

essentials of simulation-based optimal design as well as the

various improvements and modifications lately suggested.

Sect. 3 is the core of the paper and details our approach to

likelihood-free optimal design with a brief section on

essentials of approximate Bayesian computation. Section 4

provides an overview of modeling spatial extremes based

on max-stable processes. These are needed in the appli-

cation in Sect. 5. Finally, Sect. 6 provides a discussion and

gives some directions for future research.

The programs for the application were mainly written in

R. The R-programs include calls to compiled C-code for the

computer-intensive sampling and criterion calculation pro-

cedures. We used and adapted routines from the R-packages

evd (Stephenson 2002) and SpatialExtremes (Ribatet

and Singleton 2013) to analyze and manipulate the data and

to simulate from the spatial extremes model. For simulating

large samples or performing independent computations, we

used the parallel computing and random number generation

functionalities of the R-packagessnow (Tierney et al. 2013)

and rlecuyer (Sevcikova and Rossini 2012). All the

computer-intensive parallelizable operations were conduct-

ed on an SGI Altix 4700 symmetric multiprocessing (SMP)

system with 256 Intel Itanium cores (1.6 GHz) and 1 TB of

global shared memory.

2 Simulation-based optimal design

We consider an experiment where output values (obser-

vations) z 2 Z are taken at input values constituting a

design n. A model for these data is described by a likeli-

hood pnðzj#Þ, where # 2 H denotes the model parameters.
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Optimal design, see eg. Atkinson et al. (2007), generally

has the goal to determine the optimal configuration n� with
respect to a criterion UðnÞ,
n� ¼ arg sup

n

UðnÞ; n 2 N:

We adopt a Bayesian approach and assume that a prior

distribution pð#Þ is specified to account for parameter

uncertainty. The prior distribution usually does not depend

on the design n. If uðz;#; nÞ denotes a utility function and

pnðz;#Þ ¼ pnðzj#Þpð#Þ is the joint density of z and #, the

expected utility is given as

UðnÞ ¼
Z
#2H

Z
z2Z

uðz; n;#Þ pnðz;#Þ dz d#: ð2:1Þ

For reasonable choices of utility functions and a detailed

introduction into Bayesian optimal design see Chaloner

and Verdinelli (1995).

In many applications, neither analytic nor numerical

integration is feasible, but simulation-based design can be

performed by approximating the criterion by Monte Carlo

integration,

UðnÞ � ÛðnÞ ¼ 1

K

XK

k¼1

uðzðkÞ; n;#ðkÞÞ;

if samples fðzðkÞ;#ðkÞÞ; k ¼ 1; . . .;Kg from the joint dis-

tribution pnðz;#Þ can be generated and the utility uð:Þ is

easy to evaluate. Sampling from the joint distribution can

typically be performed by sampling # from its prior dis-

tribution and z from the likelihood pnðzj#Þ.
Often however, design criteria are not straightforward to

evaluate as they require some integration: classical criteria,

e.g. based on the Fisher information matrix such as D-

optimality, are defined as expected values of some func-

tional with respect to the likelihood, pnðzj#Þ (Atkinson

et al. 2007), whereas Bayesian utility functions, e.g. the

popular Kullback-Leibler divergence/Shannon informa-

tion, are expected values with respect to the posterior

distribution of the parameters, pnð#jzÞ (Chaloner and

Verdinelli 1995). Thus, we can write uðz; n;#Þ ¼ uðz; nÞ,
since the parameters # are integrated out in a Bayesian

utility function.

If ûðz; nÞ denotes an approximation of the utility, UðnÞ
can be approximated by

ÛðnÞ ¼ 1

K

XK

k¼1

ûðzðkÞ; nÞ; ð2:2Þ

where zðkÞ is sampled from the prior predictive distribution

pnðzÞ. We will focus on this case in the rest of the paper.

A very general form of simulation-based design, which

was proposed by Müller (1999), further fuses the ap-

proximation and the optimization of UðnÞ and could be

employed here as well. However, for simplicity in this

paper we consider only cases with finite design space N,
where cardðNÞ is small and thus it is feasible to compute

UðnÞ for each value n 2 N and rank the results.

We further assume that neither the likelihood nor the

posterior is available in closed form. Hence we will use

ABC methods to sample from the posterior distribution to

approximate the Bayesian design criterion, see Sect. 3 for a

detailed description.

We will also consider the more general case where the

prior distribution of the parameters, pð#Þ, is replaced by

the posterior distribution, pn0ð#jz0Þ, which depends on

observations z0 previously collected at design points n0.

Thus, information from these data about the parameter

distribution can be easily incorporated into the ap-

proximation of the utility.

3 Likelihood-free optimal design

In this section we will elaborate on particular aspects of

simulation-based optimal design without using likelihoods.

The general concept was introduced in Hainy et al. (2013b)

and termed ‘‘ABCD’’ (approximate Bayesian computation

design). The first two subsections review some basic no-

tions of ABC, whereas the last presents two variants for

approximating a design criterion by ÛðnÞ. This can even-

tually be optimized to yield

n� ’ arg sup
n

ÛðnÞ; n 2 N

by stochastic optimization routines (see Huan and Marzouk

2013), which are designed to deal with noisy objective

functions, or—as in our example—various designs can be

directly compared with respect to their approximated cri-

terion value Û.

3.1 Approximate Bayesian computation (ABC)

To tackle problems where the likelihood function cannot be

evaluated, likelihood-free methods, also known as ap-

proximate Bayesian computation, have been developed.

These methods have been successfully employed in bio-

genetics (Beaumont et al. 2002), Markov process models

(Toni et al. 2009), models for extremes (Bortot et al.

2007), and many other applications, see Sisson and Fan

(2011) for further examples.

ABC methods rely on sampling # from the prior and

auxiliary data z� from the likelihood to obtain a sample

from an approximation to the posterior distribution

pnð#jzÞ. This approximation is constituted from draws for

# where z� is in some sense close to the observed z.
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More formally, let dðz; z�Þ be a discrepancy function

that compares the observed and the auxiliary data (cf.

Drovandi and Pettitt 2013). In most cases, dðz; z�Þ ¼
dsðsðzÞ; sðz�ÞÞ for a discrepancy function dsð:; :Þ defined on

the space of a lower-dimensional summary statistic sð:Þ: An
ABC rejection sampler iterates the following steps:

This algorithm draws from the ABC posterior

~pnð#jzÞ / pð#Þ
Z
z�2Z

K�ðdðz; z�ÞÞ pnðz�j#Þ dz�; ð3:1Þ

where KeðdÞ ¼ ð1=eÞKðd=eÞ is the uniform kernel with

bandwidth e, i.e. Keðdðz; z�ÞÞ / Iðdðz; z�Þ� eÞ. Here

Iðdðz; z�Þ� eÞ is the indicator function which takes the

value 1 if dðz; z�Þ � e and 0 otherwise. The ABC posterior

~pnð#jzÞ is equal to the targeted posterior pnð#jzÞ if the

summary statistic sðzÞ is sufficient and Keðdðz; z�ÞÞ is a

point mass at the point z� ¼ z.

If KeðdÞ is a more general smoothing kernel, e.g. the

Gaussian or the Epanechnikov kernel, the resulting ABC

posterior can be sampled using importance sampling (cf.

e.g. Fearnhead and Prangle 2012). Let qð#Þ denote a pro-

posal density for # with sufficient support (at least the

support of pð#Þ), then ABC importance sampling can be

performed as follows:

As the likelihood terms pnðz�r j#rÞ cancel out in the

weights, explicit evaluation of the likelihood function is

not necessary.

Algorithm 2 produces a weighted approximation

fð#r; z
�
r Þ;WrgR

r¼1 of the augmented distribution

~pnð#; z�jzÞ / Keðdðz; z�ÞÞ pnðz�j#Þ pð#Þ ð3:3Þ

and hence the marginal sample f#r;WrgR
r¼1 is an ap-

proximation of the marginal ABC posterior given in

Eq. (3.1). Obviously, the ABC rejection sampler is a special

case of the importance sampler, where the proposal distri-

bution is the prior, i.e. qð#Þ ¼ pð#Þ, and the non-normalized

importance weights are either equal to zero or one.

3.2 Accuracy of ABC

ABC estimates suffer from different sources of ap-

proximation error: first, choosing the tolerance level e[ 0

has the consequence that only an approximation to the

targeted posterior is sampled. Second, even for e ! 0 the

sampled distribution ~pð#jzÞ does not converge to the (true)

posterior distribution if the summary statistic is not suffi-

cient. Finally, sampling introduces a Monte Carlo error,

which depends on sampling efficiency and sampling effort.

Sampling efficiency is measured by the effective sample

size (ESS), which is the number of independent draws re-

quired to obtain a parameter estimate with the same pre-

cision (see Liu 2001).

The tolerance level e plays an important role as it has an

impact on the quality of the ABC posterior ~pnð#jzÞ as an
approximation to the target posterior pnð#jzÞ as well as on
the effective sample size. For ABC rejection sampling, the

effective sample size is equal to the number of accepted

draws. Reducing e leads to an increase of the rejection rate,

and hence the sampling effort in order to maintain a desired

ESS will be higher.

For importance sampling the ESS is given as

ESS ¼ R

1þ CVðwÞ ;

where CVðwÞ denotes the coefficient of variation of the

importance weights (see Liu 2001). It can be estimated by

dESS ¼
PR

r¼1 wr

� �2
PR

r¼1 wrð Þ2
¼ 1PR

r¼1 Wrð Þ2
: ð3:4Þ

As more imbalanced weights result in a lower effective

sample size, the choice of e directly affects the ESS of the

importance sample. Weights become more imbalanced

with decreasing tolerance level e, see Eq. (3.2), resulting in

a lower ESS. Consider e.g. qð#Þ ¼ pð#Þ, where the im-

portance weights are Wr / Keðdðz; z�r ÞÞ. For e ! 1,

weights are constant, Wr / 1, and hence the ESS takes its

maximal value R, whereas for e ! 0, many weights will be

close to or equal to zero. Therefore, there is a trade-off

between closeness of the ABC posterior to the true poste-

rior, which is achieved by choosing e as small as possible,

and a close to optimal effective sample size.
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3.3 Utility function estimation using ABC methods

We consider Bayesian information criteria, where the uti-

lity function, uðz; nÞ, is a functional of the posterior dis-

tribution, pnð#jzÞ. Based on information-theoretic grounds,

a widely used utility function is the Kullback-Leibler (KL)

divergence between the prior and the posterior distribution

(see Chaloner and Verdinelli (1995) and the references

given therein). Precise estimation of the KL divergence is

difficult and requires large samples from the posterior

distribution (for an estimation approach see Liepe et al.

2013). However, if the posterior distribution has a regular

shape, i.e., if it is unimodal and does not exhibit extreme

skewness and kurtosis as in our example, then the posterior

precision is also a good measure of the posterior infor-

mation gain (see also Drovandi and Pettitt 2013). The

posterior precision utility defined as

uðz; nÞ ¼ 1= det Varnð#jzÞ
� �

can be efficiently estimated from the sample variance-co-

variance matrix. We will use it in our example in Sect. 5.

For an intractable likelihood, a sample obtained by ABC

methods can be used to approximate the utility function

uðz; nÞ by ûLFðz; nÞ. The expected utility Eq. (2.1) at design
point n can then be approximated by

ÛðnÞ ¼ 1

K

XK

k¼1

ûLFðzðkÞ; nÞ:

The sample Z ¼ fzðkÞgK
k¼1 from the prior predictive distri-

bution pnðzÞ can be generated by first drawing #ðkÞ � pð#Þ
and then zðkÞ � pnðzj#ðkÞÞ.

The major difficulty with this strategy is that it requires

one to obtain the ABC posteriors ~pnð#jzðkÞÞ for k ¼
1; . . .;K at each design point n, which is typically com-

putationally prohibitive.

3.3.1 Utility function estimation using ABC rejection

sampling

One solution to the problem of having to quickly re-com-

pute the ABC posteriors ~pnð#jzðkÞÞ for each zðkÞ 2 Z is to

simulate a large sample Sn ¼ fsðzrðnÞÞ;#rgR
r¼1 from

pnðz;#Þ for a given design n and to construct the ABC

posterior for each zðkÞ 2 Z as a subset of Sn. Those pa-

rameter values #r where the corresponding zr is in a ek-

neighborhood of zðkÞ, i.e. where dðzðkÞ; zrÞ� ek, constitute

the ABC posterior sample. Denoting the corresponding

index set by Rk ¼ fr 2 f1; . . .;Rg : dðzðkÞ; zrÞ� ekg, a

sample from the ABC posterior ~pnð#jzðkÞÞ can be obtained

by the following rejection sampling algorithm (cf.

Algorithm 1):

1. Compute the discrepancies dðzðkÞ; zrÞ ¼ dsðsðzðkÞÞ;
sðzrÞÞ for all particles r ¼ 1; . . .;R.

2. Accept #r if r 2 Rk.

Fixing ek in advance has the drawback that the ABC

sample size RABC ¼ cardðRkÞ cannot be controlled. Hence,

for practical purposes, it is more convenient to fix RABC, at

the expense of having no direct control over the tolerance

level ek, which then results as the RABC smallest discrep-

ancy dðzðkÞ; zrÞ.
If computer memory permits, it can be useful to pre-

simulate the summary statistics sðzrðnÞÞ for all possible de-
signs n 2 N, so that S ¼ fSn; 8 n 2 Ng is available prior to

the optimization step. This strategy may help to reduce the

overall simulation effort if redundancies between different

designs can be exploited. As a further advantage, pre-

simulation of the summary statistics for all possible designs

permits the application of simulation-based optimal design

techniques such as the MCMC sampler of Müller (1999),

which is pursued in Drovandi and Pettitt (2013). However,

the necessity to store all summary statistics for all designs

limits the number of possible candidate designs n over which

to optimize. The number of candidate designs which may be

considered depends on the number of distinct summary

statistics for each candidate design, the desired ABC accu-

racy, and the storage capacities.

3.3.2 Utility function estimation using importance weight

updates

An alternative strategy to obtain a sample from the ap-

proximate posterior distribution ~pnð#jzðkÞÞ is based on

importance sampling, see Sect. 3.1. We assume that a

weighted sample from the prior distribution, f#r;WrgR
r¼1,

is available. The goal is to update the weights such that the

weighted sample f#r;W
ðkÞ
r gR

r¼1 approximates the ABC

posterior distribution ~pnð#jzðkÞÞ. If #1; . . .;#R is an i.i.d.

sample from the prior pð#Þ, all weights are equal to

Wr ¼ 1=R. However, the weights might also differ, e.g.

when information from previous observations z0 is used to

generate an ABC importance sample from the posterior

conditioning on z0.

Following Del Moral et al. (2012), we define the ABC

target posterior as

~pnð#; z�1:M jzðkÞÞ /
1

M

XM

m¼1

Kek
ðdðzðkÞ; z�mÞÞ

" #
�

YM
m¼1

pnðz�mj#Þ
" #

pð#Þ; ð3:5Þ

where fz�m; m ¼ 1; . . .;Mg are auxiliary data, and use the

importance density
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qnð#; z�1:M jzðkÞÞ ¼
YM
m¼1

pnðz�mj#Þ
" #

pð#Þ:

Simulating fz�r;m; m ¼ 1; . . .;Mg from pnðz�j#rÞ, unnor-

malized posterior weights of #r can be estimated by

wðkÞ
r / Wr

XM

m¼1

Kek
ðdðzðkÞ; z�r;mÞÞ:

It is essential to select M � 1, as otherwise most of the

weights would be close or even equal to zero, leading to a

very small effective sample size. As noted in Del Moral

et al. (2012), the ABC posterior given in (3.5) has the

advantage that

1

M

XM

m¼1

Kek
ðzðkÞjz�m;#Þ !

Z
Kek

ðdðzðkÞ; z�ÞÞ pnðz�j#Þ dz�

for M ! 1, and hence the sampler is similar to the

‘‘marginal’’ sampler which samples directly from the

marginal ABC posterior (3.1).

Just as for the ABC rejection strategy described above,

creating the sample S�
n ¼ ffsðz�r;mðnÞÞg

M
m¼1;#rgR

r¼1 in ad-

vance can speed up the computations considerably, because

S�
n can be re-used to compute uLFðzðkÞ; nÞ for each zðkÞ

sampled from pnðzÞ. It may also be convenient to compute

the summary statistics for all design points at once, see the

corresponding remarks in Sect. 3.3.1.

Moreover, also similar to Sect. 3.3.1, it is preferable to

fix the target ESS instead of selecting the tolerance level e,
as the effective sample size may vary substantially between

the ABC posterior samples for the different zðkÞ when the

same tolerance level e is used for all k ¼ 1; . . .;K. There-

fore, we choose a target value for the ESS and adjust ek in

each step to produce ABC posterior samples with an ESS

close to the target value.

For a pre-simulated sample S�
n, a fast and flexible sam-

pling scheme targeting a specific effective sample size in

each step k ¼ 1; . . .;K can be implemented using a uniform

kernel, Kek
ðdðzðkÞ; z�r;mÞÞ ¼ IðdðzðkÞ; z�r;mÞ� ekÞ. Then the

weight for particle r is proportional to its prior weight

multiplied by the number of simulated data fz�r;mg
M
m¼1 with

a discrepancy to zðkÞ below ek, i.e.

wðkÞ
r ¼ Wr

XM

m¼1

IðdðzðkÞ; z�r;mÞ� ekÞ: ð3:6Þ

To roughly keep a defined ESS for each k we proceed as

follows. Let Dr;k ¼ fdðzðkÞ; z�r;mÞg
M
m¼1 denote the set of

discrepancies between zðkÞ and z�r;m and let Dk ¼ fDr;kgR
r¼1.

For each k, the set Dk can be searched for the tolerance

level ek which yields the best approximation to the target

ESS. The weights are computed from (3.6) and the ESS

results from (3.4). The advantage of using a uniform kernel

is that the weight w
ðkÞ
r only depends on the number of

elements in Dr;k which are not larger than ek. Binary search

algorithms can be applied on the sorted set Dr;k to deter-

mine this number in an efficient manner.

4 Spatial extremes

In this section we review some basic concepts of extreme

value theory which are needed in our application in Sect. 5.

4.1 Max-stable processes

The joint distribution of extreme values at given locations

x1; . . .; xD 2 X can be modeled as marginal distribution of

max-stable processes on X 	 R
p. Max-stable processes

arise as the limiting distribution of the maxima of i.i.d.

random variables on X, see de Haan (2004) for a concise

definition. A property of max-stable processes which al-

lows convenient modeling is that their multivariate mar-

ginals are members of the class of multivariate extreme

value distributions, and univariate marginals have a uni-

variate generalized extreme value (GEV) distribution.

The cumulative distribution function of the univariate

GEV distribution is given as

GðzÞ ¼ exp 
 1þ f
z 
 l
r

� �
1=f

þ

� �
;

where l; r[ 0, and f are the location, scale, and shape

parameters, respectively, and zþ ¼ maxðz; 0Þ. The GEV

distribution with parameters l ¼ r ¼ f ¼ 1 is called the

unit Fréchet distribution. Any GEV random variable Z can

be transformed to unit Fréchet by the transformation

tðZÞ ¼ 1þ f
Z 
 l
r

� 	1=f

: ð4:1Þ

This property allows to focus on max-stable processes with

unit Fréchet margins when the dependence structure is of

interest. Hence we assume that all univariate marginal

distributions are unit Fréchet in what follows.

4.2 Dependence structure of max-stable processes

The multivariate distribution of a max-stable process with

unit Fréchet margins at the locations x1; . . .; xk has the form

PðZðx1Þ� z1; . . .; ZðxkÞ� zkÞ ¼ exp 
Vðz1; . . .; zkÞð Þ:
ð4:2Þ

The function V is a homogeneous function of order 
1,

Vðtz1; . . .; tzkÞ ¼ t
1Vðz1; . . .; zkÞ; ð4:3Þ
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and is called the exponent measure (Pickands 1981). The

dependence structure of a stationary max-stable process

can be modeled via one of its spectral representations.

These representations are useful as they often allow for an

interpretation of the max-stable process in terms of maxima

of underlying processes (see e.g. Smith (1990), Schlather

(2002), or Davison et al. (2012)) and make it possible to

devise sampling schemes for many max-stable processes.

Here we will consider the model introduced by Schlather

(2002). Let fSigi2N be a Poisson process on ð0;1Þ with

intensity ds=s2 and fYiðxÞgi2N be independent replicates of

a stationary process YðxÞ on Rp with E
�
maxð0; YiðxÞÞ

�
¼ 1.

Then

ZðxÞ ¼ max
i

Si maxð0; YiðxÞÞ

is a stationary max-stable process with unit Fréchet mar-

gins. In the Schlather model, YðxÞ is specified as a Gaus-

sian process. If the Gaussian random field is isotropic, it

has the correlation function qðh;/Þ, where h ¼ kx1 
 x2k
is the distance between two points x1 and x2 and / denotes

the parameters of q. The correlation function has to be

chosen from one of the correlation families for Gaussian

processes, e.g. Whittle–Matérn, Cauchy, or powered ex-

ponential. For the Schlather model, a closed form of the

likelihood exists only for k ¼ 2 points.

4.2.1 Extremal coefficients

A useful summary measure for extremal dependence is

given by the extremal coefficients, which are defined via

the marginal cdfs of a max-stable process. From (4.2) and

(4.3), the joint cdf of Z1ðx1Þ; . . .; ZkðxkÞ at z1 ¼ � � � ¼ zk ¼
z is given as

PðZðx1Þ� z; . . .; ZðxkÞ� zÞ ¼ exp 
Vð1; . . .; 1Þ
z

� 	
¼

¼ exp 
 hðx1; . . .; xkÞ
z

� 	
:

hðx1; . . .; xkÞ is called the k-point extremal coefficient be-

tween the locations x1; . . .; xk. Though the extremal coef-

ficients between all the sets of k points (k ¼ 2; . . .;D)

contain a substantial amount of the information on the

dependence structure of the max-stable process, they are

not sufficient to characterize the whole process.

Given n block maxima z1ðxiÞ; . . .; znðxiÞ observed at

each of the points xi 2 fx1; . . .; xkg, Erhardt and Smith

(2012) propose to estimate the k-point extremal coefficient

by the simple estimator

ĥðx1; x2; . . .; xkjzÞ ¼
nPn

i¼1 1=maxðziðx1Þ; ziðx2Þ; . . .; ziðxkÞÞ
;

ð4:4Þ

where z ¼ fziðxjÞ; j ¼ 1; . . .; k; i ¼ 1; . . .; ng.

5 Application

We illustrate our likelihood-free methodology on an ap-

plication where the aim is to find the optimal design for

estimating the parameters characterizing the dependence of

spatial extreme values. As our example is meant to illus-

trate the basic methodology, we use a simple design

setting.

The problem we consider is inspired by the paper of

Erhardt and Smith (2014), who use data on maximum an-

nual summer temperatures from 39 sites in the Midwest

region of the USA for pricing weather derivatives. Figure 1

shows a map of the 39 weather stations. The dots (bottom

left and top right) indicate the two stations with the largest

mutual distance, which we will include in each design. Our

goal is to determine which of the remaining 37 stations,

indicated by the numbers 1–37, should be kept to allow

optimal inference for the spatial dependence parameters.

Thus we intend to find the optimum three-point design.

We specify the spatial extremes model as a Schlather

model (Schlather 2002) with the Whittle–Matérn correla-

tion function. The Schlather model requires us to select a

correlation function, which is also part of the model choice.

However, the Whittle–Matérn correlation function is a

quite flexible correlation function. It is specified as
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qðh; c; k; jÞ ¼
1; h ¼ 0

c
21
j

CðjÞ
h

k

� 	j

Kj
h

k

� 	
; h[ 0

8<
:

where Kj is the modified Bessel function of the second

kind of order j, and 0� c� 1, k[ 0, j[ 0. We fix the

partial sill parameter c at c ¼ 1 (which is a standard choice,

see the applications of max-stable processes in Davison

et al. 2012) and the smooth parameter j at j ¼ 0:5. The

smooth parameter j is fixed, since widely different values

for k and j can result in similar values for the correlation

function, making joint inference for both parameters more

difficult.

As utility function we choose the posterior precision of

the range parameter k, which is the only parameter to be

estimated, i.e.

uðz; nÞ ¼ 1= det Varnð#jzÞ
� �

¼ 1=VarnðkjzÞ:

Following Erhardt and Smith (2012), we use the tripletwise

extremal coefficient for each three-point design as sum-

mary statistic for ABC inference.

For a three-point design, the gain in information from

the prior to the posterior distribution will be very low un-

less many observations are available. Therefore, we obtain

the optimal design for samples of size n ¼ 1000, so that we

are able to clearly identify differences between the ex-

pected posterior precision values for different designs. For

practical purposes, the three-point designs can be sequen-

tially augmented by further design points. One can stop

when the amount of data available in practice is sufficient

to exceed a desired minimum expected posterior precision.

In Sect. 5.1, we compare ABC rejection and ABC im-

portance sampling for likelihood-free optimal design for

the case where a standard uniform prior distribution is

specified for k. In Sect. 5.2, we go one step further and

additionally incorporate information from prior observa-

tions. In our case, data from 115 years collected at the 39

stations were used to estimate an ABC posterior distribu-

tion for the range parameter. This posterior distribution was

then used as parameter distribution in an importance

weight update algorithm to determine the optimal three-

point design for future inference.

5.1 Comparison of likelihood-free design algorithms

5.1.1 Settings

In the case where we have no prior observations, we as-

sumed a uniform U½2:5; 17:5� prior for the parameter k,
which is similar as in Erhardt and Smith (2012). This prior

is meant to cover all plausible range parameter values,

since the largest inter-site distance is 10:68, the smallest is

0:36. Its density is displayed as dashed line in Fig. 3.

The goal is to find the design n for which

ÛðnÞ ¼K
1
PK

k¼1 ûLFðzðkÞ; nÞ is maximal (see Eq. (2.2)),

where we set K ¼ 2000, ûLFðzðkÞ; nÞ ¼ 1=dVarnðkjzðkÞÞ, and
zðkÞ � pnðzÞ are samples of size n ¼ 1000 from the prior

predictive distribution. We now give details for both the

rejection sampling algorithm and the importance weight

update algorithm.

For the ABC rejection sampling algorithm (see Sect.

3.3.1), as a first step we pre-simulated samples

Sn ¼ fsðzrðnÞÞ;#rgR
r¼1 ¼ fĥðxnjzrÞ; krgR

r¼1

of size R ¼ 5 � 106 for all cardðNÞ ¼ 37 designs by sam-

pling kr from the prior and zrjkr (having size n ¼ 1000)

from the Schlather model. As a summary statistic, sð:Þ, we
use the estimated tripletwise extremal coefficient ĥðxnjzrÞ
computed according to Formula (4.4) for the simulated

observations zr at the design coordinates xn.

As the next step, for each design n 2 N, we simulated

observations zðkÞ (k ¼ 1; . . .;K ¼ 2000) and computed the

tripletwise extremal coefficient ĥðxnjzðkÞÞ. The ABC poste-

rior samplewas formed by those 500 (0.01 %) elements of Sn

with the lowest absolute difference jĥðxnjzðkÞÞ 
 ĥðxnjzrÞj.
This ABC posterior sample was then used to compute

ûLFðzðkÞ; nÞ ¼ 1=dVarnðkjzðkÞÞ for each k ¼ 1; . . .;K.

For the importance weight update algorithm, we gener-

ated the pre-simulated sample S�
n as follows: a sample

fkrgR
r¼1 of size R ¼ 2000 was obtained from the prior dis-

tribution. For each kr, a collection of M ¼ 4000 samples

fz�r;m; m ¼ 1; . . .;Mg from the Schlather model was gener-

ated and the tripletwise extremal coefficients were computed

for all designs. Each z�r;m consisted of n ¼ 1000 observations.

In the Monte Carlo integration step, for each design n, the

samples zðkÞ (k ¼ 1; . . .;K ¼ 2000) of size n ¼ 1000 were

generated and the normalized importance weights W
ðkÞ
r ¼

w
ðkÞ
r =

PR
r¼1 w

ðkÞ
r

� �
were computed from (3.6), where the

absolute difference between the corresponding tripletwise

extremal coefficients was used as discrepancy dðzðkÞ; z�r;mÞ.
The weighted ABC posterior sample fkr;W

ðkÞ
r gR

r¼1 was used

to estimate ûLFðzðkÞ; nÞ ¼ 1=dVarnðkjzðkÞÞ. For each k, we

aimed to obtain samples from the ABC posterior with target

ESS = 100.

5.1.2 Results

All computations were performed on the SGI Altix 4700

SMP system using 20 nodes in parallel. For the ABC re-

jection method, it took about 28 h to generate the pre-

simulated sample of length R ¼ 5 � 106, which required
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roughly 1.35 GB. The Monte Carlo integration procedure,

where the utility functions for the K ¼ 2000 samples from

the prior predictive distribution are evaluated and the av-

erage is computed, needed about 2.6 h. For the importance

weight update method, the pre-simulated sample of length

R � M ¼ 2000 � 4000 ¼ 8 � 106 was generated in 46 h and

produced a file of size 2.06 GB. The Monte Carlo inte-

gration took about 5.5 h.

Figure 2 shows the results for both methods for one

particular simulation run. Designs are indicated by circles,

where the number denotes the rank of the design with re-

spect to the expected utility criterion, and the two fixed

stations are indicated by black dots. The ranking of the

designs is additionally visualized by the filling intensity:

the circle for the design with the highest criterion value

across both methods is darkest (ÛðnmaxÞ ¼ 0:604 for sta-

tion 23 using the importance weight update method),

whereas the design with the lowest criterion value across

both methods is white (ÛðnminÞ ¼ 0:362 for station 17

using the ABC rejection method). The gray levels of all the

other circles are in between these two extreme levels in

proportion to their criterion values.

The results of both methods correspond closely. There

are only negligible differences with respect to the estimated

design criterion values for the large majority of design

points which lie in the middle between the two fixed sta-

tions, indicated by similar filling intensities in Fig. 2. On

the other hand, rankings can differ considerably due to

Monte Carlo error. However, we observe that differences in

rankings occur for designs with approximately the same

expected utility values. Therefore, all these designs are

almost equally well-suited for conducting experiments, so

differences in rankings are of minor interest. However, the

expected utilities for the design points close to the fixed

design point in the upper right corner as well as the design

points in the lower right, which are far away from either

fixed station, have notably lower expected utility values.

We varied the target effective sample sizes for both the

ABC rejection method and the importance weight update

method. The ABC rejection method was also run using in-

creasedABCsample sizes of50000 and500000.Wecould not

observe any discernible effects on the general pattern of cri-

terion orderings. The same can be said about the importance

weight update method, where we computed the rankings for

different target effective sample sizes between 100 and 500.

The details are provided in Section 1 of Online Resource 1.

5.2 Incorporating information from prior

observations

As briefly mentioned in Sect. 3.3.2, information from prior

observations can easily be incorporated to estimate the

design criteria using the importance weight update algo-

rithm. Information from prior observations can be pro-

cessed by any suitable ABC algorithm to obtain an ABC

posterior sample for the parameters, which serves as ‘‘input

prior’’ sample in the importance weight update algorithm.

We illustrate the incorporation of information from prior

data by using the data previously analyzed in Erhardt and

Smith (2014). The data set contains maximum summer

(June 1–August 31) temperature records collected at the 39

stations from 1895 to 2009 (115 observations). The daily

data can be downloaded from the National Climatic Data
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Center (http://cdiac.ornl.gov/ftp/ushcn_daily). The block

maximum for year t at location x is obtained by computing

ztðxÞ ¼ maxðyt;1ðxÞ; . . .; yt;92ðxÞÞ, where fyt;iðxÞg92i¼1 de-

notes the 92 maximum daily temperature observations in

summer. Erhardt and Smith (2014) performed checks of the

GEV and Schlather model assumptions for this data set and

concluded that the Schlather model is appropriate.

Following Erhardt and Smith (2014), we transformed

the original data to unit Fréchet scale at each location using

Eq. (4.1), where estimates of the marginal GEV pa-

rameters lðxÞ, rðxÞ, and fðxÞ at location x were plugged in.

We specified a uniform U½0; 20� prior for k and applied

ABC rejection sampling, see Algorithm 1, to derive the

ABC posterior for k. As in Erhardt and Smith (2012), we

used a discrepancy function based on tripletwise extremal

coefficients. We note here that with data from 39 stations,

there are 9139 tripletwise extremal coefficients, which re-

quires a more sophisticated discrepancy function compared

to that in Sect. 5.1. Dimension reduction was achieved by

clustering the extremal coefficients according to the inter-

site distances into 100 clusters. Only the average values

within each cluster were used as summary statistics. Fi-

nally, the discrepancy between two vectors of summary

statistics was computed by the Manhattan distance, for

details see Erhardt and Smith (2012).

We generated a sample fzq; kqgQ
q¼1 of size Q ¼ 107

from pnðzjkÞpðkÞ for the design including all 39 points and

kept only those R ¼ 2000 (0.02 %) draws yielding the

smallest values of the discrepancy to the original sample.

The resulting posterior distribution is shown in Fig. 3

(solid line). This distribution is more informative about the

parameter than the flat uniform prior used in Sect. 5.1

(dashed line).

The ABC posterior sample was then used as prior

sample in the importance weight update algorithm from

Sect. 3.3.2, with the same settings as in Sect. 5.1.1: for

each kr (r ¼ 1; . . .;R), we simulated M ¼ 4000 samples of

size n ¼ 1000 taken at the 39 sites and stored the triplet-

wise extremal coefficients as summary statistics. To com-

pute ÛðnÞ for each n 2 N, we generated K ¼ 2000 samples

zðkÞ (also of size n ¼ 1000) from the prior predictive dis-

tribution. The simulation times were very similar to those

of the importance weight update method for the uniform

prior in Sect. 5.1.

Figure 4 shows the ranking of the design points when

the ABC posterior for k is used as prior for the importance

weight update algorithm. The gray levels correspond to the

criterion values of the design points relative to the max-

imum value ÛðnmaxÞ ¼ 0:471 (rank 1 at station 27, dark

grey) and the minimum value ÛðnminÞ ¼ 0:31 (rank 37 at

station 17, white). The ranking exhibits the same general

pattern as those in Fig. 2 for the U½2:5; 17:5� uniform prior.

Points very close to one of the fixed points and points very

far away from either fixed point have a lower expected

utility than the design points in the middle.

The distribution of the K ¼ 2000 simulated utility val-

ues ûLFðzðkÞ; nÞ ¼ 1=dVarnðkjzðkÞÞ is displayed in Fig. 5,

where the 37 designs are numbered as in Fig. 1. One can
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where ûLFðzðkÞ;nÞ¼1=dVarnðkjzðkÞÞ is the ABC posterior precision

utility of the range parameter, when using the importance weight

update method with the ABC posterior displayed in Fig. 3 (solid line)

as input prior
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see, for example, that stations 15 and 17 in Minnesota,

which are situated close to the top right station, have

comparably low utility values.

In Section 2 of Online Resource 1, we investigate the

effect of the Monte Carlo error on the design rankings in

this example by performing several simulation runs. The

rankings differ in particular for the designs in the middle.

For these, however, the criterion values are very similar.

When we use another pre-simulated sample, only minor

shifts in the resulting rankings occur, which indicates that

our choice of R ¼ 2000 and M ¼ 4000 is sufficient. On the

other hand, we observe larger differences between the re-

sults if we use different random samples fzðkÞ; k ¼
1; . . .;K ¼ 2000g from the prior predictive distribution.

Hence, in our example it would be worthwhile to increase

K in order to improve the accuracy of the criterion

estimates.

6 Conclusion

In this paper we presented an approach for Bayesian design

of experiments when the likelihood of the statistical model

is intractable and hence classical design, where the utility

function is a functional of the likelihood, is not feasible. In

such a situation ABC methods can be employed to ap-

proximate a Bayesian utility function, which is a functional

of the posterior distribution. For a finite design space, the

conceptually straightforward approach is to run ABC for

each design and each data set zðkÞ, k ¼ 1; . . .;K, but this

will typically be computationally prohibitive.

As we demonstrate here, a useful strategy is to pre-

simulate data for a sample of parameter values at each

design. Employing ABC rejection sampling or ABC im-

portance sampling then allows to obtain approximations of

the utility function. In our application, the importance

weight update method turns out to be particularly useful to

incorporate information from prior observations. Both

methods are also applicable to situations where the likeli-

hood is in principle tractable, but the posterior is difficult or

time-consuming to obtain.

A notorious problem of any ABC method is the choice

of the summary statistics, as in problems where one will

resort to ABC methods typically no sufficient statistics are

available, and the quality of the ABC posterior as an ap-

proximation to the true posterior critically depends on the

summary statistics. The usefulness of the tripletwise ex-

tremal coefficient was validated by Erhardt and Smith

(2012). It therefore seems appropriate as ABC summary

statistic in our application, where the goal is to find the

optimal design consisting of three weather stations. For

higher-dimensional designs different summary statistics

with lower dimension might be more advantageous.

A further drawback of the presented approach is that

memory space and/or computing time restrictions will only

permit optimization over a rather small number of designs.

For a large design space, a stochastic search algorithm, e.g.

as in Müller et al. (2004), should be employed.
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