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ABSTRACT. Prions cause fatal neurodegenerative diseases in humans and animals and can be
transmitted zoonotically. Chronic wasting disease (CWD) is a highly transmissible prion disease of
wild deer and elk that affects cervids over extensive regions of the United States and Canada. The
risk of cross-species CWD transmission has been experimentally evaluated in a wide array of
mammals, including non-human primates and mouse models expressing human cellular prion
protein. Here we review the determinants of cross-species CWD transmission, and propose a model
that may explain a structural barrier for CWD transmission to humans.
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CHRONIC WASTING DISEASE OF
CERVIDS

Chronic wasting disease (CWD) is the only
known prion disorder affecting free-ranging
wildlife, including deer, elk, and moose, and
has spread extensively throughout North Amer-
ica, occurring in 23 US states and 2 Canadian
provinces.1,2 CWD prions are highly infectious
and readily transmitted among cervids, leading
to remarkably high prevalences that can exceed
90% in captive deer.3 Humans, wildlife, and
domestic species such as cattle and sheep are
likely exposed to CWD through consumption
of prion-infected animals or grazing on prion-
contaminated pastures.

Within an individual animal, CWD prions
are extraordinarily widespread and accumulate

in neural and non-neural tissues and body flu-
ids, including brain and spinal cord fat, pan-
creas, adrenal gland, heart, peripheral nerves,
lymph nodes, saliva, blood, and skeletal mus-
cle, many of which are ingested by humans and
other animals.4-9 Venison consumption is com-
mon; more than 60% of Americans have eaten
deer or elk meat,10 and known human expo-
sures to CWD-infected venison have occurred
in New York11 and in Wisconsin, where hun-
dreds of people have eaten CWD-infected cer-
vids (E. Belay, personal commun). As CWD-
infected animals gain access to new areas
through migration or animal transport, human
and animal exposure to CWD prions will likely
increase. Here we review species susceptibility
to CWD infection as well as new models to
study CWD species barriers.
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CROSS-SPECIES CWD PRION
TRANSMISSION

Prions transmitted into a different species
typically result in few infections and prolonged
incubation periods due to a transmission bar-
rier.12 Transmission barriers are caused by
amino acid sequence differences between the
host cellular prion protein, PrPC, and the mis-
folded, aggregated conformation, PrPSc.13-15

The conformation of PrPSc also plays a role in
species barriers. For example, CWD prions are
not transmissible to mice expressing human
PrPC, yet are efficiently transmitted to mice
expressing cervid PrPC, demonstrating the
importance of amino acid sequence in suscepti-
bility.16,17 Interestingly, transgenic mice
expressing human PrPC are more susceptible to
human sporadic Creutzfeldt-Jakob disease
(sCJD) prions than to variant CJD (vCJD)
prions.18 vCJD prions transmit readily to wild
type mice, indicating that PrPSc conformation
also impacts prion transmission.18 Bank vole
PrPC has been touted as a universal acceptor as
it is efficiently converted by diverse human and
animal prions despite sequence differences
between bank vole PrPC and the infectious
PrPSc.19-21

Many species have been experimentally
exposed to CWD prions by intracerebral or oral
routes of inoculation, including rodents, mus-
telids, felids, and ruminants. Oral inoculation
with CWD led to prion disease in cervids and
squirrel monkeys, whereas 5 additional species
resisted oral CWD challenge (Table 1).22-24

However, intracerebral CWD inoculation
caused prion infection in voles, hamsters, fer-
rets, sheep, cats, mink, and cattle, with variable
attack rates.25-33 Wild type mice and raccoons
resisted CWD prion infection (Table 1).16,34,35

An extensive study of CWD susceptibility in
transgenic mice expressing ovine and bovine
PrPC revealed no mice with prion disease, sup-
porting the strong barrier to CWD infection
observed in sheep and cattle.36

The ability of CWD prions to convert PrPC

from 12 mammalian species was evaluated in
vitro by protein misfolding cyclic amplification
(PMCA).37 Efficient CWD conversion strongly
correlated with Prnp encoding PrPC with an

asparagine (N) at position 170, similar to cervid
PrP. CWD converted PrPC from 5 of 5 species
having N170 (Syrian, Chinese, and Armenian
hamsters, prairie vole, Peromyscus mouse), but
only 1 of 7 species having serine (S) at position
170 (ferret).37 CWD did not convert PrPC from
mink, Mus mouse, cat, coyote, macaque, or
transgenic mice expressing human PrPC, sug-
gesting a lower risk of CWD infection for spe-
cies having a Prnp gene encoding S170.
Interestingly, prions from CWD-infected prai-
rie voles (N170) converted PrPC from several
species that express S170 (coyotes, cats and
mink), consistent with PrPSc conformation
playing an important role in conversion.37 Col-
lectively, these studies suggest that few species
would be orally susceptible to CWD following
prion ingestion, and that an asparagine at posi-
tion 170 of PrPC is a risk factor for CWD
infection.

ASSESSING PRIMATE
SUSCEPTIBILITY TO CWD

INFECTION

To gain insight into human susceptibility to
CWD, squirrel monkeys and cynomolgus mac-
aques were challenged with CWD prions and
showed surprising results, in that squirrel mon-
keys were highly susceptible to CWD by either
intracerebral22 or oral exposure routes,22,23

whereas macaques resisted CWD prion infec-
tion, even after intracerebral injection.23 A
comparison of the PrP amino acid sequences of
the squirrel monkey and macaque shows that
both primates express S170, in contrast to the
N170 expressed by deer. However, 2 intriguing
amino acid differences in the N-terminus (posi-
tions 100 and 108) of squirrel monkeys and
macaques may impact the CWD barrier. Never-
theless, the underlying structural mechanism
that explains the profound differences in CWD
susceptibility remains unresolved, and the
CWD susceptibility of squirrel monkeys is not
likely predictive for that of humans.

To further assess human susceptibility to
CWD, 4 laboratories performed an intracere-
bral CWD challenge of transgenic mice
expressing human PrP.17,36,38,39 Mice either
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overexpressed or expressed endogenous levels
of human PrP. All human codon 129 polymor-
phisms were represented (129MM, VV, or
MV). Mice invariably resisted deer and elk
CWD infection, as not a single animal devel-
oped clinical disease or PrPSc deposits in the
brain, suggesting a strong barrier for CWD con-
version of human PrP. This result is consistent
with in vitro conversion experiments, which
also indicate a strong barrier for CWD conver-
sion of human PrPC.40,41

STRUCTURAL DETERMINANTS OF
CWD SUSCEPTIBILITY

The structural underpinnings of PrP
sequence differences associated with prion
resistance are unclear, however recent findings
from our lab and others have revealed the
importance of key interacting segments for
CWD conversion. Mammalian PrPC consists of
approximately 210 amino acids, with an
unstructured N-terminus and a globular

TABLE 1. Species susceptibility to CWD infection following experimental exposure via the
intracerebral (IC) or oral (PO) routes of exposure.

Species Amino acid - position 170* CWD – ICy CWD – PO References

Elk N ND CCC 54, 55

Fallow deer N CCC ND 56

Mule deer N ND CCC 57

White-tailed deer N CCC CCC 7, 58

Reindeer N ND CC 59

Reeves’ muntjac deer N ND CCC 60

Red deer N ND CCC 61

Shira’s moose N ND CCC 62

Squirrel monkey S CCC CCC 22-24

Macaque S 0 0 23,24

Tg(humanPrP) (129V) S 0 ND 38,39

Tg(humanPrP) (129M) S 0 ND 17,36,38,39

Tg(humanPrP) (129MV) S 0 ND 39

Sheep S Cz ND 27

Tg(ovine PrP) S 0 ND 36

Cattle S CC 0 26

Tg(bovine PrP) S 0 ND 36

Raccoon S 0 ND 34

Ferret S CCC 0 31,32

Mink S CC 0 35

Cat S CC 0 63

Chinese hamster N CC ND 33

Armenian hamster N C ND 33

Syrian golden hamster N C ND 33

Djungarian hamster N 0 ND 33

Siberian hamster N C ND 33

Tg(hamsterPrP) N CC ND 33

Prairie vole N CCC ND 30

Meadow vole N CCC ND 29

Red-backed vole S/N CCC ND 29

Bank vole N CCC ND 19

Deer mouse N CC ND 29

White-footed mouse N CC ND 29

C57/BL6 mouse S 0 ND 33

Tg(mousePrP)-overexpressing PrP S C, CCC ND 36,64

*Human numbering.
yCCC: 75–100%, CC: 25–74%, C: 0–24% to terminal prion disease.
zARQ/VRQ only.
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C-terminal domain composed of 3 a-helices
and a short anti-parallel b-sheet.42 One region
of structural diversity is the b2-a2 loop (resi-
dues 165–175), which shows either a disor-
dered, or a well-defined conformation by NMR
spectroscopy.43 For example, elk and bank vole
PrPC show a well-defined loop, whereas human
and mouse PrPC show a disordered loop.42-46

To determine how the b2-a2 loop conformation
impacts species barriers, mice were engineered
to express mouse PrPC with the elk b2-a2 loop,
which required the S170N and N174T substitu-
tions. These two substitutions change the loop
from disordered (mouse) to well-defined
(elk).43 The resulting Tg(MoPrPS170N,N174T)
mice were highly susceptible to CWD infection
compared to mice expressing wild type mouse
PrPC.47 Further studies utilizing mice with a
well-defined loop due to a different substitu-
tion, D167S, showed that the loop conforma-
tion had no effect on CWD susceptibility,48 as
the mice had identical barriers as WT mice.
Taken together, these results suggest that the
165–175 sequence similarity between cervid
and host PrP, and not the secondary structure,
governs CWD susceptibility.

Tamguney et al. generated an extensive
series of transgenic mice expressing chimeric
elk/mouse PrPC sequences to determine the
key residues involved in CWD conversion,
with a focus on the C-terminus of PrP from
170 to 220 (human numbering)49 as prior
studies had shown the importance of this
region.50 Mice that expressed elk/mouse chi-
meric PrPC having the mouse b2-a2 loop
sequence (170S, 170N) showed barriers to
CWD infection with attack rates ranging
from 0–57%. In contrast, 6 of 7 lines having
the elk N170 residue showed attack rates of
100%, further illustrating the importance of
the loop segment for conversion of CWD.49

INVESTIGATING THE CWD-HUMAN
SPECIES BARRIER

The elk b2-a2 loop promoted CWD conver-
sion of mouse PrP, suggesting that the loop
sequence may serve as a gatekeeper for CWD
conversion in the context of mammalian PrPC.

To investigate this possibility, transgenic mice
expressing human PrP with the elk b2-a2 loop
sequence [Tg(HuPrPelk166-174)] were exposed
to deer and elk CWD prions. As previously
observed, mice expressing human PrP [Tg
(HuPrP) mice] resisted CWD infection. How-
ever, [Tg(HuPrPelk166-174)] mice expressing
human/elk chimeric PrP were highly suscepti-
ble to CWD prions. Further passage of CWD-
infected Tg(HuPrPelk166-174) brain transmitted
the prion infection to all Tg(HuPrPelk166-174)
mice, yet to only 1 of 17 Tg(HuPrP) mice, indi-
cating a significant barrier for prion transmis-
sion from Tg(HuPrPelk166-174) to Tg(HuPrP)
mice, even though the PrP sequences differed
by only 4 amino acid residues (Fig. 1). Interest-
ingly, the elk b2-a2 loop sequence in human
PrP created a barrier to sCJD infection, as the
Tg(HuPrPelk166-174) mice were infected with
human CJD prions after a moderate delay as
compared to the Tg(HuPrP) mice.

STERIC ZIPPER MODELS MAY
EXPLAIN SPECIES BARRIERS

Solving the molecular mechanism underly-
ing cross-species prion conversion has been
challenging due to the lack of high resolution
structures for prions. Sequence similarity
between PrPC and PrPSc facilitates cross-spe-
cies prion conversion, suggesting that the pack-
ing of amino acid side chains may play an
important role in determining susceptibility to
prion conversion (Fig. 2). A potential mecha-
nism for PrPC conversion is suggested by high
resolution crystallography of microcrystals
formed from amyloidogenic segments of fibril-
forming proteins. The microcrystals are com-
posed of b-sheets arranged parallel to the fibril
axis, with complementary side chains from
adjacent sheets interdigitating to form a dry
“steric zipper” interface.51

Several isolated PrP segments form micro-
crystals with steric zipper interfaces, including
residues 170–175 from the b2-a2 loop. Inter-
estingly, the 170–175 segment (SNQNNF in
humans and mice, NNQNTF in deer and elk)
forms distinct steric zipper structures in
humans and mice as compared to deer and elk.
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These differences in zipper structures offer an
explanation for how a few human residues can
inhibit conversion by CWD. Modeling the
human and elk 165–175 segment reveals poor
interdigitation of the human and cervid amino
acid side chains at positions 168 and 170 that
leads to gaps and steric clashes expected to
destabilize the zipper (Fig. 2). Thus, PrPC and
PrPSc side chain interactions at the 165–175
segment may inhibit the stable incorporation of
the PrPC monomer into a growing fibril. One
assumption in this model is that the interacting

165–175 segment is exposed in both PrPC and
PrPSc.

In support of the steric zipper model for
CWD conversion, in vitro conversion experi-
ments using human PrPC with elk substitutions
revealed that human PrPC with the elk E168Q
and S170N substitutions was converted as effi-
ciently as full length cervid PrPC.53 Surpris-
ingly, human PrPC with the elk E168Q, S170N,
and N174T substitutions was converted poorly,
revealing that the human N174 residue had bol-
stered CWD conversion. These findings indi-
cate that in some cases, PrP sequence
mismatches between the infectious prion and
the host PrPC promote cross-species conver-
sion. These results also suggest a basis for the
high susceptibility of voles to CWD infection,
as the bank vole PrP sequence includes Q168,
N170, and N174.

FIGURE 1. Investigating the structural determi-
nants of the CWD-human transmission barrier.
The human and elk b2-a2 loop amino acid
sequences differ at 4 positions: 166, 168, 170,
and 174 (top). Transgenic mice expressing full-
length human PrPC (blue) or human PrPC with
the elk b2-a2 loop (red) were inoculated intrace-
rebrally with CWD prions. Although mice
expressing human PrPC did not develop dis-
ease, mice expressing the human-elk loop PrPC

[Tg(HuPrPelk166-174)] were susceptible to CWD
infection (83%). Inoculation of brain from a
CWD-infected Tg(HuPrPelk166-174) mouse into
additional transgenic mice transmitted the dis-
ease to all Tg(HuPrPelk166-174) mice, but to only
1 of 17 Tg(HuPrP) mice.

FIGURE 2. Structural models of elk and human
side chain packing within the b2-a2 loop may
explain CWD transmission barriers. Atomic
space-filling models of amino acid side chains
within the b2-a2 loop of PrP were modeled as a
parallel b-sheet.53 In this model, the CWD PrPSc

and cervid PrPC (top pair) interdigitate in a steric
zipper. In contrast, the CWD PrPSc and human
PrPC (bottom pair) interaction generates a steric
clash (blue rectangle) and a cavity (arrow) that
would be incompatible with zipper formation
and may explain why CWD does not convert
human PrPC. Amino acids common to both cer-
vids and humans are yellow; human-specific
residues are green.
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CONCLUSIONS

CWD has spread rapidly within the United
States over the past decade. With the increased
exposure of wildlife and other species to CWD,
predicting prion infection risk has become
more important and will enable a more targeted
species surveillance as well as management of
potential CWD reservoirs, such as wild voles.
Utilizing a structural model of PrPC-PrPSc

interaction may facilitate those predictions.
Although the secondary structure of the b2-

a2 loop varies depending on the sequence of
the loop or the tightly interacting third helix,
the secondary structure has not correlated with
susceptibility to CWD prion conversion.48,52,53

Instead, the amino acid sequence of the b2-a2
loop has an important role in promoting CWD
conversion of PrPC from other species. How-
ever, as the ferret and the squirrel monkey are
highly susceptible to CWD infection, and nei-
ther has a b2-a2 loop that matches elk, it is
clear that other PrP segments also interact dur-
ing CWD conversion. Additionally, how seg-
ments interact in the context of full length PrP,
as well as how potential hetero-zippers that
could be accommodated in the new models of
PrPSc structure should be considered. Future
studies to define PrPC : PrPSc interaction sites
will help to refine the list of species most at
risk for CWD infection.

ABBREVIATIONS

CWD chronic wasting disease
PrPC cellular prion protein
PrPSc misfolded, aggregated prion protein
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