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ABSTRACT. Temporal and spatial patterns of pathological changes such as loss of neurons and
presence of pathological protein aggregates are characteristic of neurodegenerative diseases such as
Amyotrophic Lateral Sclerosis, Frontotemporal Dementia, Alzheimer’s disease and Parkinson’s
disease. These patterns are consistent with the propagation of protein misfolding and aggregation
reminiscent of the prion diseases. There is a surge of evidence that suggests that large protein
aggregates of a range of proteins are able to enter cells via macropinocytosis. Our recent work
suggests that this process is activated by the binding of aggregates to the neuron cell surface. The
current review considers the potential role of cell surface receptors in the triggering of
macropinocytosis by protein aggregates and the possibility of utilizing macropinocytosis pathways as
a therapeutic target.
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Neurodegenerative diseases such as Amyo-
trophic Lateral Sclerosis (ALS), Frontotempo-
ral Dementia (FTD), Alzheimer’s disease, and
Parkinson’s disease have temporal and spatial
patterns of pathological changes such as loss of
neurons and presence of pathological protein
aggregates.1-4 The patterns that have been iden-
tified in neuropathological studies are have

been suggested to be consistent with propaga-
tion of protein misfolding and aggregation rem-
iniscent of the prion diseases.5

Evidence from in vitro studies suggests that
large protein aggregates of a range of proteins
(SOD1, tau, a-synuclein, and proteins contain-
ing expanded polyglutamine repeats) are able
to enter cells via an incompletely understood
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mechanism and propagate misfolding and
aggregation.6-14 Animal studies demonstrate
that injection of brain or spinal cord extracts
from transgenic mice expressing human tau,
SOD1 or a-synuclein can seed pathology in
transgenic mice at the sites of injection and ini-
tiate spread of pathology to other regions of the
nervous system.14-17 These data combined with
the patterns of neurodegeneration provide
strong evidence of prion-like protein misfold-
ing propagation in neurodegenerative diseases
such as Parkinson’s disease and ALS. The pre-
cise mechanism of cell-to-cell propagation of
protein misfolding in vivo remains unclear.
There are several possible scenarios that may
explain the propagation of protein misfolding,
the most commonly proposed of which is the
release of protein aggregates in to the extracel-
lular space and subsequent uptake in to nearby
or connected na€ıve neurons where seeding can
then take place. In this model both aggregate
release and subsequent uptake are requisite.
Misfolded or aggregated material may be
released from cells via an active mechanism,
either within exosomes or naked, or alterna-
tively, aggregates may be passively released
from dead or dying cells. In reality, within a
complex biological system it is likely that the
release of aggregated protein may be a combi-
nation of each of the possible release mecha-
nisms. This makes therapeutic targeting of
aggregate release difficult, moreover, reducing
the burden of misfolded protein by active
release may be beneficial to the cell and thus its
blockade detrimental. One aspect of protein
misfolding propagation that may provide a
more tractable therapeutic target is the entry of
protein aggregates in to cells.

Work to date suggests that macropinocytosis
may be responsible for the uptake of protein
aggregates associated with various neurodegen-
erative diseases.6,11,18-20 A range of studies
examining several different types of protein
aggregates, including those made from a-synu-
clein, Huntingtin (exon1Q44), and tau are con-
sistent with an unconventional, bulk
endocytosis route being responsible for their
uptake.12,18,21-24 A systematic study using
SOD1 aggregates by M€unch et. al conlcuded
that protein aggregates enter into N2A cells via

macropinocytosis.6 These findings were subse-
quently corroborated in work that showed
uptake of both extracellular wildtype and
mutant SOD1 soluble forms into NSC-34 cells
can be inhibited by small molecule inhibitors
of macropinocytosis EIPA and rottlerin.11,19

EIPA (5-(N-Ethyl-N-isopropyl)amiloride) is an
amiloride analog that inhibits NaC/HC

exchangers which suppresses macropinocytosis
due to the vulnerability of GTPase Rac1 to pH
changes.25 However, the small molecule inhibi-
tors generally utilized to define macropinocyto-
sis, such as EIPA, are not specific and have
been shown to prevent various forms of endo-
cytosis.26 As a result, further work is required
to more precisely define the precise mode of
endocytosis responsible for protein aggregate
uptake.

Macropinocytosis is a type of endocytosis
that is partly defined by pinosome size, macro-
pinosomes can be several micron in diameter.
Macropinocytosis can be constitutive or a tran-
sient process, generally triggered by growth
factors but has been observed to be activated
by particles such as bacteria, apoptotic bodies
and viruses.27 Its activation leads to formation
of large membrane ruffles that can fold back on
the cell allowing the internalisation of fluid,
membrane and other particles into large
vacuoles several micron in diameter.28 The role
of stimulation of macropinocytosis in aggregate
uptake remains unclear.

Our recent work shows that SOD1 aggre-
gates can bind to the cell surface and trigger
activation of membrane ruffling in NSC-34
cells and iPSC generated human neurons20 con-
sistent with stimulated rather than constitutive
macropinocytosis. The engulfment of aggre-
gates in to macropinosomes could explain the
ease by which aggregates enter the cytosol.
Macropinosomes are considered ‘leaky’ due to
their lack of physical structure compared with
coated vesicles.29 Indeed, we observed vesicle
rupture upon entry of SOD1 aggregates in to
NSC-34 cells.20 A characteristic signaling mol-
ecule associated with actin mobilization during
macropinocytosis in the Rho GTPase Rac1. We
found that application of SOD1 aggregates to
NSC-34 cells resulted in an increase in the
amount of activated Rac1, and also observed
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that the uptake of aggregated SOD1 in to NSC-
34 and human iPSC derived motor neurons was
suppressed by the Rac1 inhibitor W56.20 These
data are consistent with a triggering of macro-
pinocytosis that involves an activation of Rac1.
Moreover, our data indicate that aggregates
made from other proteins such as a-synuclein,
huntingtin-polyQ and TDP-43 also trigger
membrane ruffling and macropinocytosis.20

Indeed, this seems to be a generic response to
cell surface interaction with protein aggregates
since aggregates made from a-lactalbumin, that
are not involved with disease, also trigger this
response.

The question of how protein aggregates trig-
ger macropinocytosis remains unanswered. To
begin to shed light on the answer to this ques-
tion one can turn to the virus uptake literature
as the mechanisms of macropinocytosis activa-
tion have been more closely studied in this con-
text. There are a several viruses27 that have
been shown to utilize macropinocytosis path-
ways to enter cells, including the Japanese
encephalitis virus in neurons.30 Receptor com-
plexes on the cell surface are vital to the bind-
ing of viral particles and activation of
macropinocytosis. Integrins such as b1,

31 av,
32

and the heparan sulfate proteoglycans33 have
been reported to be involved in particle bind-
ing, while receptor tyrosine kinases such as
ErbB-134 and EphA235 have been implicated in
the triggering of the signaling cascade that
stimulates macropinocytosis (Fig. 1A). Little is
known about the receptors that mediate protein
aggregate induced macropinocytosis in neu-
rons. However, heparan sulfate proteoglycans
have been identified as an important part of the
mechanism that allows tau, a-synuclein and
prion protein aggregate uptake18,36,37 suggest-
ing that the receptor complexes involved may
be similar to that involved in virus particle
uptake.

While little is known about the neuronal
receptor complexes associated with binding
of protein aggregates, a wide range of
receptors have been shown to be involved
in the binding of protein aggregates to the
cell surface of microglia.38,39 A group of
receptors, known as pattern recognition
receptors, are often responsible for this

process. These receptors bind to pathogen
associated molecular patterns (PAMPs) and
danger associated molecular patterns
(DAMPs) that may be responsible for the
recognition of protein aggregates. It is pos-
sible that these pattern recognition receptors
bind to the repetitive patterns found on
aggregates formed from various proteins,
indeed the fibrillar structure of amyloid
fibrils are thought to have a generic core
structure. The binding of particles to these
microglial receptor complexes results in
activation of signaling cascades, including
activation of MAP kinase and ERK1/2,
subsequently resulting in cytokine release.40

Scavenger receptors CD3641 and SR-A,42

the receptor for advanced glycation end
products (RAGE),43,44 integrin a6b1-integrin
and integrin associated CD47,39 formyl
peptide receptor 2/formyl peptide receptor-
like 1 (FPR2/FPRL1),45 CD33,46 CD14 and
Toll-like receptors (TLR) 2/447 have all
been shown to be involved in microglial
binding of protein aggregates made of Ab
peptide. In addition, we have previously
shown that microglia binding of aggregated
SOD1 is supressed by pre-treatment with
methyl-b-cyclodextrin (MbCD), fucoidan
and lipopolysaccharide (LPS) suggesting
that binding is dependent on lipid raft for-
mation, scavenger receptors and CD14.48

The binding of fibrils to microglial cell sur-
face is mediated not by individual receptors
but though large receptor complexes
(Fig. 1B) involving signaling receptors such
as TLR2/4. This process of receptor com-
plex formation, in some cases, is dependent
on lipid raft formation to allow membrane
protein organization.49

Neurons express heparan sulfate proteogly-
cans,50 RAGE,51 CD36,52 integrins32 and
receptor tyrosine kinases such as EphA2 and
EphA4.53 This is consistent with neurons hav-
ing all the machinery to bind aggregates and to
trigger macropinocytosis with a receptor com-
plex similar to that involved in viral uptake
and somewhat similar to that of microglial
cell surface recognition (Fig. 1C). Indeed, a
macropinocytosis-like process regulates growth
cone membrane recycling, growth cone
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collapse, axon retraction and turning during
development and injury.54-58 Future work will
be needed to further characterize the composi-
tion of the neuron specific set of cell surface
proteins that are responsible for the binding,
triggering of macropinocytosis and uptake of
protein aggregates. Given that blocking all
macropinocytosis in the brain, including micro-
glial and astrocytic, may be detrimental this
knowledge could be used to define a specific
target to block neuronal uptake of protein
aggregates. Blocking uptake may effectively
supress propagation of protein aggregation, as
the cytoplasmic invasion of protein aggregates,

like those of SOD1, are a necessary part of the
prion-like propagation process. However, due
to the role of a macropinocytic process in
growth cone and axon development54-58 the
effect of inhibition of macropinocytosis on neu-
rogenesis should be studied. Regardless, a
receptor tyrosine kinase EphA4 has been impli-
cated in ALS disease progression. In humans
with ALS, EphA4 expression was found to
inversely correlate with disease onset and sur-
vival, and loss-of-function mutations in EPHA4
were found to be associated with slower disease
progression and longer survival.59 It is tempting
to speculate that EphA4 might contribute to the
activation of macropinocytosis and uptake of

FIGURE 1. Cell surface receptors responsible for macropinocytosis and protein aggregate recogni-
tion. A) Receptor tyrosine kinases (RTK), integrins (INT) and heparan sulfate proteoglycans (HS)
have been associated with the viral particle recognition and subsequent triggering of macropinocy-
tosis. B) Scavenger receptors (SR), RAGE, integrins (INT), CD14 and toll like receptors (TLR) have
all been found to play a role in recognition and subsequent proinflammatory response to protein
aggregates of amyloid b peptide. C) Neurons have been shown to express scavenger receptors
(SR), receptor tyrosine kinases (RTK), integrins (INT) and heparan sulfate proteoglycans which
may be involved in triggering of macropinocytosis by protein aggregates.
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protein aggregates, which might be slowed in
its absence or inhibition. Identifying such a tar-
get that will supress the neuronal macropinocy-
tosis of protein aggregates but will allow the
microglial phagocytosis and degradation of
such particles is vital. Blocking all endocytosis
of aggregates may be detrimental.

In summary, propagation of protein misfold-
ing and aggregation is implicated in the pro-
gressive nature of several neurodegenerative
diseases such as Alzheimer’s disease,
Parkinson’s disease and ALS. In order for prop-
agation to proceed aggregates must be able to
gain access to the cytosol of na€ıve neurons and
current evidence suggests that stimulated mac-
ropinocytosis is responsible for this uptake.
The receptor complexes responsible for this are
still to be defined, but this information may pro-
vide therapeutic targets that could halt or slow
the spread of pathology.
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