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ABSTRACT Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for
personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of
unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants
individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as
genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature
best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response,
starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference
Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard
genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the
individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is
possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are
enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the
accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and
evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits.
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VARIATION for complex traits is due to many interacting
loci with small individual effects on each trait as well

as environmental influences (Falconer and Mackay 1996).
Knowledge of the underlying causal polymorphisms and
their effects is thus critical for predicting disease suscep-
tibility in humans, improving production traits in plants
and animals, and predicting adaptive evolution. Genetic
mapping approaches to dissect the genotype–phenotype map

one locus at a time in outbred populations are successful in
identifying quantitative trait loci (QTL) with the largest ef-
fects, but together these loci typically account for only a
small fraction of the total genetic variance (Visscher 2008,
2012; Manolio et al. 2009; Vinkhuyzen et al. 2013; Caballero
et al. 2015).

The realization that the effects of the majority of loci
affecting complex traits are too small to be individually de-
tected unless sample sizes are huge motivated the develop-
ment of statisticalmethods to predict complex trait phenotypes,
using all molecular markers simultaneously (Meuwissen et al.
2001). These genomic predictionmethods are very successful in
predicting phenotypes from marker genotypes in populations
with a large amount of linkage disequilibrium (LD), such
as selectively bred animals and plants (de Roos et al. 2009;
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Hayes et al. 2009, 2010; Crossa et al. 2010; Daetwyler et al.
2013). However, genomic prediction does not work well
when LD is low, such as across breeds or strains or in outbred
populations of largely unrelated individuals (Habier et al.
2007; Makowsky et al. 2011; de los Campos et al. 2013),
because many causal polymorphisms will not be in LD with
the genotyped markers.

Genomic predictions currently utilize high-density single-
nucleotide polymorphism (SNP) genotyping arrays. Given the
rapid advances in sequencing technologies, genomic predic-
tion soonwill be based onwhole-genome sequence data. This
will greatly exacerbate the true genomic signal to noncausal
marker noise problem. Therefore, the key to better prediction
models may be to “guess” which markers could be causal by
utilizing prior biological findings, as it appears that the
markers associated with trait variation are not uniformly dis-
tributed throughout the genome, but enriched in genes that
are connected in biological pathways (Lango Allen et al.
2010; O’Roak et al. 2012; Lage et al. 2012; Maurano et al.
2012; Peñagaricano et al. 2013). Here, we extend the com-
monly used genomic best linear unbiased prediction (GBLUP)
model (Meuwissen et al. 2001) by incorporating prior informa-
tion on gene ontologies (Gene Ontology Consortium et al.
2000). Our model, which we call genomic feature BLUP
(GFBLUP), includes an additional genomic effect that quantifies
the collective action of a set of markers located in a genomic
feature defined by genes, biological pathways, sequence anno-
tation, or other external evidence. We previously used this ap-
proach to partition the genomic variance of pathways in health
and milk production traits in Danish Holstein dairy cattle
(Edwards et al. 2015). Here, we apply it to three quantitative
traits (starvation resistance, startle response, and chill coma re-
covery time) in the largely unrelated inbred, sequenced lines of
the Drosophila melanogaster Genetic Reference Panel (DGRP)
(Mackay et al. 2012; Huang et al. 2014). Prediction accuracies
from previous GBLUP analyses of these traits in the DGRP
ranged from zero to very low (Ober et al. 2012, 2015).

The premise of the GFBLUPmodel is that genomic features
are enriched for causal variants affecting the traits. However,
in reality, the number, location, and effect sizes of the true
causal variants in the genomic feature are unknown. There-
fore, we also used simulation to investigate feature- and trait-
specific factors that may influence predictive ability, using the
GFBLUP model. Genomic feature factors include the propor-
tion of the total genomic variance that can be explained by the
genomic feature, the number of noncausal variants that is
included, and the distribution of the causal variants in the
genome (either distributed randomly or clustered in smaller
genome regions). The trait-specific factors include the total
genomic heritability of the trait and the number of phenotypic
records available for analysis.

Our GFBLUP models applied to the DGRP provide better
model fits and have a higher predictive ability than the
standard GBLUP model. The GFBLUP models provide novel
insight into the genetic architecture of starvation resistance,
startle response, and chill coma recovery by identifying genomic

features that explain large proportions of genomic variance.
Finally, our simulated data generated from DGRP genotypes
illustrate factors affecting estimation of genomic parameters,
model fit, and predictive ability.

Materials and Methods

DGRP data

Drosophila lines: The phenotypic and genotypic data origi-
nate from the DGRP (Mackay et al. 2012; Huang et al. 2014).
All data can be accessed via the Web site http://dgrp2.gnets.
ncsu.edu. The DGRP consists of 205 inbred lines obtained by
20 generations of full-sib mating from the offspring of single
wild-caught females collected from the Raleigh, North Carolina
population, which have full genome sequences (Mackay et al.
2012; Huang et al. 2014). All flies were reared under standard
culture conditions (cornmeal–molasses–agar medium, 25�, 60–
75% relative humidity, 12-hr light–dark cycle). The DGRP is
polymorphic for common inversions and Wolbachia pipientis
infection status (Huang et al. 2014). These factors were in-
cluded in the models described below as fixed effects.

Quantitative trait phenotypes: Starvation resistance for
197 DGRP lines was assessed by placing 10 same-sex, 2-day-
old flies in culture vials containing nonnutritive medium (1.5%
agar and5mlwater) and scoring survival every 8hruntil allflies
were dead (Harbison et al. 2004). Therewere five replicate vials
per sex per line (total N= 19,361; female N= 9672; male N=
9689). Chill coma recovery for 159 DGRP lines was measured
by transferring 3- to 7-day-old flies without anesthesia to empty
vials and placing them on ice for 3 hr. Flies were transferred to
room temperature, and the time it took for each individual to
right itself and stand on its legs was recorded (Morgan and
Mackay 2006). There were two replicates of 50 flies per sex
per line (total N = 32,231; female N = 16,170; male N =
16,061). Startle response for 166 DGRP lines was measured
by placing single 3- to 7-day-old adult flies, collected under
CO2 exposure, into vials containing 5 ml culture medium and
leaving them overnight to acclimate to their new environment.
On the next day, between 8 AM and 12 PM (2–6 hr after lights
on), each fly was subjected to a mechanical disturbance with a
gentle tap, and the total amount of time the flywas active in the
45 sec immediately following the disturbance was recorded
(Mackay 2001). There were two replicates of 20 flies per sex
per line (total N= 13,276; female N= 6674; male N= 6602).

Genotypes: Genotypes were obtained from whole-genome
sequences,usingan integrativegenotypingprocedure (Huang
et al. 2014). All analyses were based on segregating biallelic
SNPs with minor allele frequencies $0.05 and for which the
Phred scaled variant quality was.500 and the genotype call
rate was $0.8, for a total of 1,725,755 SNPs distributed on
five chromosome arms (2L, 2R, 3L, 3R, and X).

Genomic features: Genes grouped according to a specific
Gene Ontology (GO) term were considered a genomic
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feature. Genes were linked to the “biological processes” (BP),
“molecular function” (MF), and “cellular component” (CC)
GO terms (Gene Ontology Consortium et al. 2000), using the
BioConductor package “org.Dm.eg.db” v. 2.14 (Carlson 2013).
Only GO terms with at least 10 directly evidenced genes were
used in the analyses. SNPs weremapped to FlyBase genes using
the v5.49 annotations of the D. melanogaster reference genome
(Tweedie et al. 2009; Mackay et al. 2012; Huang et al. 2014).
Only the 963,235 SNPs located within genes (i.e., within open
reading frames) were used for the genomic feature. In total
markers were associated with 10,517 genes and 1145 GO
terms. A total of 1,725,755 markers were used in all analyses,
and the number of markers linked to a single GO term ranged
from 23 to 163,938.

Statistical analyses using linear mixed models

Analyses were performed using two different linear mixed
models: a standard GBLUPmodel and a GFBLUPmodel using
prior information on genomic features. In the following we
presentdetails of themodels and statistical proceduresused to
compare the models.

Genomic models: For each genomic feature (i.e., GO term) a
separate analysis was conducted. In each of the GFBLUP anal-
yses we evaluated a single genomic feature based on a linear
mixed model including two random genomic effects,

~y ¼ mþ Zf þ Zrþ Zllþ e 
�
MGFBLUP

�
;

where ~y is the vector of adjusted phenotypic observations
(or simulated phenotypes), m is the vector of an overall
mean, Z is the design matrix linking observations to geno-
mic values (f and r), Zl is a design matrix for the replicate
within-line effects (l), f is the vector of line-specific genomic
values captured by genetic markers linked to the genomic
feature of interest, r is the vector of line-specific geno-
mic values not captured by genetic markers linked to the
genomic feature, and e is the vector of residuals. The ran-
dom genomic effects and the residuals were assumed to
be independent normally distributed values described
as follows: f � N

�
0;Gfs

2
f

�
;  r � N

�
0;Gs2

r

�
; l � N

�
0; Ils2

l

�
;

and e � N
�
0; Is2

e

�
:

GBLUP was based on a linear mixed model including only
one random genomic effect,

~y ¼ mþ Zg þ Zllþ e 
�
MGBLUP

�

with the same notation as above except that g is the vector
of genomic values captured by all genetic markers. The ran-
dom genomic values and the residuals were assumed to
be independent normally distributed values described
as follows: g � N

�
0;Gs2

g

�
and e � N

�
0; Is2

e

�
:

In the analyses of the simulated data the term for the
replicatewithin-line effectswas excluded in both the genomic
model analyses.

The additive genomic relationship matrix G (VanRaden
2008) was constructed using all genetic markers as
follows: G ¼ WW9=m; where W is the centered and scaled
genotype matrix, and m is the total number of markers.
Each column vector of W was calculated as follows:
wi ¼

�
mi 2 2pi

�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið12 piÞ

p
; where pi is the minor allele

frequency of the ith genetic marker and mi is the ith column
vector of the allele count matrix, M, which contains the ge-
notypes coded as 0 or 2 depending on the number of minor
alleles. The additive genomic relationship matrix for the ge-
nomic feature Gf was constructed in a similar way, using only
the genetic marker set defined by the genomic feature.

Adjusted phenotypes used in genomic model analyses: The
phenotypes used in the GBLUP and GFBLUP model analyses
were derived from phenotypic records of the quantitative
traits adjusted for relevant factors, using the linear mixed
model

y ¼ Xbþ Zg þ Zllþ e;

where y is the vector of phenotypic observations, X is the
design matrix, b is the vector of fixed effects of inversion
karyotypes and Wolbachia infection status, Z is the design
matrix linking observations to genomic values, Zl is a design
matrix for the replicate within-line effects, g is the vector of
genomic values captured by all genetic markers, l is the vec-
tor of replicate within-line effects, and e is the vector of re-
siduals. The random effects (g and l) and the residuals were
assumed to be independent normally distributed values
described as follows: l � Nð0; Ils2

l Þ; g � Nð0;Gs2
gÞ; and

e � Nð0; Is2
e Þ: The adjusted phenotypes used as response var-

iables for genomic model analysis described below were cal-
culated as ~y ¼ Zĝ þ Zl̂lþ ê:

Estimation of variance components: Estimates of the vari-
ance components (ŝ2

f ; ŝ
2
r ; ŝ

2
g ; ŝ

2
l ; and  ŝ2

e ) defined in the
models described above were obtained using an average in-
formation restricted maximum-likelihood (REML) procedure
(Madsen et al. 1994; Johnson and Thompson 1995) as imple-
mented in the software DMU (Madsen et al. 1994). In this
procedure, we used a generalized inverse of the genomic re-
lationship matrices. This was necessary because these matri-
ces were not full rank due to centering, as well as in cases
where the number of genetic markers was smaller than the
number of lines.

Model comparisons: The models were evaluated and com-
pared based on model fit, model predictive ability, and pre-
cision of estimated genomic parameters.

Genomic parameters: Genomic parameters were de-
rived from the estimates of the variance components.
Inferences on genomic heritability were based on the
following ratios: ĥ

2
GBLUP ¼ ŝ2

g=ðŝ2
g þ ŝ2

e Þ for GBLUP and
ĥ
2
GFBLUP ¼ ðŝ2

f þ ŝ2
r Þ=ðŝ2

f þ ŝ2
r þ ŝ2

e Þ for GFBLUP. Inference
on partitioning of genomic variance in GFBLUP was
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based on the following ratios: ĥ
2
f ¼ ŝ2

f =ðŝ2
f þ ŝ2

r Þ and
ĥ
2
r ¼ ŝ2

r =ðŝ2
f þ ŝ2

r Þ: These ratios quantify the proportion
of total genomic variance captured ðĥ2f Þ and not
captured ðĥ2r Þ by the genetic markers in the genomic
feature.

Model fit: The model fit was assessed using a likelihood
ratio (LR) here defined as 2loglhMG 2 2loglhMGF ; where lh is
the likelihood of the fitted model. Standard theory shows
that the LR test statistic is asymptotically distributed as
x2
k; where k; the degrees of freedom, is the difference in

the number of parameters between the two models. The
P-values calculated for assessing the significance of the
likelihood-ratio test were based on a x2-distribution with
1 d.f. However, it has previously been shown that if the
null hypothesis value is on the boundary of the parameter
space (e.g., s2

f ¼ 0), the asymptotic distribution of LR test
statistics may be approximated by a 50:50 mixture of
x2-distributions with 0 and 1 d.f. (Self and Liang 1987).
Alternatively it is possible to derive an empirical distribu-
tion of the LR test statistic as we have shown previously
(Edwards et al. 2015).

Model predictive ability: The ability of themodels to predict
total genomic value was assessed using a cross-validation
procedure. In the GFBLUP model the total genomic value is
ĝtotal = f̂ + r̂ and in GBLUP it is ĝtotal = ĝ: In the cross-
validation procedure, we estimated genomic parameters us-
ing the phenotypes from the lines in the training data (90% of
the lines) and predicted the total genomic value of lines in the
validation data (10% of the lines). BLUP is used to predict
total genomic values in both the GFBLUP and GBLUP models
as described below.We then calculated a correlation between
the total genomic values predicted with or without the ob-
served phenotypes set to missing. For the simulated data and
for the observed DGRP data we defined 50 cross training
(validation) data subsets and applied these to each genomic
feature. For each genomic feature, the predictive ability was
defined as the average correlation of the 50 cross valida-
tions. A similar procedure was applied to the GBLUP model
serving as a reference. For each genomic feature Welch’s
t-test (i.e., unequal variance t-test) was used to test the
difference in mean predictive ability of the two models
(Welch 1947). For each trait 1145 GO terms were tested.
Therefore P-values from Welch’s t-test were adjusted for
multiple testing by controlling the false discovery rate as
implemented in R (Benjamini and Hochberg 1995; R Core
Team 2015).

Prediction of total genomic value using BLUP: The total
genomic value of lines in the validation data was predicted
conditional on the observed phenotypes for the lines in
the training data. In the GFBLUP model the conditional
expectation of the total genomic values for the lines in
the validation data ðĝ1 ¼ f̂1 þ r̂1Þ given the observed
phenotypes for the lines in the training data (y2) can be
written as

ĝ1¼ E
�
g1jy2

� ¼ �
Gf12 ŝ

2
f þ Gr12 ŝ

2
r
��
Gf22 ŝ

2
f þ Gr22 ŝ

2
r

þ I22 ŝ2
e
�21�

y2 2X2 b̂2
�
;

where the genomic relationship matrix for the genomic

feature Gf ¼
�
Gf11 Gf12
Gf21 Gf22

�
is partitioned according to rela-

tionships between the lines in the training data (Gf11 ), be-
tween the lines in the validation data (Gf22 ), and between
the lines in the training and validation data (Gf12 ). A similar
partitioning is applied to Gr and I in the GFBLUP model. For
the sake of simplicity we have ignored the design matrix Z
and the replicate within-line effects in the expression for the
conditional expectation. Thus the total genomic value is pre-
dicted using the estimated variance components (ŝ2

f ; ŝ
2
r ; and

ŝ2
e ) in the training data. The rightmost term, ðy2 2X2b̂2Þ;

constitutes the phenotypes corrected for fixed effects
for the lines in the training data. The inverse term
½Gf22 ŝ

2
f þ Gr22 ŝ

2
r þ I22 ŝ2

e � is essentially the variance–covariance
structure for the corrected phenotypes. These two terms
together are the standardized and corrected phenotypes for
the individuals in the training data, which are projected onto
the total genetic covariance structure between the training
and the validation data, ðGf12 ŝ

2
f þ Gr12 ŝ

2
r Þ:

In theGBLUPmodel a similar expression for theconditional
expectation of the total genomic value for the lines in the
validationdata given the observedphenotypes for the lines in
the training data can be written as

ĝ1 ¼ E
�
g1jy2

� ¼ �
G12 ŝ

2
g
��
G22 ŝ

2
g þ I22 ŝ2

e
�21�

y2 2X2 b̂2
�
:

Implementation: The GFBLUP and GBLUP modeling ap-
proaches are implemented in the R package qgg, which is
available at http://psoerensen.github.io/qgg/. This includes
fitting a series of linear mixed models, estimating variance
components using REML, prediction using BLUP, and cross-
validation procedures. Example scripts and data sets are
provided for illustrating the GFBLUP and GBLUP modeling
approaches. For a specific experimental design with repli-
cated phenotypes within line such as DGRP it is more efficient
to use the average information REML procedure (Madsen
et al. 1994; Johnson and Thompson 1995) implemented in
DMU (Madsen et al. 1994). The aireml function in the qgg
package provides an R interface to the DMU that can be
downloaded from http://dmu.agrsci.dk/DMU/.

Simulated data

We established a series of simulation studies to investigate
factors influencing the power to detect genomic features
affecting the trait phenotype, estimation of genomic param-
eters, and prediction ability of the two tested linear mixed
models. The factors varied in the simulations included
genomic heritability (h2), proportion of genomic variance
explained by causal SNPs in the genomic feature (h2f ),
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proportion of noncausal SNPs in the genetic marker set de-
fined by the genomic feature (dilution), genome distribution
of causal SNPs (causal model) (i.e., how the causal SNPs were
physically distributed on the genome: random or clustered),
and the number of replicates (i.e., the number of phenotypic
records for each line) within lines (Nrep).

Genotypes: The simulations were based on the real genotype
DGRP data set of 205 lines and 1,725,755 SNPs. In all
scenarios, there were 1000 causal SNPs. Causal sets were
divided into two subsets. The first subset C1 included
100 SNPs and was used as the causal SNP set in the genomic
feature that explains 10%, 20%, 30%, or 50% of the total
genomic variance. The second subset C2 included 900 SNPs
and explained the remaining genomic variance. To mimic
relevant genetic scenarios, the genome distribution of the
causal SNPs in the genomic feature was simulated using
two different causal models: a random and a cluster model.
The cluster model simulates the situation in which multiple
causal SNPs occur in a limited number of genes, whereas in
the random model single causal SNPs occur in a larger num-
ber of genes. The main difference is that the genomic vari-
ance is associated with a smaller genome region in the cluster
model compared to the random model. For the clustered
causal model, the 100 causal SNPs in C1 were chosen from
20 randomly selected genome regions spanning 50 SNPs
each, and the remaining 900 SNPs in C2 were randomly
selected from the complete SNP set (excluding the SNPs
in C1). For the random causal model, the SNPs in C1 and
C2 were randomly selected from the complete SNP set. To
investigate the effects of noncausal SNPs within the causal
sets, we added an increasing number of noncausal SNPs
(200, 400, 800, . . . , 2000) to the causal sets, in a process
referred to as dilution. The noncausal SNPs were picked
either at random in the genome or by sampling SNPs located
directly up- and downstream of the causal SNP (referred to
as local SNPs).

Phenotypes: Phenotypes were simulated using the follow-
ing linear model: y= g1 + g2 + e, where g1 � N(0,G1*s2

g1),
g2 � N(0,G2*s2

g2), and e � N(0,I*s2
e). G1 and G2 are

the genomic relationship matrices for causal SNPs in
C1 and C2, respectively. The total phenotypic vari-
ance s2

P ¼ s2
g1 þ s2

g2 þ s2
e was 100 in all scenarios. We

simulated data under additive genomic heritabil-
ities

	
h2 ¼ �

s2
g1 þ s2

g2

�
=
�
s2
g1 þ s2

g2 þ s2
e

�

of 0.1, 0.3, and

0.5, to analyze scenarios with low to intermediate heritabil-
ities, reflecting those observed in the real data. To analyze
scenarios with nonuniform SNP effects, the proportion of ad-
ditive genomic variance explained by the causal SNPs in
C1

	
h2f ¼ s2

g1=ðs2
g1 þ s2

g2

�

was varied across scenarios: 0.1,

0.2, 0.3, and 0.5. These parameters were investigated forNrep

of 5, 10, and 50. Increasing the number of replicates per line
decreases the variance of the phenotypic value for each line.

Combining these factors yielded a total of 1440 individual
simulated data sets [3 (Nrep) 3 3 (h2) 3 4 (h2f ) 3 2 (causal

model) 3 20 (dilution)], which were each replicated
50 times. For each data set and replicate we estimated vari-
ance components for the GBLUP and GFBLUP models, using
REML. Model fit was assessed using the likelihood-ratio test
and model predictive ability using the cross-validation pro-
cedure described above. The statistics ĥ

2
f ; ĥ

2
r ; ĥ

2
GFBLUP;

ĥ
2
GBLUP; LR, power, and predictive ability were calculated

and are summarized in Results.

Detection power: Power was calculated for each of the
simulated scenarios defined in detail above. The P-values
used for determining the power of the likelihood-ratio test
were calculated based on the theoretical x2-distribution with
1 d.f. For each of the simulated scenarios, power was calcu-
lated as the fraction (of 50 replicates) of the analyses that led
to a significantly better model fit using the GFBLUP model
compared to using the GBLUP model (i.e., the observed
P-value was ,0.05).

Data availability

The DGRP data can be accessed via the website at http://
dgrp2.gnets.ncsu.edu.

Results

The DGRP genotypes include �1.7 million common (minor
allele frequencies $0.05) SNPs derived from genomic se-
quences of 205 largely unrelated inbred lines (Mackay et al.
2012; Huang et al. 2014). We evaluated and compared
GFBLUP and GBLUP models based on model fit, model pre-
dictive ability, and precision of estimated genomic parame-
ters, using both observed genotypes and phenotypes for three
quantitative traits in the DGRP (chill coma recovery time,
starvation resistance, and startle response) (Mackay et al.
2012; Ober et al. 2012, 2015; Huang et al. 2014) and simu-
lated genotypic and phenotypic data.

GBLUP and GFBLUP analyses in the DGRP

We performed GBLUP and GFBLUP prediction analyses for
each of the three traits, using 10-fold cross-validation; i.e., the
training data consisted of 90% of the lines and the total ge-
nomic value was validated in 10% of the lines. Males and
females were analyzed separately.

Predictive ability: Thepredictive ability of theGBLUPmodels
was low. The predictive ability of GBLUP for females (males)
was 0.05560.029 (0.0060.032) for chill coma recovery,
0.2560.029 (0.2760.027) for starvation resistance, and
0.2560.033 (0.2860.029) for startle response. The low values
are not statistically different from those previously reported
using fivefold cross-validation GBLUP models, which were
0.24 for starvation resistance and 0.23 for startle response in
both sexes (Ober et al. 2012) and 0.1 for female and zero for
male chill coma recovery time (Ober et al. 2015). Furthermore,
predictive ability for starvation resistance and startle response
was not improved using either a Bayesian mixture model that
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allowed for differential shrinkage estimation of SNP effects or a
preselection of markers with the highest absolute additive ge-
netic effect or genetic variance explained (Ober et al. 2012).

Compared to the GBLUP model, several GO terms led to
significantly greater predictive abilities of the GFBLUP model
(P-value adjusted for multiple tests ,0.05), and these terms
give novel insights regarding the biology of the traits (Table
1, Table 2, and Supplemental Material, Table S1). Further,
the GO term with the highest predictive ability within each
trait and sex was significantly higher than the predictive abil-
ity obtained from the GBLUP model. For chill coma recovery
time, 32 GO terms in females and 16 in males had predictive
values that were significantly higher; 7 GO terms were the
same for males and females. The top GO term in females was
“Rho protein signal transduction,”with a predictive ability of
0.3760.022; the top GO term in males was “cell projection
assembly,” with a predictive ability of 0.3260.023 (Table 1,
Table 2, and Table S1). For startle response, 11 GO terms in
females and 4 in males had predictive values that were sig-
nificantly higher; 2 GO terms were the same for males and
females. The top GO term in females was “retrograde vesicle-
mediated transport, Golgi to ER,” with a predictive ability of
0.5260.026; the top GO term in males was “spermatogene-
sis,”with a predictive ability of 0.4760.025 (Table 1, Table 2,
and Table S1). For starvation resistance, the top GO term in
females was “alpha-glucosidase activity,”with a predictive abil-
ity of 0.3760.027, but this was not significant after adjusting
for multiple tests (Table S1). The top GO term for male star-
vation resistance, “foregut morphogenesis,” was the only sig-

nificant GO term for this trait following the multiple-testing
correction and had a predictive ability of 0.4360.022 (Table S1).

Genomic parameters: The range of genomic variance ex-
plained by significant feature (ĥ

2
f ) was between 31% and

92% for chill coma recovery and between 23% and 70% for
startle response in females. Males showed a similar range of
ĥ
2
f for the latter traits and 45% for starvation resistance (Ta-

ble 1, Table 2, and Table S1). Notably this range of total
genomic variance in females andmaleswas explained by only
0.09–0.7% of the total SNPs for chill coma recovery, 0.01–
0.6% for startle response, and 0.2% for starvation resistance.
These results suggest that the genomic variance is not evenly
distributed throughout the genome (as would be the case if
the genetic architecture of the three traits approximated an
infinitesimal model), but instead appears to be associated
with a subset of the genome annotated with different GO
terms for each trait. The genomic parameters estimated using
the GFBLUP model allow us to put different weights on the
individual genetic marker relationships used in the prediction
equations, in contrast to the GBLUP model, which weights
each element of the genetic marker relationship equally.
However, the genomic heritabilities estimated using GBLUP
or GFBLUP are very similar. The estimated genomic heritabil-
ities using GBLUP were moderate and similar for males and
females for each trait: 0.41 and 0.45 for chill coma recovery,
0.49 and 0.47 for startle response, and 0.55 and 0.57 for
starvation resistance for females and males, respectively. In
the GFBLUP model analyses, the overall genomic heritability

Table 1 Ten most significant predictions for chill coma recovery with the GFBLUP model

Sex GO IDa PAb 6 SEMc Padjd LRe Hff Nsetsg Gene Ontology term

Female GO:0007266 0.370 6 0.022 1.8 3 10210 11.39 0.31 3,139 Rho protein signal transduction
GO:0005100 0.365 6 0.023 4.0 3 10210 12.67 0.37 3,886 Rho GTPase activator activity
GO:0007173 0.343 6 0.026 1.9 3 1028 15.96 0.92 9,674 Epidermal growth factor receptor signaling pathway
GO:0030031 0.318 6 0.027 6.7 3 1027 11.49 0.74 2,700 Cell projection assembly
GO:0035160 0.309 6 0.027 1.5 3 1026 9.65 0.39 5,011 Maintenance of epithelial integrity; open tracheal system
GO:0016323 0.299 6 0.026 2.7 3 1026 9.13 0.47 7,761 Basolateral plasma membrane
GO:0035277 0.280 6 0.027 2.3 3 1025 11.12 0.56 7,582 Spiracle morphogenesis; open tracheal system
GO:0007494 0.263 6 0.025 5.8 3 1025 8.86 0.58 9,614 Midgut development
GO:0006406 0.288 6 0.033 8.3 3 1025 12.53 0.52 1,530 mRNA export from nucleus
GO:0005089 0.253 6 0.026 2.2 3 1024 9.54 0.67 11,922 Rho guanyl-nucleotide exchange factor activity

Male GO:0030031 0.316 6 0.023 6.5 3 1029 9.26 0.62 2,700 Cell projection assembly
GO:0035160 0.225 6 0.030 7.0 3 1024 6.55 0.29 5,011 Maintenance of epithelial integrity; open tracheal system
GO:0009612 0.220 6 0.028 7.0 3 1024 8.50 0.49 3,140 Response to mechanical stimulus
GO:0032039 0.191 6 0.022 1.5 3 1023 5.61 0.25 561 Integrator complex
GO:0005100 0.197 6 0.030 4.6 3 1023 6.24 0.22 3,886 Rho GTPase activator activity
GO:0007494 0.176 6 0.026 1.1 3 1022 7.09 0.46 9,614 Midgut development
GO:0007266 0.183 6 0.031 1.2 3 1022 5.46 0.18 3,139 Rho protein signal transduction
GO:0016887 0.175 6 0.027 1.2 3 1022 3.73 0.33 3,173 ATPase activity
GO:0001673 0.181 6 0.032 1.4 3 1022 6.22 0.25 334 Male germ cell nucleus
GO:0003015 0.180 6 0.031 1.4 3 1022 4.83 0.43 3,394 Heart process

a Gene Ontology ID.
b Predictive ability.
c Standard error of the mean.
d False discovery rate adjusted P-values.
e Likelihood-ratio statistics.
f Proportion of genomic variance explained by feature.
g Number of SNPs within feature.
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(ĥ
2
GFBLUP), within trait and sex, was similar across all the GO

terms used for partitioning the genomic variance.

GBLUP and GFBLUP analyses of simulated data based on
DGRP genotypes

The GBLUP and GFBLUP models were compared using sim-
ulated data in terms ofmodel fit, model predictive ability, and
accuracy of the estimated genomic parameters. The power to
detect the genomic feature affecting trait phenotypes was
determined based on a likelihood-ratio test (i.e., testing
whether the GFBLUP model provides a better fit than the
GBLUP model). The simulated data sets were based on the
observed DGRP genotypes. We varied several feature- and
trait-specific factors that are likely to influence the accuracy
of parameter estimates and predictive ability.

Estimation of genomic parameters: Estimates of genomic
heritability (ĥ

2
G and ĥ

2
GF) were unbiased in all simulation

scenarios for both the GBLUP and GFBLUP models (Figure
1). Estimates for GBLUP were centered on the true values
of genomic heritability with a similar level of accuracy to that
of GFBLUP (results not shown). Increasing the proportion of
noncausal SNPs in the genetic marker set defined by the
genomic feature (dilution) led to decreased accuracy (larger
variance) and bias of the estimated genomic parameters
ĥ
2
f and ĥ

2
r (Figure 1). This pattern was observed in all sim-

ulation scenarios. To illustrate, for the case where the geno-
mic heritability was 50% and the genomic feature explained
30% of the genomic variance (i.e., h2 = 0.5 and h2f = 0.3) the
estimated value ĥ

2
f was centered on the true value at a lower

level of dilution. However, the standard deviation increased

from 0.092 to 0.15 and we observed a downward bias fol-
lowing dilution (with 2000 noncausal SNPs). A similar pattern
was observed for ĥ

2
r (i.e., the proportion of genomic variance

captured by genetic markers not included in the genomic fea-
ture) except that the estimates tended to be biased upward.

Predictive ability: GFBLUP had higher predictive ability (up
to 0.62) than GBLUP (0.32 in all scenarios), provided the
proportion of the genomic variance explained by the genomic
feature was high, with few noncausal SNPs included (Figure
2). The predictive ability of the GFBLUP model is positively
correlatedwith the proportion of genomic variance explained
by the genomic feature and negatively correlated with in-
creased dilution (Figure 2). Our results for a genomic herita-
bility of 50% illustrate the general patterns observed across
the different simulation scenarios. When the feature explains
10% of the genomic variance, the predictive ability is 0.34 if
there is no dilution. Increasing h2f from 0.2 to 0.3 to 0.5
increases the predictive ability from 0.42 to 0.46 until a max-
imum of 0.62 (twice the value obtained using GBLUP). The
first dilution, adding 100 noncausal SNPs, has the most
prominent effect on predictive ability for all the tested levels
of h2f : Thereafter predictive ability of the GFBLUP model rap-
idly declines toward the predictive ability obtained using the
GBLUP model. The predictive ability was slightly higher if
causal SNPs in the genomic feature were clustered in smaller
genome regions rather than distributed randomly across the
genome. For both models, predictive abilities were generally
independent of the level of genomic heritability (h2 = 0.1,
0.3, or 0.5) and the number of replicates within line (Nrep =
5, 10, or 50).

Table 2 Ten most significant predictions for startle response with the GFBLUP model

Sex GO IDa PAb 6 SEMc Padjd LRe Hff Nsetsg Gene Ontology term

Female GO:0006890 0.520 6 0.026 9.1 3 1026 7.42 0.39 232 Retrograde vesicle-mediated transport; Golgi to ER
GO:0007436 0.509 6 0.026 1.9 3 1025 8.81 0.70 2,740 Larval salivary gland morphogenesis
GO:0042826 0.431 6 0.023 1.2 3 1022 5.47 0.23 404 Histone deacetylase binding
GO:0051537 0.433 6 0.026 1.5 3 1022 5.56 0.28 683 2 iron; 2 sulfur cluster binding
GO:0072499 0.432 6 0.027 1.5 3 1022 6.44 0.48 4,329 Photoreceptor cell axon guidance
GO:0008237 0.418 6 0.022 1.5 3 1022 4.79 0.48 3,873 Metallopeptidase activity
GO:0019898 0.426 6 0.027 1.8 3 1022 4.70 0.34 1,635 Extrinsic component of membrane
GO:0051015 0.417 6 0.025 2.5 3 1022 4.43 0.49 1,682 Actin filament binding
GO:0043195 0.412 6 0.024 2.5 3 1022 4.08 0.45 5,476 Terminal bouton

Male GO:0007283 0.473 6 0.025 7.4 3 1024 7.21 0.73 6,514 Spermatogenesis
GO:0007436 0.473 6 0.025 7.4 3 1024 6.73 0.50 2,740 Larval salivary gland morphogenesis
GO:0042331 0.458 6 0.029 7.2 3 1023 6.23 0.42 1,574 Phototaxis
GO:0051537 0.432 6 0.023 1.3 3 1022 5.41 0.30 683 2 iron; 2 sulfur cluster binding
GO:0072499 0.411 6 0.029 2.3 3 1022 5.35 0.38 4,329 Photoreceptor cell axon guidance
GO:0046854 0.401 6 0.028 3.7 3 1022 4.92 0.39 842 Phosphatidylinositol phosphorylation
GO:0035075 0.392 6 0.025 3.7 3 1022 3.52 0.26 3,637 Response to ecdysone
GO:0008152 0.387 6 0.025 4.2 3 1022 2.86 0.61 10,912 Metabolic process
GO:0051015 0.383 6 0.022 4.2 3 1022 3.19 0.51 1,682 Actin filament binding
GO:0045167 0.398 6 0.031 4.6 3 1022 4.45 0.35 2,409 Asymmetric protein localization involved in cell fate determination

a Gene Ontology ID.
b Predictive ability.
c Standard error of the mean.
d False discovery rate adjusted P-values.
e Likelihood-ratio statistics.
f Proportion of genomic variance explained by feature.
g Number of SNPs within feature.
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Detection power: The power to detect genomic features
affecting the trait phenotypes was influenced both by trait-
specific and by genomic feature-specific factors. The propor-
tion of the genomic variance explained by the genomic feature
(h2f ) greatly affected detection power (Figure 3) and robust-
ness to dilution. At low values (h2f =0.1), the power to detect
the genomic features was low if the overall trait heritability
was low (h2 = 0.1), even without dilution. At the highest
values (h2f = 0.5) the impact of dilution was less severe. This
increased robustness to dilution resulted in power .72% in
all cluster model scenarios with Nrep = 50 replicates within
line and a genomic heritability of 50%. The level of genomic
heritability (h2) was positively correlated with power (Figure
3). However, at high h2f and in the absence of dilution, all
genomic features were detected regardless of overall genomic
heritability. Furthermore, if h2f was high, high heritability traits
were less affected by dilution than low heritability traits (Figure
3). Dilution decreased power in all simulation scenarios (Figure
3). Furthermore, detection power increases with increasing
numbers of replicates within line (Nrep = 5, 10, or 50).

Genomic relationships: Estimation of genomic parameters,
detection power, and predictive ability using the GFBLUP
model analyses were based on two genomic relationship
matrices: Gf for the genetic marker set defined by the geno-
mic feature and Gr for the remaining set of markers. These
“fitted” genomic relationships differ from the true causal re-
lationships that in practice are unknown. Dilution of the true
causal relationship by increasing the proportion of noncausal
SNPs in the genomic feature decreases the correlation be-
tween Gf (the genomic relationships calculated using all ge-
netic markers defined by the genomic feature including
causal and noncausal SNPs) and G1 (the true causal genomic
relationships calculated using only the true causal SNPs in

the genomic feature). If the true causal SNPs are clustered in
a smaller number of genome regions, then the effect of di-
lution is more “extreme” (Figure 4). The correlation between
Gf and G1 for the clustered causal model quickly decreases as
dilution with local (or random) noncausal SNPs increases,
leveling off at a value of 0.71 (0.56). In contrast, dilution
leads to an increasing correlation between Gf and Gr (the
genomic relationships for the set of markers not included in
the feature) (Figure 4). For Gf comprising only true causal
SNPs, the correlation betweenGf andGr is 0.53 for the cluster
causal model. Following dilution ofGf with local (or random)
noncausal SNPs, the correlation rapidly increases toward a
value of 0.75 (0.99).

Discussion

We applied and evaluated a GFBLUP model, using prior in-
formation on genomic features. Genomic features are regions
of the genome that are linked to external information. This
modeling approach is predicated on the assumption that these
regions are enriched for causal variants affecting the trait.
Several genomic feature classes can be formed based on
different sources of prior information, for example, genes,
chromosomes, biological pathways, gene ontologies, se-
quence annotation, prior QTL regions, or other types of
external evidence.Wedemonstrated that theGFBLUPmodel
using prior information on Gene Ontology categories can
increase the predictive ability of the genomic value for three
quantitative traits (starvation resistance, startle response,
and chill coma recovery) in D. melanogaster. These results
were supported by using simulated data generated from
DGRP genotypes, further illustrating the impact of trait-
specific and genomic feature-specific factors on predictive
ability.

Figure 1 Boxplots showing estimates from the
GFBLUP model analyses of genomic parameters
as a function of the proportion of noncausal
SNPs in the genomic feature (dilution). Esti-
mates are proportion of genomic variance cap-
tured by the genetic markers in the genomic
feature (h2f = 0.1, 0.3, or 0.5), proportion of
genomic variance captured by genetic markers
not included in the genomic feature (h2r = 0.9,
0.7, or 0.5), and genomic heritability (h2 = 0.5).
Results are for the scenarios where the causal
SNPs in the genomic feature are clustered in
certain genome regions, adding noncausal SNPs
located directly up- and downstream of the causal
SNPs, and the number of replicates within lines =
50. The light line with light shading corresponds to
the true genomic parameter.
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The GFBLUP model improves predictive ability in
the DGRP

The increase in predictive ability using the GFBLUP model
compared to the commonly used GBLUP model was substan-
tial for all traits and both sexes. For females (males) the
increase was 0.12 (0.16) for starvation resistance, 0.27
(0.19) for startle response, and 0.33 (0.32) for chill coma
recovery time. These differences between the two models
correspond to a 48–89% relative increase in predictive ability
of genomic values for startle response and starvation resis-
tance and even higher for chill coma recovery time. Our pre-
dictive ability using GBLUP was similar to estimates from
previous studies (Ober et al. 2012, 2015). Predictive ability
using GBLUP decreased when smaller numbers of markers
were used; for example, the predictive ability for starva-
tion resistance and startle response dropped to 0.1 when
4863 randomly selected markers were used (Ober et al.
2012). In contrast, the highest-ranked GO term for chill coma
recovery in females was associated with a predictive ability of
0.37, using only 3129 markers. We hypothesize that the dif-
ference in predictive ability between the two models is that
the assumption of the GBLUP model, that the genomic vari-
ance is evenly distributed throughout the genome (i.e., the
underlying genetic architecture of the trait approaches an
infinitesimal model), is not met. Rather, the genomic vari-
ance for the three traits assessed seems to be associated with
subsets of the genome annotated with specific biological
processes that differ among the traits. The markers located
in these genome regions have greater weights than the

remaining markers in the GFBLUP model analyses, leading to
increased predictive ability. Note that the genetic marker rela-
tionship matrix used for the GBLUP model is the same for all
traits, because of the underlying infinitesimalmodel assumption
of genetic architecture. However, the GFBLUP model permits a
different genetic architecture for each of these (genetically un-
correlated) traits, which is more biologically plausible.

Our empirical resultswere further supported by simulation
studies investigating the influence of genomic feature- and
trait-specific factors on the predictive ability of GFBLUP. The
simulations revealed that it is possible, even under an additive
genetic model, to further increase the predictive ability of
genomic value for quantitative traits in the DGRP, using the
GFBLUP model. This requires that prior information on ge-
nomic features highly enriched for causal variants is used.
Such information is rapidly becoming available and being
refined, given advances in functional and genetic studies of
complex traits that continue to increase our understanding of
how the putative causal variants are distributed over the
genome. Furthermore, improvement in predictive ability for
genomic value of complex trait phenotypes may be achieved
by accounting for other types of genetic variation due to
different types of variants (rare and structural) and nonad-
ditive gene action (dominance and epistasis).

Genomic features predictive of organismal quantitative
trait phenotypes: Several of thehigh-rankingGOterms inour
study have previously been associated with correlated tran-
scriptional modules associated with chill coma recovery time
and starvation resistance (Ayroles et al. 2009). These mod-
ules are plausibly enriched for causal variants affecting the
phenotype (Cookson et al. 2009) that could affect expression
of the genes in the module, such as mutations in promoter
motifs, transcription enhancers, or silencers in introns or reg-
ulatory microRNAs. In addition, if the gene products of the
differentially expressed genes are associated with the pheno-
type, variants that change the structure of the expressed RNA
and the transcribed protein could also affect the phenotype.

The GO termsRhoprotein signal transduction (GO:0007266)
andRhoGTPase activator activity (GO:0005100)had thehighest
prediction accuracies for male and female chill coma recovery
time.Thereare severalways inwhichRhogenesmay functionally
affect the time to recover froma chill-induced coma.Rhoproteins
function as molecular switches, conducting cues from the ex-
ternal environment to intracellular signal transduction pathways
(Tcherkezian and Lamarche-Vane 2007). In addition, members
of the Rho family of GTPases are among the important modula-
tors of actin dynamics and neuronal as well as behavioral plas-
ticity. By playing a role in the regulation of actin, these proteins
are important in mediating the circadian rhythm and other be-
haviors in Drosophila (Rao 2013); and circadian rhythm in turn
has beenassociatedwith chill coma recovery time (Pegoraro et al.
2014). Rho activity also plays a role in the maintenance of ion
homeostasis. Chill coma is the result of an inability to maintain
ion homeostasis (MacMillan and Sinclair 2011), particularly ex-
tracellular [K+], and an additional effect of low temperature

Figure 2 Plots showing predictive ability of the GFBLUP model as a func-
tion of the proportion of noncausal SNPs in the genomic feature (dilu-
tion). Results are for four different levels of the proportion of genomic
variance captured by the genetic markers in the genomic feature (h2f =
0.1, 0.2, 0.3, or 0.5) for the scenarios where the causal SNPs in the
genomic feature are clustered in smaller genome regions, adding non-
causal SNPs picked at random in the genome (left) or located directly up-
and downstream of the causal SNPs (right), and the number of replicates
within lines = 50. The light gray line corresponds to the predictive ability
of the GBLUP model.
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(Findsen et al. 2014). A RHO activator has been linked to the
regulation of [K+] channel cell surface expression and thus ac-
tivity inhumancell cultures (Stirling et al.2009). Finally, analyses
of whole-genome sequences of DNA pools from Drosophila pop-
ulations collected along the North American East Coast reveal
patterns of selection in genes involved in major functional path-
ways such as circadian rhythm and the epidermal growth factor
pathway (Fabian et al. 2012), genes in both of which harbor
variants that are predictive of chill coma recovery in our study.
These examples highlight a possible direct functional link be-
tween Rho protein activity and chill coma recovery that can be
tested in the future. Similar hypotheses can be developed for the
other GO terms that are predictive of the traits investigated.

Genomic feature classes helping biological interpretation:
Applying the GFBLUP model using prior information on ge-
nomic featuresmay help open the black box that is the genetic
architecture of complex traits. This approach provides novel
insight into the biological mechanisms causing trait variation
and simultaneously improves predictive ability relative to a
commonly used prediction model. Several genomic feature
classes can be formed based on different sources of prior
information (e.g., genes, chromosomes, biological pathways,
gene ontologies, sequence annotation, prior QTL regions, or
other types of external evidence). The gain in knowledge
depends highly on the quality and complexity of the genomic
feature classification scheme upon which the genetic marker
sets are based. Genomic features based on physical genome
regions, such as chromosomes or single genes, might not in-
crease the information level; however, as additional layers of
complexity such as pathways are added, the biological inter-
pretation might become more informative. On the other
hand, biological interpretation might be hampered by the
definition (or misspecification) of the genomic feature and
a potential large overlap in the genetic marker sets between

the different genomic feature classes. In the latter case, bi-
ological interpretation may be improved by using methods
that take the overlap into account (Skarman et al. 2012).

Factors influencing GFBLUP model performance

The simulation study clarified the conditions needed to make
genomic partitioning “work” (i.e., harvest the benefits from
prior information in terms of model fit and predictive ability).
The simulations showed that a GFBLUP model can increase
predictive ability compared to a standard GBLUP model,
highlighted the importance of maximizing the proportion of
causal variants inGf (andGr), and indicated some limitations
of the GFBLUP modeling approach.

Predictive ability of the GFBLUP model is influenced both
by the proportion of genomic variance explained by the
genomic feature and by the addition of noncausal SNPs in
the feature (dilution). Predictive ability (and detection
power) was positively correlated with the proportion of ge-
nomic variance explained by the genomic feature and nega-
tively correlated with dilution. Estimates of the proportion of
genomic variance explained by the genomic feature (ĥ

2
f )were

generally unbiased. However, increased dilution led to de-
creased accuracy (a larger variance) of the estimated geno-
mic parameters ĥ

2
f and ĥ

2
r : It is important to note that

models were compared based on their ability to predict the
genomic values (and not phenotypes). Therefore, the predictive
abilities reported in this study were generally independent of
the level of genomic heritability and the number of replicates
within lines. If we were to predict the trait phenotypes, we
would expect an influence of these trait-specific factors on pre-
dictive ability, as was the case for detection power.

The GFBLUP model is mos beneficial when the genomic
feature is highly enriched for true causal variants. To better
understand this phenomenon, it is useful to examine the
details of the GFBLUP model. The estimation of genomic

Figure 3 Plots showing detection power of the
GFBLUP model as a function of the proportion of non-
causal SNPs in the genomic feature (e.g., dilution by
adding noncausal SNPs located directly up- and down-
stream of the causal SNPs). Results are for the scenar-
ios where the causal SNPs in the genomic feature are
clustered in certain genome regions for three different
levels of genomic heritability (h2= 0.1, 0.3, or 0.5), four
different levels of the proportion of genomic variance
captured by the genetic markers in the genomic fea-
ture (h2f = 0.1, 0.2, 0.3, or 0.5), and three different
levels of the number of replicates within lines (Nrep =
5, 10, or 50).
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parameters in the GFBLUP model was based on two genomic
relationshipmatrices,Gf for the genetic marker set defined by
the genomic feature and Gr for the remaining set of markers.
The decrease in accuracy of genomic parameter estimates
following dilution is caused by the increased correlation be-
tween these two genomic relationship matrices. The high
correlation between the elements in these matrices makes
it difficult for the REML method to estimate and thereby
reliably partition the corresponding genomic variances
(ŝ2

f  and ŝ2
r ). It is also clear from the BLUP equations used

in the GFBLUP model (described in Materials and Methods)
that inaccurate estimates of genomic variances would affect
predictive ability. The estimates of ŝ2

f  and ŝ
2
r determine the

relative contribution of the two genomic relationship matri-
ces in the prediction of the total genomic value. If these esti-
mates deviate from the true value of the parameters, it will
lead to less accurate predictions, because there is too much
weight on the “wrong” genomic relationships in the predic-
tion equations. Obviously this will also occur if the two ge-
nomic relationships differ from the true causal relationships.

In this study we used a GFBLUP model with two genomic
effects (f and r in model MGFBLUP), but in principle it is pos-
sible to include multiple genomic feature effects (Speed and
Balding 2014; Sørensen et al. 2015). However, as our simu-
lations with only two genomic effects indicate, the complex
correlation patterns that are likely to exist between different
parts of the genome may lead to inaccurate estimates of the
genomic variances and consequently decreased predictive

ability. It would also explain why GFBLUP sometimes led to
a decrease in predictive ability. GBLUP depends only on the
total genomic variance parameter that is reliably estimated
and therefore more robust. The linear mixed model used by
Gusev et al. (2014) is very similar to our approach. In their
analyses they fitted multiple random genomic effects defined
by sequence ontologies. They found little improvement in
polygenic risk prediction using their model and argue this
is because of pervasive LD across categories (e.g., feature
classes). This is exactly what we observe in our simula-
tions—when the correlation between the two (or more) ge-
nomic relationship matrices is high, we cannot reliably
estimate the variance components and therefore there is no
improvement in predictive ability.

Predictive ability and genetic relatedness in the study
population: The extent to which utilizing prior biological
informationwill increase thepredictiveabilityof the statistical
model depends on the degree of genetic relatedness among
the individuals in the mapping population (de los Campos
et al. 2013). In a population of highly related individuals
the general genomic relationship will be a good approxima-
tion for the genomic relationship at the true causal variants.
Our results indicate that using an informed choice of subsets
of markers with the GBLUP model increases the predictive
ability in a population of largely unrelated individuals. In
such situations it is important tomodel the genomic relationship
due to the causal variants differently from the overall genomic
relationship. Thus the GFBLUP model may also be useful in
improving predictive ability in other situations where individu-
als are largely unrelated, such as human populations and across
animal breeds and plant strains. Further work is required to
better understand the impact of varying degrees of genetic re-
latedness on the performance of the GFBLUP model.

GFBLUP model and alternatives

GFBLUP is based on a linear mixed-modeling framework that
allows us to adjust for other known genetic and nongenetic
factors. In this study we implemented the GFBLUP model,
using a REML method (Gusev et al. 2014; Sørensen et al.
2014; Speed and Balding 2014). Bayesian mixture models
ignoring prior genomic feature information such as BayesB
or BayesR (Meuwissen et al. 2009; Erbe et al. 2012) are rel-
evant alternative methods. Both of these methods allow the
contribution from each marker to come from different distri-
butions. However, these models are not necessarily computa-
tionally less demanding; they require the same considerations
with regard to formulating the models and do not necessarily
perform better (Ober et al. 2012). This study adds evidence that
an externally informed subset of markers is necessary for a suc-
cessful partitioning of the genomic variance, as the data them-
selves may not necessarily indicate which markers should have
greater weights. Whereas Bayesian mixture models attempt to
assign and estimate marker effects from different distributions,
we use prior knowledge to assign a marker set (defined by the
genomic feature) to a distribution [i.e., f � Nð0;Gfs

2
f Þ and

Figure 4 Boxplots showing correlations between different genomic re-
lationship matrices used in the GFBLUP model analyses as a function of
the proportion of noncausal SNPs in the genomic feature (dilution). Cor-
relations are between Gf (the genomic relationships calculated using all
genetic markers defined by the genomic feature including causal and
noncausal SNPs) and G1 (the true causal genomic relationships calculated
using only the true causal SNPs in the genomic feature) or between Gf

and Gr (the genomic relationships for the set of markers not included in
the feature). Correlations are for the scenarios where the causal SNPs in
the genomic feature are clustered in smaller genome regions and adding
noncausal SNPs picked at random in the genome (Random) or located
directly up- and downstream of the causal SNPs (Local).
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r � Nð0;Gs2
r Þ]. We then estimate the parameters for these

distributions (s2
f and s2

r ) conditional on the observed data
and evaluate whether this is a sensible assignment, using stan-
dard model comparison techniques such as cross-validations or
likelihood-ratio tests. We therefore conclude that the GFBLUP
approach described here provides a general framework for es-
timating and evaluating the association of genomic features
with complex trait phenotypes.

The GFBLUP model can be implemented using a Bayesian
mixed model (e.g., Sørensen et al. 2015) or Bayesian mixture
models such as BayesRC (MacLeod et al. 2014). BayesRC is
the same as BayesR except that, a priori, each SNP is identi-
fied as belonging to a specific genomic feature and it allows
for differential shrinkage within each genomic feature. The
advantage of the BayesRC approach is in cases where enough
information is available in the data to reliably allocate the
SNPs in the different variance classes defined in the Bayesian
mixture model. If this is not the case, we do not expect a
major difference in performance in terms of predictive ability.

A key element of the GFBLUP and Bayesian GF mixture
models is the use of prior information to reliably partition
the genomic variance. These approaches are computationally
intensive. However, thereare computationally simpleapproaches
toobtainapproximatemeasuresofgenomicvariance(heritability),
using only genome-wide association (GWA) summary statistics
(Finucane et al. 2015). In this approach, genomic variance is
partitioned using single-marker effects obtained from GWA and
LD information from a population similar to the one used for
obtaining the single-marker effects. In contrast, partitioning of
genomic variance using the GFBLUP model requires both the
phenotypes and genotypes of the study population. The approx-
imate measures of genomic variance obtained for each genomic
feature in the Finucane et al. (2015) study can in principle also be
used in the GFBLUP prediction equations or as prior scale param-
eters in Bayesian models, but was not pursued in their study.

Conclusion

Our GFBLUP modeling approach using prior information on
genomic features enriched for causal variants can increase the
accuracy of genomic predictions for complex traits in a popu-
lation of largely unrelated individuals. The simulations revealed
that it is possible to further increase the accuracy of genomic
prediction for complex traits with a quasi-infinitesimal genetic
architecturewithmany causal polymorphisms eachwith a small
effect, using theGFBLUPmodel, provided that prior information
ongenomic features is highly enriched for causal variants. These
models provide a formal statistical modeling framework for
borrowing and evaluating information across a wide range of
experimental studies that may help provide novel insights into
genetic and biological mechanisms underlying complex traits.

Acknowledgments

This study was in part funded by the Danish Strategic
Research Council (GenSAP: Centre for Genomic Selection in
Animals and Plants, contract 12-132452) (to P.S. and T.F.C.M.)

and grants R01 AA016560 and R01 AG043490 from the
National Institutes of Health (to T.F.C.M.).

S.M.E. conceived the study; designed, performed, and evalu-
ated the experiments; analyzed the data; and drafted the
manuscript. I.F.S. evaluated the experiments and drafted the
manuscript. P. Sarup evaluated the experiments and drafted
the manuscript. T.F.C.M. conceived the study, evaluated the
experiments, and drafted the manuscript. P. Sørensen con-
ceived the study; designed, performed, and evaluated the ex-
periments; analyzed the data; and drafted the manuscript. All
authors read and approved the final manuscript.

Literature Cited

Ayroles, J. F., M. A. Carbone, E. A. Stone, K. W. Jordan, R. F. Lyman
et al., 2009 Systems genetics of complex traits in Drosophila
melanogaster. Nat. Genet. 41: 299–307.

Benjamini, Y., and Y. Hochberg, 1995 Controlling the false dis-
covery rate: a practical and powerful approach to multiple test-
ing. J. R. Stat. Soc. Ser. B Methodol. 57: 289–300.

Caballero, A., A. Tenesa, and P. D. Keightley, 2015 The nature of
genetic variation for complex traits revealed by GWAS and re-
gional heritability mapping analyses. Genetics 201: 1601–1613.

Carlson M., 2013 org.DM.eg.db: Genome Wide Annotation for Fly.
R package version 3.2.3. Available at: http://bioconductor.org/
packages/org.Dm.eg.db/.

Cookson, W., L. Liang, G. Abecasis, M. Moffatt, and M. Lathrop,
2009 Mapping complex disease traits with global gene expres-
sion. Nat. Rev. Genet. 10: 184–194.

Crossa, J., G. de los Campos, P. Pérez, D. Gianola, J. Burgueño
et al., 2010 Prediction of genetic values of quantitative traits
in plant breeding using pedigree and molecular markers. Genet-
ics 186: 713–724.

Daetwyler, H. D., M. P. L. Calus, R. Pong-Wong, G. de los Campos,
and J. M. Hickey, 2013 Genomic prediction in animals and
plants: simulation of data, validation, reporting, and bench-
marking. Genetics 193: 347–365.

de los Campos, G., A. I. Vazquez, R. Fernando, Y. C. Klimentidis, and
D. Sorensen, 2013 Prediction of complex human traits using the
genomic best linear unbiased predictor. PLoS Genet. 9: e1003608.

de Roos, A. P. W., B. J. Hayes, and M. E. Goddard, 2009 Reliability
of genomic predictions across multiple populations. Genetics 183:
1545–1553.

Edwards, S. M., B. Thomsen, P. Madsen, and P. Sørensen,
2015 Partitioning of genomic variance reveals biological path-
ways associated with udder health and milk production traits in
dairy cattle. Genet. Sel. Evol. 47: 60.

Erbe, M., B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bowman
et al., 2012 Improving accuracy of genomic predictions within
and between dairy cattle breeds with imputed high-density single
nucleotide polymorphism panels. J. Dairy Sci. 95: 4114–4129.

Fabian, D. K., M. Kapun, V. Nolte, R. Kofler, P. S. Schmidt et al.,
2012 Genome-wide patterns of latitudinal differentiation among
populations of Drosophila melanogaster from North America. Mol.
Ecol. 21: 4748–4769.

Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quan-
titative Genetics. Benjamin-Cummings, Menlo Park, CA.

Findsen, A., T. H. Pedersen, A. G. Petersen, O. B. Nielsen, and J.
Overgaard, 2014 Why do insects enter and recover from chill
coma? Low temperature and high extracellular potassium com-
promise muscle function in Locusta migratoria. J. Exp. Biol. 217:
1297–1306.

1882 S. M. Edwards et al.

http://bioconductor.org/packages/org.Dm.eg.db/
http://bioconductor.org/packages/org.Dm.eg.db/


Finucane, H. K., B. Bulik-Sullivan, A. Gusev, G. Trynka, Y. Reshef
et al., 2015 Partitioning heritability by functional annotation
using genome-wide association summary statistics. Nat. Genet.
47: 1228–1235.

Gene Ontology ConsortiumAshburner, M., C. A. Ball, J. A. Blake, D.
Botstein et al., 2000 Gene Ontology: tool for the unification of
biology. Nat. Genet. 25: 25–29.

Gusev, A., S. H. Lee, G. Trynka, H. Finucane, B. J. Vilhjálmsson
et al., 2014 Partitioning heritability of regulatory and cell-
type-specific variants across 11 common diseases. Am. J. Hum.
Genet. 95: 535–552.

Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2007 The impact
of genetic relationship information on genome-assisted breeding
values. Genetics 177: 2389–2397.

Harbison, S. T., A. H. Yamamoto, J. J. Fanara, K. K. Norga, and T. F. C.
Mackay, 2004 Quantitative trait loci affecting starvation resis-
tance in Drosophila melanogaster. Genetics 166: 1807–1823.

Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard,
2009 Genomic selection in dairy cattle: progress and chal-
lenges. J. Dairy Sci. 92: 433–443.

Hayes, B. J., J. Pryce, A. J. Chamberlain, P. J. Bowman, and M. E.
Goddard, 2010 Genetic architecture of complex traits and ac-
curacy of genomic prediction: coat colour, milk-fat percentage,
and type in Holstein cattle as contrasting model traits. PLoS
Genet. 6: e1001139.

Huang, W., A. Massouras, Y. Inoue, J. Peiffer, M. Ràmia et al.,
2014 Natural variation in genome architecture among 205 Dro-
sophila melanogaster Genetic Reference Panel lines. Genome Res.
24: 1193–1208.

Johnson, D. L., and R. Thompson, 1995 Restricted maximum like-
lihood estimation of variance components for univariate animal
models using sparse matrix techniques and average information.
J. Dairy Sci. 78: 449–456.

Lage, K., S. C. Greenway, J. A. Rosenfeld, H. Wakimoto, J. M. Gorham
et al., 2012 Genetic and environmental risk factors in congenital
heart disease functionally converge in protein networks driving
heart development. Proc. Natl. Acad. Sci. USA 109: 14035–14040.

Lango Allen, H., K. Estrada, G. Lettre, S. I. Berndt, M. N. Weedon
et al., 2010 Hundreds of variants clustered in genomic loci and
biological pathways affect human height. Nature 467: 832–838.

Mackay, T. F. C., 2001 The genetic architecture of quantitative
traits. Annu. Rev. Genet. 35: 303–339.

Mackay, T. F. C., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles
et al., 2012 The Drosophila melanogaster Genetic Reference
Panel. Nature 482: 173–178.

MacLeod, I. M., B. J. Hayes, C. J. Vander Jagt, K. E. Kemper, M.
Haile-Mariam et al., 2014 A Bayesian analysis to exploit im-
puted sequence variants for QTL discovery. 10th World Congress
of Genetics Applied to Livestock Production, Vancouver, British
Columbia, Canada.

MacMillan, H. A., and B. J. Sinclair, 2011 Mechanisms underlying
insect chill-coma. J. Insect Physiol. 57: 12–20.

Madsen, P., J. Jensen, and R. Thompson, 1994 Estimation of (co)-
variance components by REML in multivariate mixed linear
models using average of observed and expected information.
Fifth World Congress of Genetics Applied to Livestock Produc-
tion, Guelph, Ontario, Canada, pp. 455–462.

Makowsky, R., N. M. Pajewski, Y. C. Klimentidis, A. I. Vazquez, C.
W. Duarte et al., 2011 Beyond missing heritability: prediction
of complex traits. PLoS Genet. 7: e1002051.

Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff
et al., 2009 Finding the missing heritability of complex diseases.
Nature 461: 747–753.

Maurano, M. T., R. Humbert, E. Rynes, R. E. Thurman, E. Haugen
et al., 2012 Systematic localization of common disease-associated
variation in regulatory DNA. Science 337: 1190–1195.

Meuwissen, T. H. E., B. J. Hayes, andM. E. Goddard, 2001 Prediction
of total genetic value using genome-wide dense marker maps.
Genetics 157: 1819–1829.

Meuwissen, T. H., T. R. Solberg, R. Shepherd, and J. A. Woolliams,
2009 A fast algorithm for BayesB type of prediction of genome-
wide estimates of genetic value. Genet. Sel. Evol. 41: 2.

Morgan, T. J., and T. F. C. Mackay, 2006 Quantitative trait loci for
thermotolerance phenotypes in Drosophila melanogaster. Hered-
ity 96: 232–242.

Ober, U., J. F. Ayroles, E. A. Stone, S. Richards, D. Zhu et al., 2012 Using
whole-genome sequence data to predict quantitative trait phe-
notypes in Drosophila melanogaster. PLoS Genet. 8: e1002685.

Ober, U., W. Huang, M. Magwire, M. Schlather, H. Simianer et al.,
2015 Accounting for genetic architecture improves sequence
based genomic prediction for a Drosophila fitness trait. PLoS
One 10: e0126880.

O’Roak, B. J., L. Vives, S. Girirajan, E. Karakoc, N. Krumm et al.,
2012 Sporadic autism exomes reveal a highly interconnected
protein network of de novo mutations. Nature 485: 246–250.

Pegoraro, M., J. S. Gesto, C. P. Kyriacou, and E. Tauber, 2014 Role
for circadian clock genes in seasonal timing: testing the Bünning
hypothesis. PLoS Genet. 10: e1004603.

Peñagaricano, F., K. A. Weigel, G. J. M. Rosa, and H. Khatib,
2013 Inferring quantitative trait pathways associated with bull
fertility from a genome-wide association study. Front. Genet. 3: 307.

R Core Team, 2015 R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna.

Rao, N. V., 2013 Role of the RHO1 GTPase signaling pathway in
regulating the circadian clock in Drosophila melanogaster. Ph.D.
Thesis, University of Virginia.

Self, S. G., and K.-Y. Liang, 1987 Asymptotic properties of maxi-
mum likelihood estimators and likelihood ratio tests under non-
standard conditions. J. Am. Stat. Assoc. 82: 605–610.

Skarman, A., M. Shariati, L. Jans, L. Jiang, and P. Sørensen,
2012 A Bayesian variable selection procedure to rank overlap-
ping gene sets. BMC Bioinformatics 13: 73.

Sørensen, P., S. M. Edwards, and P. Jensen, 2014 Genomic fea-
ture models. 10th World Congress of Genetics Applied to Live-
stock Production, Vancouver, British Columbia, Canada .

Sørensen, P., G. de los Campos, F. Morgante, T. F. C. Mackay, and
D. Sorensen, 2015 Genetic control of environmental variation
of two quantitative traits of Drosophila melanogaster revealed by
whole-genome sequencing. Genetics 201: 487–497.

Speed, D., and D. J. Balding, 2014 MultiBLUP: improved SNP-
based prediction for complex traits. Genome Res. 24: 1550–1557.

Stirling, L., M. R. Williams, and A. D. Morielli, 2009 Dual roles for
RHOA/RHO-kinase in the regulated trafficking of a voltage-
sensitive potassium channel. Mol. Biol. Cell 20: 2991–3002.

Tcherkezian, J., and N. Lamarche-Vane, 2007 Current knowledge
of the large RhoGAP family of proteins. Biol. Cell 99: 67–86.

Tweedie, S., M. Ashburner, K. Falls, P. Leyland, P. McQuilton et al.,
2009 FlyBase: enhancing Drosophila Gene Ontology annota-
tions. Nucleic Acids Res. 37: D555–D559.

VanRaden, P. M., 2008 Efficient methods to compute genomic
predictions. J. Dairy Sci. 91: 4414–4423.

Vinkhuyzen, A. A., N. R. Wray, J. Yang, M. E. Goddard, and P. M.
Visscher, 2013 Estimation and partitioning of heritability in human
populations using whole genome analysis methods. Annu. Rev.
Genet. 47: 75–95.

Visscher, P. M., 2008 Sizing up human height variation. Nat. Genet.
40: 489–490.

Visscher, P. M., M. A. Brown, M. I. McCarthy, and J. Yang, 2012 Five
years of GWAS discovery. Am. J. Hum. Genet. 90: 7–24.

Welch, B. L., 1947 The generalization of “Student’s” problem when sev-
eral different population variances are involved. Biometrika 34: 28–35.

Communicating editor: S. F. Chenoweth

Genomic Feature Prediction Model 1883



GENETICS
Supporting Information

www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187161/-/DC1

Genomic Prediction for Quantitative Traits Is
Improved by Mapping Variants to Gene Ontology

Categories in Drosophila melanogaster
Stefan M. Edwards, Izel F. Sørensen, Pernille Sarup, Trudy F. C. Mackay, and Peter Sørensen

Copyright © 2016 by the Genetics Society of America
DOI: 10.1534/genetics.116.187161



Table S1: Predictive GO categories. (.xlsx, 33 KB) 

 

Available for download as a .xlsx file at: 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.187161/-/DC1/TableS1.xlsx 
 


