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ABSTRACT Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets
and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate
genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by
maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty—derived
assuming a Beta distribution of scale-free functions of the covariance components to be estimated—rather than laboriously attempting
to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such
penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and
without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and,
on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of
penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function
are outlined.
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ESTIMATION of genetic parameters, i.e., partitioning of
phenotypic variation into its causal components, is one

of the fundamental tasks in quantitative genetics. For multi-
ple characteristics of interest, this involves estimation of co-
variance matrices due to genetic, residual, and possibly other
random effects. It is well known that such estimates can be
subject to substantial sampling variation. This holds espe-
cially for analyses comprising more than a few traits, as the
number of parameters to be estimated increases quadrati-
cally with the number of traits considered, unless the covari-
ance matrices of interest have a special structure and can be
modeled more parsimoniously. Indeed, a sobering but realis-
tic view is that “Few datasets, whether from livestock, labo-
ratory or natural populations, are of sufficient size to obtain
useful estimates of many genetic parameters” (Hill 2010, p.
75). This not only emphasizes the importance of appropriate

data, but also implies that a judicious choice of methodology
for estimation—which makes the most of limited and pre-
cious records available—is paramount.

Ameasure of the quality of an estimator is its “loss,” i.e., the
deviation of the estimate from the true value. This is an ag-
gregate of bias and sampling variation. We speak of improv-
ing an estimator if we can modify it so that the expected loss
is lessened. In most cases, this involves reducing sampling
variance at the expense of some bias—if the additional bias
is small and the reduction in variance sufficiently large, the
loss is reduced. In statistical parlance “regularization” refers
to the use of some kind of additional information in an anal-
ysis. This is often used to solve ill-posed problems or to pre-
vent overfitting through some form of penalty for model
complexity; see Bickel and Li (2006) for a review. There
has been longstanding interest, dating back to Stein (1975)
and earlier (James and Stein 1961), in regularized estimation
of covariance matrices to reduce their loss. Recently, as esti-
mation of higher-dimensional matrices is becoming more
ubiquitous, there has been a resurgence in interest (e.g.,
Bickel and Levina 2008; Warton 2008; Witten and Tibshirani
2009; Ye and Wang 2009; Rothman et al. 2010; Fisher and
Sun 2011; Ledoit and Wolf 2012; Deng and Tsui 2013; Won
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et al. 2013). In particular, estimation encouraging sparsity is
an active field of research for estimation of covariance matri-
ces (e.g., Pourahmadi 2013) and in related areas, such as
graphical models and structural equations.

Improving Estimates of Genetic Parameters

As emphasized above, quantitative genetic analyses require at
least two covariance matrices to be estimated, namely due to
additive genetic and residual effects. The partitioning of the
total variation into its components creates substantial sam-
pling correlations between them and tends to exacerbate the
effects of sampling variation inherent in estimation of co-
variancematrices. However, most studies on regularization of
multivariate analyses considered a single covariance matrix
only and the literature on regularized estimates of more than
one covariance matrix is sparse. In a classic article, Hayes and
Hill (1981) proposed to modify estimates of the genetic co-
variance matrix ðSGÞ by shrinking the canonical eigenvalues
of SG and the phenotypic covariance matrix ðSPÞ toward
their mean, a procedure described as “bending” the estimate
of SG toward that of SP: The underlying rationale was that
SP; the sum of all the causal components, is typically esti-
mated much more accurately than any of its components, so
that bending would “borrow strength” from the estimate of
SP;while shrinking estimated eigenvalues toward their mean
would counteract their known, systematic overdispersion.
The authors demonstrated by simulation that use of “bent”
estimates in constructing selection indexes could increase the
achieved response to selection markedly, as these were closer
to the population values than unmodified estimates and thus
provided more appropriate estimates of index weights. How-
ever, no clear guidelines to determine the optimal amount of
shrinkage to use were available and bending was thus pri-
marily used only to modify nonpositive definite estimates of
covariance matrices and all but forgotten when methods that
allowed estimates to be constrained to the parameter space
became common procedures.

Modern analyses to estimate genetic parameters are gen-
erally carried out fitting a linear mixed model and using
restricted maximum-likelihood (REML) or Bayesian method-
ology. The Bayesian framework directly offers the opportunity
for regularization through the choice of appropriate priors.
Yet, this is rarely exploited for this purpose and “flat”
or minimally informative priors are often used instead
(Thompson et al. 2005). In a maximum-likelihood context,
estimates can be regularized by imposing a penalty on the
likelihood function aimed at reducing their sampling vari-
ance. This provides a direct link to Bayesian estimation: For
a given prior distribution of the parameters of interest or
functions thereof, an appropriate penalty can be obtained
as amultiple of minus the logarithmic value of the probability
density function. For instance, shrinkage of eigenvalues to-
ward their mean through a quadratic penalty on the likeli-
hood is equivalent to assuming a normal distribution of the
eigenvalues while the assumption of a double exponential

prior distribution results in a LASSO-type penalty (Huang
et al. 2006).

Meyer and Kirkpatrick (2010) demonstrated that a REML
analog to bending is obtained by imposing a penalty propor-
tional to the variance of the canonical eigenvalues on the
likelihood and showed that this can yield substantial reduc-
tions in loss for estimates of both SG and SE; the residual
covariance matrix. Subsequent simulations (Meyer et al.
2011; Meyer 2011) examined the scope for penalties based
on different functions of the parameters to be estimated and
prior distributions for them and found them to be similarly
effective, depending on the population values for the covari-
ance matrices to be estimated.

A central component of the success of regularized estima-
tion is the choice of howmuch to penalize. A commonpractice
is to scale the penalty by a so-called “tuning factor” to regulate
stringency of penalization. Various studies (again for a single
covariance matrix, see above) demonstrated that this can be
estimated reasonably well from the data at hand, using cross-
validation techniques. Adopting these suggestions for genetic
analyses and using k-fold cross-validation, Meyer (2011) es-
timated the appropriate tuning factor as that which maxi-
mized the average, unpenalized likelihood in the validation
sets. However, this procedure was laborious and afflicted by
problems in locating the maximum of a fairly flat likelihood
surface for analyses involving many traits and not so large
data sets. These technical difficulties all but prevented prac-
tical applications so far. Moreover, it was generally less
successful than reported for studies considering a single co-
variance matrix. This led to the suggestion of imposing a mild
penalty, determining the tuning factor as the largest value
that did not cause a decrease in the (unpenalized) likelihood
equivalent to a significant change in a single parameter. This
pragmatic approach yielded reductions in loss that were gen-
erally of comparable magnitude to those achieved using cross-
validation (Meyer 2011). However, it still required multiple
analyses and thus considerably increased computational de-
mands compared to standard, unpenalized estimation.

Simple Penalties

In the Bayesian framework, the influence of the prior and thus
theamountof regularization is generally specified through the
so-called hyperparameters of the prior distribution, which
determine its shape, scale, or location. This suggests that
an alternative, tuning factor-free formulation for a penalty
on the likelihood can be obtained by expressing it in terms of
the distribution-specific (hyper)parameters. For instance,
when assuming a normal prior for canonical eigenvalues,
the regulating parameter is the variance of the normal distri-
bution, with more shrinkage induced the lower its value. This
may lend itself to applications employing default values
for these parameters. Furthermore, such formulation may
facilitate direct estimation of the regulating parameter,
denoted henceforth as n, simultaneously with the covariance
components to be estimated (G. de los Campos, personal
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communication). In contrast, in a setting involving a tuning
factor the penalized likelihood is, by definition, highest for a
factor of zero (i.e., no penalty) and thus does not provide this
opportunity.

Aims

This article examines the scope for REML estimation imposing
penalties regulated by choosing the parameters of the selected
priordistribution.Ouraim is toobtaina formulation that allows
uncomplicateduseona routinebasis, free fromlaborious and
complicated additional calculations, to determine the ap-
propriate strength of penalization. It differs from previous
work such that we do not strive to obtainmaximum benefits,
but are content with lesser—but still highly worthwhile—
improvements in estimates that can be achieved through
mild penalties, at little risk of detrimental effects for un-
usual cases where the population parameters do not match
our assumptions for their prior distributions well. The focus
is on penalties involving scale-free functions of covariance
components that fall into defined intervals and are thus
better suited to a choice of default-regulating parameters
than functions that do not.

Webeginwith thedescriptionof suitablepenalties together
with a brief review of pertinent literature and outline the
adaptation of standardREMLalgorithms. This is followedby a
large-scale simulation study showing that the penalties pro-
posed can yield substantial reductions in loss of estimates for a
wide range of population parameters. In addition, the impact
of penalized estimation is demonstrated for a practical data
set, and the implementation of the methods proposed in our
REML package WOMBAT is described. We conclude with a dis-
cussion and recommendations on selection of default param-
eters for routine use in multivariate analyses.

Penalized Maximum-Likelihood Estimation

Consider a simple mixed, linear model for q traits with covari-
ance matrices SG and SE due to additive genetic and residual
effects, respectively, to be estimated. Let logLðuÞ denote the
log-likelihood in a standard, unpenalizedmaximum-likelihood
(or REML) analysis and u denote the vector of parameters,
composed of the distinct elements of SG and SE or the equiv-
alent. The penalized likelihood is then (Green 1987)

logLPðuÞ ¼ logLðuÞ2 1
2
cPðuÞ (1)

with the penalty PðuÞ a nonnegative function of the param-
eters to be estimated and u the so-called tuning factor that
modulates the strength of penalization (the factor of 1/2 is
used for algebraic consistency and could be omitted).

The penalty can be derived by assuming a suitable prior
distribution for the parameters u (or functions thereof)
as minus the logarithmic value of the pertaining probability
density. As in Bayesian estimation, the choice of the prior is
often somewhat ad hoc or driven by aspects of convenience

(such as conjugacy of the priors) and computational feasibil-
ity. In the following, we assume c ¼ 1 throughout and regu-
late the amount of penalization instead via the parameters of
the distribution from which the penalty is derived.

Functions to be penalized

Weconsider two typesof scale-free functionsof the covariance
matrices to be estimated as the basis for regularization.

Canonical eigenvalues: Following Hayes and Hill (1981),
the first type comprises the canonical eigenvalues of SG

and SP ¼ SG þ SE:

Multivariate theory shows that for two symmetric, positive
definitematricesof the samesize there is a transformation that
yields TT9 ¼ SP and TLT9 ¼ SG; with L the diagonal matrix
of canonical eigenvalues with elements li (Anderson 1984).
This can be thought of as transforming the traits considered
to new variables that are uncorrelated and have phenotypic
variance of unity; i.e., the canonical eigenvalues are equal to
heritabilities on the new scale and fall in the interval ½0; 1�
(Hayes and Hill 1980). It is well known that estimates of
eigenvalues of covariance matrices are systematically over-
dispersed—the largest values are overestimated and the
smallest are underestimated—while their mean is expected
to be estimated correctly (Lawley 1956). Moreover, a major
proportion of the sampling variation of covariance matrices
can be attributed to this overdispersion of eigenvalues
(Ledoit and Wolf 2004). Hence there have been various sug-
gestions to modify the eigenvalues of sample covariance ma-
trices in some way to reduce the loss in estimates; see Meyer
and Kirkpatrick (2010) for a more detailed review.

Correlations: The second type of functions comprises corre-
lations between traits, in particular genetic correlations. A
number of Bayesian approaches to the estimation of covari-
ance matrices decompose the problem into variances (or
standard deviations) and correlations with separate priors,
thus alleviating the inflexibility of the widely used conjugate
prior given by an inverse Wishart distribution (Barnard et al.
2000; Daniels and Kass 2001; Zhang et al. 2006; Daniels and
Pourahmadi 2009; Hsu et al. 2012; Bouriga and Féron 2013;
Gaskins et al. 2014). However, overall few suitable families of
prior density functions for correlation matrices have been
considered and practical applications have been limited. In
particular, estimation using Monte Carlo sampling schemes
has been hampered by difficulties in sampling correlation
matrices conforming to the constraints of positive definite-
ness and unit diagonals.

Most statistical literature concerned with Bayesian or pe-
nalized estimation of correlation matrices considered shrink-
age toward an identity matrix, i.e., shrinkage of individual
correlations toward zero, although other, simple correlation
structures have been proposed (Schäfer and Strimmer
2005). As outlined above, the motivation for bending (Hayes
and Hill 1981) included the desire to borrow strength from
the estimate of the phenotypic covariance matrix. Similar
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arguments may support shrinkage of the genetic toward the
phenotypic correlation matrix. This dovetails with what has
become known as “Cheverud’s conjecture”: Reviewing a
large body of literature, Cheverud (1988) found that esti-
mates of genetic correlations were generally close to their
phenotypic counterparts and thus proposed that phenotypic
values should be substituted when genetic correlations
could not be estimated. Subsequent studies reported similar
findings for a range of traits in laboratory species, plants,
and animals (e.g., Koots et al. 1994; Roff 1995; Waitt and
Levin 1998).

Partial correlations

Often a reparameterization can transform a constrained ma-
trix problem to an unconstrained one. For instance, it is
common practice in REML estimation of covariance matrices
to estimate the elements of their Cholesky factors, coupled
with a logarithmic transformation of the diagonal elements,
to remove constraints on the parameter space (Meyer and
Smith 1996). Pinheiro and Bates (1996) examined various
transformations for covariance matrices and their impact on
convergence behavior of maximum-likelihood analyses, and
corresponding forms for correlation matrices have been de-
scribed (Rapisarda et al. 2007).

To alleviate the problems encountered in sampling valid
correlation matrices, Joe (2006) proposed a reparameteri-
zation of correlations to partial correlations, which vary
independently over the interval ½21;   1�: This involves a
one-to-one transformation between partial and standard cor-
relations, i.e., is readily reversible. Hence, using the reparame-
terization, we can readily sample a random correlation matrix
that is positive definite by sampling individual, partial corre-
lations. Moreover, it allows for flexible specification of priors in
a Bayesian context by choosing individual and independent
distributions for each one. Daniels and Pourahmadi (2009)
referred to these quantities as partial autocorrelations (PACs),
interpreting them as correlations between traits i and j condi-
tional on the intervening traits, iþ 1 to j21:

Details: Consider a correlation matrix R of size q3 q with
elements rij (for i 6¼ j) and rii ¼ 1: As R is symmetric, let i, j:
For j ¼ iþ 1; the PACs are equal to the standard correlations,
pi;iþ1 ¼ ri;iþ1; as there are no intervening variables. For
j. iþ 1; partition the submatrix of R composed of rows
and columns i to j as 0

@ 1 r91 rij
r1 R2 r3
rij r93 1

1
A (2)

with r1 and r3 vectors of length j2 i21; with elements rik
and rjk; respectively, and R2 the corresponding matrix with
elements rkl for k; l ¼ iþ 1; . . . ; j2 1: This gives PAC

pij ¼
rij2 r91R

21
2 r3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

12 r91R
21
2 r1

��
12 r93R

21
2 r3

�q (3)

and the reverse transformation is

rij ¼ r91R
21
2 r3 þ pij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
12 r91R

21
2 r1

��
12 r93R

21
2 r3

�q
(4)

(Joe 2006).

Penalties

We derive penalties on canonical eigenvalues and corre-
lations or partial autocorrelations, choosing independent
Beta distributions as priors. This choice is motivated by
the flexibility of this class of distributions and the prop-
erty that its hyperparameters—which determine the
strength of penalization—can be “set” by specifying a
single value.

Beta distribution: TheBeta distribution is a continuous prob-
ability function that is widely used in Bayesian analyses and
encompasses functions with many different shapes, deter-
mined by two parameters, a and b. While the standard Beta
distribution is defined for the interval ½0; 1�; it is readily ex-
tended to a different interval. The probability density func-
tion for a variable x 2 ½a; b� following a Beta distribution is of
the form

pðxÞ ¼ Bða;bÞ21ðb2aÞ2ðaþb21Þðx2aÞa21ðb2xÞb21 (5)

(Johnson et al. 1995, Chap. 25) with
Bða;bÞ ¼ GðaÞGðbÞ=Gðaþ bÞ and Bð�Þ and G2 43 ð�Þ denot-
ing the Beta and Gamma functions, respectively.

When employing a Beta prior in Bayesian estimation, the
sum of the shape parameters, n ¼ aþ b; is commonly inter-
preted as the effective sample size of the prior (PSS) (Morita
et al. 2008). It follows that we can specify the parameters of a
Beta distribution with mode m as a function of the PSS
(n$ 2) as

a ¼ 1þm2 a
b2 a

ðn2 2Þ and b ¼ 1þ b2m
b2 a

ðn2 2Þ: (6)

For n.2; this yields a unimodal distribution, and for
m ¼ ðb2 aÞ=2 the distribution is symmetric, with a ¼ b:

For given m, this provides a mechanism to regulate the
strength of penalization through a single, intuitive parameter,
the PSS n.

Figure 1 shows the probability density of a variable with a
standard Beta distribution on the interval ½0; 1� with mode of
0.3 together with the resulting penalty (i.e., minus the loga-
rithmic value of the density), for three values of PSS. For
n ¼ 2; the density function would be a uniform distribution,
depicted by a horizontal line at height of 1, resulting in no
penalty. With increasing values of n, the distribution
becomes more and more peaked and the penalty on values
close to the extremes of the range becomes more and more
severe. Conversely, in spite of substantial differences in
point mass around the mode, penalty values in proximity
of the mode differ relatively little for different values of
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n. While PðuÞ in (1) was considered nonnegative, penalty
values close to the mode can be negative—this does not
affect suitability of the penalty and can be overcome by add-
ing a suitable constant.

Penalty on canonical eigenvalues: Canonical eigenvalues
fall in the interval ½0; 1�: For q traits, there are likely to be q
different values li and attempts to determine the mode of
their distribution may be futile. Hence we propose to sub-
stitute the mean canonical eigenvalue, l: Taking minus log-
arithmic values of (5) and assuming the same mode and PSS
for all q eigenvalues then gives penalty

Pl ¼ C2 ðn2 2Þ l
Xq
i¼1

  logðliÞ þ
�
12 l

�Xq
i¼1

  logð12 liÞ
" #

(7)

with C ¼ q log
h
B
�
1þ lðn2 2Þ; 1þ ð12 lÞðn2 2Þ

�i
. This

formulation results in shrinkage of all eigenvalues toward
l; with the highest and lowest values shrunk the most.

Penalty on correlations: Following Joe (2006) and Daniels
and Pourahmadi (2009), we assume independent shifted
Beta distributions on ½21; 1� for PAC.

Daniels and Pourahmadi (2009) considered several
Bayesian priors for correlation matrices formulated via
PAC, suggesting uniform distributions for individual pij;

i.e., pij � Betað1; 1Þ: In addition, they showed that the equiv-
alent to the joint uniform prior for R proposed by Barnard
et al. (2000), pðRÞ}1; is obtained by assuming Beta priors
for PAC with shape parameters depending on the number of
intervening variables; i.e., ai;iþk ¼ bi;iþk ¼ 1þ ðq2 12 kÞ=2:
Similarly, priors proportional to higher powers of the de-
terminant of R, pðRÞ}jRjt21; are obtained for ai;iþk ¼
t þ ðq2 12 kÞ=2 (Daniels and Pourahmadi 2009). Gaskins
et al. (2014) extended this framework to PAC-based priors
with more aggressive shrinkage toward zero for higher lags,
suitable to encourage sparsity in estimated correlation matri-
ces for longitudinal data.

Both Joe (2006) and Daniels and Pourahmadi (2009) con-
sidered Beta priors for PAC with a ¼ b; i.e., shrinkage of all
pij toward zero. We generalize this by allowing for different
shrinkage targets tij—and thus different shape parametersaij

and bij—for individual values pij: This gives penalty

Pp ¼ qðq2 1Þ
2

ðn2 1Þlogð2Þ þ
Xq
i¼1

Xq
j¼iþ1

Cij

2
n2 2
2

�ðtij þ 1Þlogðpij þ 1Þ þ ð12 tijÞlogð12pijÞ
�
(8)

with Cij ¼ log½Bð1þ ðtij þ 1Þðn2 2Þ=2; 1þ ð12 tijÞðn2 2Þ=
2Þ�: Again, this assumes equal PSS for all values, but could of
course readily be expanded to allow for different values nij for
different PACs. For all tij ¼ 0; (8) reduces to

Ppð0Þ ¼ qðq2 1Þ
2

�ðn2 1Þlogð2Þ þ C0
�

2
n2 2
2

Xq
i¼1

Xq
j¼iþ1

log
�
12p2

ij

�
(9)

with C0 ¼ log
�
Bð1þ ðn2 2Þ=2; 1þ ðn2 2Þ=2Þ�:

Maximizing the penalized likelihood

REML estimation in quantitative genetics usually relies on
algorithms exploiting derivatives of the log-likelihood func-
tion to locate itsmaximum. In particular, the so-called average
information algorithm (Gilmour et al. 1995) is widely used
due to its relative computational ease, good convergence
properties, and implementation in several REML software
packages. It can be described as a Newton(–Raphson)-type
algorithm where the Hessian matrix is approximated by the
average of observed and expected information. To adapt the
standard, unpenalized algorithm for penalized estimation we
need to adjust first and second derivatives of log LðuÞ for
derivatives of the penalties with respect to the parameters,
uk; to be estimated. These differ if we choose fixed values to
determine the modes of the assumed Beta priors (e.g., tij ¼ 0

Figure 1 Probability densities (left) and corresponding
penalties (including a factor of 1/2; right) for a variable
with Beta distribution on ½0; 1� with mode of m ¼ 0:3
for effective prior sample sizes of n ¼ 4 (–––), n ¼ 8
(– –), and n ¼ 16 (– - –).
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or the mean li from a preliminary, unpenalized analysis) or
employ penalties that derive these from the parameter
estimates.

Canonical eigenvalues: If l in (7) is estimated from the data,
its derivatives are nonzero. This gives

@Pl

@uk
¼ @C

@uk
þ ðn2 2Þ @l

@uk

Xq
i¼1

log
	
12 li
li


(

þ
Xq
i¼1

@li
@uk

 
12l

12li
2

l

li

!)
(10)

and

@2Pl

@uk@um
¼ @2C

@uk@um
þ ðn2 2Þ

Xq
i¼1

@2l

@uk@um
log
	
12 li
li




2

	
@l

@uk

@li
@um

þ @li
@uk

@l

@um


	
1
li

þ 1
12 li




þ @2li
@uk@um

	
12 l

12 li
2

l

li




þ @li
@uk

@li
@um

	
l

l2i
þ 12 l

ð12liÞ2


: (11)

Derivatives of C involve the digamma and trigamma func-
tions, e.g.,

@C
@uk

¼ qðn22Þ @l
@uk

h
c
�
1þ ðn2 2Þl�

2c
�
1þ ðn2 2Þð12 lÞ�i

with c the digamma function. Derivatives of li required in
(10) and (11) are easiest to evaluate if the analysis is pa-
rameterized to the canonical eigenvalues and the elements
of the corresponding transformation matrix T (see Meyer
and Kirkpatrick 2010), so that @li=li ¼ 1 and @l=li ¼ 1=q
and all other derivatives of l and li are zero. A possible
approximation is to ignore contributions of derivatives of
l; arguing that the mean eigenvalue is expected to be un-
affected by sampling overdispersion and thus should change
little.

Partial correlations: Analogousargumentshold forpenalties
involving correlations. This gives

@Pp

@uk
¼
Xq
i¼1

Xq
j¼iþ1

@Cij
@uk

þ n2 2
2

"
log
	
12pij

1þ pij



@tij
@uk

þ 2
	
pij2 tij

12p2
ij



@pij

@uk

#

(12)

and

@2Pp

@uk@um
¼
Xq
i¼1

Xq
j¼iþ1

@2Cij
@uk@um

1
n2 2
2

"
log
	
12pij

1þ pij



@2tij

@uk@um

2
2

12p2
ij

	
@tij
@uk

@pij

@um
1

@tij
@um

@pij

@uk




1 2
	
pij 2 tij

12p2
ij



@2pij

@uk@um

22

 
12 t2ij þ ðpij2tijÞ2�

12p2
ij

�2
!
@pij

@uk

@pij

@um

#
(13)

with obvious simplifications if shrinkage targets are fixed or
treated as such, so that derivatives of tij are zero. As shown in
the Appendix, derivatives of correlations and PACs are read-
ily calculated from the derivatives of covariance compo-
nents for any of the parameterizations commonly utilized
in (unpenalized) REML algorithms for variance component
estimation.

Simulation Study

A large-scale simulation study, considering a wide range of
population parameters, was carried out to examine the effi-
cacy of the penalties proposed above.

Setup

Datawere sampled frommultivariate normal distributions for
q ¼ 9 traits, assuming a balanced paternal half-sib design
composed of s unrelated sire families with 10 progeny each.
Sample sizes considered were s ¼ 100; 400, and 1000, with
records for all traits for each of the progeny but no records for
sires.

Population values for genetic and residual variance com-
ponents were generated by combining 13 sets of heritabilities
with six different types of correlation structures to generate
78 cases. Details are summarized in the Appendix and pop-
ulation canonical eigenvalues for all sets are shown in Sup-
plemental Material, File S1. To assess the potential for
detrimental effects of penalized estimation, values were
chosen deliberately to generate both cases that approxi-
mately matched the priors assumed in deriving the penal-
ties and cases where this was clearly not the case. The latter
included scenarios where population canonical eigenvalues
were widely spread and in multiple clusters and cases
where genetic and phenotypic correlations were highly dis-
similar. A total of 500 samples per case and sample size
were obtained and analyzed.

Analyses

REML estimates of SG and SE for each sample were obtained
without penalization and imposing a penalty on canonical
eigenvalues Pl; as given in (7), and penalties on partial au-
tocorrelations shrinking all values toward zero [Ppð0Þ; see
(9)] and with shrinkage targets for each value equal to the
corresponding phenotypic counterpart [PpðPÞ; see (8)]. For
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the latter, penalties on genetic PAC only and both genetic and
residual values were examined.

Analyses were carried out considering fixed values for the
effective sample size, ranging from n ¼ 2:5 to 24. For penalties
on both genetic and residual PAC, either the same value was
used for both or the PSS for residual PACwas fixed at n ¼ 8: In
addition, direct estimation of a suitable PSS for each replicate
was attempted. As shown in (1), penalties were subtracted
from the standard log-likelihood, incorporating a factor of 1=2:

The model of analysis was a simple animal model, fitting
meansforeachtraitas theonlyfixedeffects.Amethod-of-scoring
algorithm together with simple derivative-free search steps was
used to locate the maximum of the (penalized) likelihood func-
tion. To facilitate easy computation of derivatives ofPl; thiswas
done using a parameterization to the elements of the canonical
decomposition (see Meyer and Kirkpatrick 2010), restraining
estimates of li to the interval of ½0:0001; 0:9999�:

Direct estimation of n was performed by evaluating points
on the profile likelihood for n [i.e., maximizing logLPðuÞwith
respect to the covariance components to be estimated for
selected, fixed values of n], combined with quadratic approx-
imation steps of the profile to locate its maximum, using
Powell’s (2006) Fortran subroutine NEWUOA. To avoid nu-
merical problems, estimates of n were constrained to the in-
terval ½2:01; 50�: All calculations were carried out using
custom Fortran programs (available on request).

Summary statistics

For each sample and analysis, the quality of estimates was
evaluated through their entropy loss (James and Stein 1961)

L1
�
SX ; ŜX

� ¼ tr
�
S21
X ŜX

�
2 log

���S21
X ŜX

���2 q (14)

for X ¼ G; E, and P, with
P

X denoting the matrix of popula-
tion values for genetic, residual, and phenotypic covariances
and

P̂
X the corresponding estimate. As suggested by Lin and

Perlman (1985), the percentage reduction in average loss
(PRIAL) was used as the criterion to summarize the effects
of penalization

100

"
12 �L1

�
SX ; Ŝ

n

X

�.
�L1
�
SX ;S

_0

X

�#
; (15)

where �L1ð�Þ denotes the entropy loss averaged over repli-
cates, and Ŝ

n

X and Ŝ
0
X represent the penalized and corre-

sponding unpenalized REML estimates of SX ; respectively.
In addition, the average reduction in logLðuÞ due to

penalization, DL; was calculated as the mean difference
across replicates between the unpenalized likelihood for esti-

mates Ŝ
n

X and the corresponding value for estimates Ŝ
0
X :

Data availability

The author states that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Distributions of PRIAL across the 78 sets of population values
together with the corresponding change in likelihood are
shown in Figure 2 for two sample sizes, with penalties
Ppð0Þ and PpðPÞ applied to genetic PAC only. Distributions
shown are trimmed; i.e., their range reflects minimum and
maximum values observed. Selectedmean andminimum val-
ues are also reported in Table 1. More detailed results for
individual cases are reported in File S1.

Genetic covariances

Overall, for fixed PSS there were surprisingly few differences
between penalties in mean PRIAL values achieved, especially
for estimates of the genetic covariance matrix. Correlations
between PRIAL for ŜG from 0.9 to unity suggested similar
modes of action.

For comparison, additional analyses considered penalties
on standard correlations, obtained by substituting rij forpij in
(8), (9), (12), and (13). Corresponding PRIAL values (not
shown) for these were consistently lower and, more impor-
tantly, a considerable number of minimum values were neg-
ative, even for small values of the PSS. Clearly this reflected a
discrepancy between priors assumed and the distribution of
correlations. Transformation to partial autocorrelation yield-
ed a better match and thus yielded penalties markedly less
likely to have detrimental effects. While easier to interpret
than PAC, penalties on standard correlations based on inde-
pendent Beta priors are thus not recommended.

Even for small values of n there were worthwhile reduc-
tions in loss for estimates of

P
G; in particular for the smallest

sample (s ¼ 100). Means increased with increasing strin-
gency of penalization along with an increasing spread in re-
sults for individual cases, especially for the largest sample
size. This pattern was due to the range of population values
for genetic parameters used.

Moreover, for small samples or lowPSS, it did not appear to
beall that importantwhether thepriors onwhich thepenalties
were based approximately matched population values or not:
“Any” penalty proved beneficial, i.e., resulted in positive
PRIAL for ŜG: For more stringent penalization, however,
there was little improvement (or even adverse effects) for
the cases where there was a clear mismatch. For instance,
forPl for n ¼ 24 and s ¼ 100 sires, there were two cases with
negative PRIAL for ŜG: Both of these had a cluster of high
and low population values for li so that the assumption of
a unimodal distribution invoked in deriving Pl was inap-
propriate and led to sufficient overshrinkage to be detri-
mental. On the whole, however, unfavorable effects of
penalization were few and restricted to the most extreme
cases considered.

Paradoxically, PRIAL values for
P̂

G were also relatively
low for cases where heritabilities were approximately the
same and genetic and phenotypic correlations were similar,
so that canonical eigenvalues differed little from their mean
(see File S1). This could be attributed to the shape of the
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penalty function, as illustrated in Figure 1, resulting in little
penalization for values close to the mode. In other words,
these were cases were the prior also did not quite match
the population values: While the assumption of a common
mean for canonical eigenvalues clearly held, that of a distri-
bution on the interval ½0; 1� did not. This can be rectified by
specifying a more appropriate interval. As the unpenalized
estimates of li are expected to be overdispersed, their ex-
tremes may provide a suitable range to be used. Additional
simulations (not shown) for Pl replaced values of a ¼ 0 and
b ¼ 1 used to derive Pl in (7) with a ¼ maxð0; l̂9 2 0:05Þ
and b ¼ minð1; l̂1 þ 0:05Þ for each replicate, where l̂1 and
l̂9 represented the largest and smallest canonical eigenvalue
estimate from a preliminary, unpenalized analysis, respec-
tively. This increased PRIAL for both

P̂
G and

P̂
E substan-

tially for these cases. However, as the proportion of such cases
was low (see File S1), overall results were little affected.

Residual covariances

Differences between penalties were apparent for SE: Pl in-
volved terms logð12 liÞ [see (7)], i.e., the canonical eigen-
values of SE and SP: Hence, Pl yielded substantial PRIAL for
estimates of both SG and SE; especially for the smaller sam-
ples where sampling variances and losses were high. Con-
versely, applying penalties on genetic PAC resulted in some,
but lower improvements in SE (except for large n), but only
as a by-product due to negative sampling correlations be-
tween SG and SE: As shown in Table 2, imposing a corre-
sponding penalty on residual PACs in addition could increase
the PRIAL in estimates of SE markedly without reduction in
the PRIAL forSG; provided the PSS chosen corresponded to a
relatively mild degree of penalization. Shrinking toward

phenotypic PAC yielded somewhat less spread in PRIAL for
SE than shrinking toward zero, accompanied by smaller
changes in logLðuÞ:
Phenotypic covariances

We argued above that imposing penalties based on the esti-
mate ofSP would allow us to borrow strength from it because
typically SP is estimated more precisely than any of its com-
ponents. Doing so, we would hope to have little—and cer-
tainly no detrimental—effect on the estimates of SP: Loosely
speaking, we would expect penalized estimation to redress,
to some extent at least, any distortion in partitioning of SP

due to sampling correlations. As demonstrated in Figure 2,
this was generally the case for fixed values of the PSS less
than �n ¼ 10 or 12. Conversely, negative PRIAL for esti-
mates of SP for higher values of n flagged overpenalization
for cases where population values for genetic parameters did
not sufficientlymatch the assumptions onwhich the penalties
were based.

Canonical eigenvalues

Figure 3 shows the distribution of the largest and smallest
canonical eigenvalues, contrasting population values with
mean estimates from unpenalized and penalized analyses
for a medium sample size and a fixed PSS of n ¼ 8: Results
clearly illustrate the upward bias in estimates of the largest
and downward bias in estimates of the smallest eigenvalues.
As expected, imposing penalty Pl reduced the mean of the
largest and increased the mean of the smallest eigenvalues,
with some overshrinkage, especially of the largest eigen-
value, evident. In contrast, for the small value of n ¼ 8 cho-
sen, the distribution of the largest values from penalized and

Figure 2 Distribution of percent-
age reduction in average loss for
estimates of genetic, residual, and
phenotypic covariance matrices, to-
gether with corresponding change
in log-likelihood (DL) for penalties
on canonical eigenvalues (Pl) and
genetic, partial autocorrelations,
shrinking toward zero [Ppð0Þ] or
phenotypic values [PpðPÞ]. Cen-
tered circles give mean values.
Numerical values on the x-axis
are fixed, prior effective sample
sizes while “E” denotes the use
of a value estimated from the
data for each replicate.
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unpenalized analyses differed little for penalty PpðPÞ; i.e.,
penalizing genetic PAC did not affect the leading canonical
eigenvalues markedly, acting predominately on the smaller
values. For more stringent penalties, however, some shrink-
age of the leading eigenvalues due to penalties PpðPÞ and
Ppð0Þ was evident; detailed results for selected cases are
given in File S1.

Estimating PSS

On the whole, attempts to estimate the appropriate value of n
from the data were not all that successful. For Pl; numerous
cases yielded an estimate of n close to the lower end of the
range allowed, i.e., virtually no penalty. Conversely, forPpð0Þ
andPpðPÞ a substantial number of cases resulted in estimates
of n close to the upper bound allowed. This increased PRIAL
(compared to fixed values for n) for cases that approximately
matched the priors but caused reduced or negative PRIAL
and substantial changes in logLðuÞ otherwise. A possible ex-
planation was that the penalized likelihood and thus the es-
timate of nmight be dominated by

P
E:However, as shown in

Table 2, neither estimating a value for SG (nG) while fixing
the PSS for SE (nE) nor estimating a value for both (either
separately or jointly, nG ¼ nE) improved results greatly. More-
over, it yielded more cases for which penalization resulted in
substantial, negative PRIAL, especially for PpðPÞ: Repeating

selected analyses using a sequential grid search to determine
optimal values of n gave essentially the same results; i.e., re-
sults could not be attributed to inadequacies in the quadratic
approximation procedure. Given the additional computational
requirements and the fact that suitable values could not be
estimated reliably, joint estimation of PSS together with the
covariance components cannot be recommended.

Discussion

Sampling variation is the bane of multivariate analyses in
quantitative genetics. While nothing can replace large num-
bers of observations with informative data and appropriate
relationship structure, we often need to obtain reasonably
trustworthy estimates of genetic parameters from relatively
small data sets. This holds especially for data from natural
populations but is also relevant for new or expensive to mea-
sure traits in livestock improvement or plant breeding
schemes. We have shown that regularized estimation in a
maximum-likelihood framework through penalization of the
likelihood function can provide “better” estimates of covari-
ance components, i.e., estimates that are closer to the popu-
lation values than those from standard, unpenalized analyses.
This is achieved through penalties targeted at reducing sam-
pling variation.

Table 1 Selected mean and minimum values for percentage reduction in average loss for estimates of genetic (SG), residual (SE), and
phenotypic (SP) covariance matrices together with mean change in unpenalized log-likelihood from the maximum (DL) for penalties on
canonical eigenvalues (Pl) and genetic correlations, shrinking partial autocorrelations toward zero [Ppð0Þ] or phenotypic values [PpðPÞ]

100 sires 400 sires 1000 sires

Penalty na SG SE SP DL SG SE SP DL SG SE SP DL
Mean values

Pl 4 41 43 1 20.6 31 19 0 20.2 21 9 0 20.1
6 49 46 1 21.2 38 22 0 20.5 27 12 0 20.2
8 54 50 1 21.9 42 24 0 20.7 30 13 0 20.4

12 58 51 1 23.0 45 25 0 21.4 33 13 0 20.7
E 18 10 0 20.2 22 7 0 20.1 16 4 0 20.1

Ppð0Þ 4 47 13 1 20.9 37 5 0 20.3 27 2 0 20.2
6 53 21 1 21.8 43 9 0 20.7 31 4 0 20.4
8 56 26 2 22.9 44 12 0 21.1 32 6 0 20.6

12 58 31 2 25.1 45 16 1 22.1 34 8 0 21.1
E 56 29 3 28.5 46 12 1 21.9 35 5 0 20.5

PpðPÞ 4 46 9 0 20.7 37 3 0 20.3 26 1 0 20.2
6 52 15 0 21.4 42 6 0 20.7 31 2 0 20.4
8 55 21 0 22.0 44 8 0 21.0 32 3 0 20.6

12 57 28 1 23.1 45 11 0 21.6 33 5 0 21.0
E 60 47 2 28.7 50 22 1 23.5 36 10 0 21.7

Minimum values
Pl 8 12 26 0 22.9 5 7 0 21.7 2 2 0 21.1

12 1 13 0 24.7 211 11 21 23.0 214 4 21 22.2
E 0 4 0 20.7 1 1 0 20.6 1 0 0 20.4

Ppð0Þ 8 16 11 0 25.0 2 2 0 23.0 1 0 0 21.9
12 14 11 0 28.7 27 2 21 25.4 213 0 21 23.4
E 18 7 21 216.4 1 3 21 211.6 1 1 0 22.8

PpðPÞ 8 18 7 0 23.5 4 1 0 22.9 1 0 0 22.6
12 16 12 0 25.4 21 2 0 24.7 25 0 0 24.3
E 3 12 21 212.4 234 7 0 28.8 254 3 0 25.6

aEffective sample size of the Beta prior. Numerical values are “fixed” values used while E denotes values estimated from the data for each replicate, with means of 3.1, 5.9,
and 8.5 (for 100, 400, and 1000 sires, respectively) for Pl; 31.2, 16.0, and 13.9 for Ppð0Þ; 45.4, 36.4, and 34.8 for PpðPÞ; and 34.0, 33.6, and 32.2 for PrðPÞ:
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Simplicity

The aim of this study was to obtain a procedure to improve
REML estimates of covariance components and thus genetic
parameters that is easy tousewithout considerable increase in
computational requirements and suitable for routine aplica-
tion.Wehavedemonstrated that it is feasible to choosedefault
values for the strength of penalization that yield worthwhile
reductions in loss for awide range of scenarios and are robust,
i.e., are unlikely to result in penalties with detrimental ef-
fects, and are technically simple. While such a tuning-free
approach may not yield a maximum reduction in loss, it ap-
pears to achieve a substantial proportion thereof in most
cases with modest changes in the likelihood compared to
the maximum of logLðuÞ (without penalization). In contrast
to earlier attempts to estimate a tuning factor (Meyer and
Kirkpatrick 2010; Meyer 2011), it does not require multiple
additional analyses to be carried out, and effects of penal-
ization on computational requirements are thus mostly
unimportant.

In addition, we can again make the link to Bayesian
estimation, where the idea of mildly or weakly informative
priors has been gaining popularity. Discussing priors for var-
iance components in hierarchical models, Gelman (2006)
advocated a half-t or half-Cauchy prior with large-scale

parameters. Huang and Wand (2013) extended this to prior
distributions for covariance matrices that resulted in half-t
priors for standard deviations and marginal densities of cor-
relations r proportional to a power of ð12 r2Þ: Chung et al.
(2015) proposed a prior for covariance matrices proportional
to a Wishart distribution with a diagonal scale matrix and
low degrees of belief to obtain a penalty on the likelihood
function that ensured nondegenerate estimates of variance
components.

Choice of penalty

Wehave presented two types of suitable penalties that fit well
within the standard framework of REML estimation. Both
achieved overall comparable reductions in loss but acted
slightly differently, with penalties on correlations mainly
affecting the smallest eigenvalues of the covariance matrices
while penalties on canonical eigenvalues acted on both the
smallest and largest values. Clearly it is the effect on the
smallest eigenvalues (which have the largest sampling vari-
ances) that contributesmost to theoverall reduction in loss for
a covariance matrix. An advantage of the penalty on correla-
tions is that it is readily implemented for the parameteri-
zations commonly employed in REML estimation, and it is
straightforward toextend it tomodelswith additional random
effects and covariancematrices to be estimated or caseswhere

Table 2 Selected mean and minimum values for percentage reduction in average loss for estimates of genetic (SG), residual (SE), and
phenotypic (SP) covariance matrices together with mean change in unpenalized log-likelihood from the maximum (DL) for penalties on
both genetic and residual partial autocorrelations, shrinking toward zero [Ppð0Þ] or phenotypic values [PpðPÞ]

na 100 sires 400 sires 1000 sires

Penalty nG nE SG SE SP DL SG SE SP DL SG SE SP DL
Mean values

Ppð0Þ 4 4 48 38 1 20.9 37 16 0 20.4 27 7 0 20.2
8 4 56 43 2 22.9 45 20 0 21.1 33 10 0 20.6
8 8 57 48 2 22.8 45 23 1 21.1 33 12 0 20.6
E 4 57 46 3 26.6 48 21 1 21.3 35 10 0 20.5
E nG 61 55 3 25.3 50 27 1 21.8 37 14 0 20.8
E E 53 43 3 29.1 47 24 1 21.9 35 13 0 20.5

PpðPÞ 4 4 47 37 0 20.8 37 15 0 20.4 27 7 0 20.2
8 4 55 43 1 22.2 44 19 0 21.0 32 9 0 20.6
8 8 56 47 1 22.3 44 22 0 21.1 32 11 0 20.6
E 4 60 57 1 28.2 51 31 1 23.5 36 14 0 21.6
E nG 61 60 2 210.8 46 31 1 26.5 33 18 0 23.0
E E 61 60 2 210.7 51 33 1 24.9 36 15 0 22.3

Minimum values
Ppð0Þ 4 4 17 11 0 21.5 2 1 0 20.9 0 0 0 20.6

8 4 17 17 1 24.8 3 3 0 22.9 1 1 0 21.9
8 8 16 21 0 24.6 3 4 0 22.9 1 1 0 22.0
E 4 16 11 0 212.8 5 4 0 25.9 1 2 0 22.9
E nG 17 21 21 210.6 3 6 0 26.2 2 2 0 23.0
E E 270 2139 25 217.7 6 269 22 212.3 2 25 0 22.9

PpðPÞ 4 4 20 10 0 21.3 2 1 0 21.0 0 0 0 20.8
8 4 21 20 0 23.7 4 3 0 23.0 1 1 0 22.7
8 8 20 23 0 23.8 5 5 0 23.1 1 1 0 22.7
E 4 5 24 21 210.8 228 9 0 27.9 248 3 0 24.9
E nG 23 10 21 217.0 232 228 23 216.0 265 1 21 28.5
E E 21 10 22 217.4 230 26 22 29.4 264 218 22 26.7

aEffective sample size of the Beta prior for genetic (nG) and residual (nE) correlations. Numbers given are fixed values used while E denotes values estimated from the data for
each replicate.
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traits are recorded on distinct subsets of individuals so that
some residual covariances are zero. It also lends itself to
scenarios where we may be less interested in a reduction in
sampling variance butmaywant to shrink correlations toward
selected target values.

Strength of penalization

Results suggest that penalties on canonical eigenvalues or
PAC assuming a Beta prior with a conservative choice of PSS
of n ¼ 4–10 will not only result in substantial improvements
in estimates of genetic covariance components for many
cases, but also result in little chance of detrimental effects
for cases where the assumed prior does not quite match the
underlying population values. Reanalyzing a collection of
published heritability estimates from Mousseau and Roff
(1987), M. Kirkpatrick (personal communication) sug-
gested that their empirical distribution could be modeled
as Betað1:14; 1:32Þ; corresponding to v ¼ 2:46 and mode
of 0.3.

Additional bias

Theprice for a reduction in sampling variances frompenalized
analyses is an increase in bias. It is often forgotten that REML
estimates of covariance components are biased even if no
penalty is applied, as estimates are constrained to the param-
eter space; i.e., the smallest eigenvalues are truncated at zero
or, in practice, at a small positive value to ensure estimated
matrices are positive definite. As shown in Figure 3, penali-
zation tended to increase the lower limits for the smallest
canonical eigenvalues and thus also for the corresponding
values of the genetic covariance matrix, thus adding to the
inherent bias. Previous work examined the bias due to penal-
ization on specific genetic parameters in more detail (Meyer
and Kirkpatrick 2010; Meyer 2011), showing that changes
from unpenalized estimates were usually well within the
range of standard errors. Employing amild penalty with fixed
PSS, changes in logLðuÞ from the maximum value in an
unpenalized analysis were generally small and well below
significance levels. This suggests that additional bias in REML
estimates due to a mild penalty on the likelihood is of minor

concern and far outweighed by the benefits of a reduction in
sampling variance.

Alternatives

Obviously, there are many other choices. As in Bayesian
estimation, results of penalized estimation are governed by
thepriordistribution selected, themoreso thesmaller thedata
set available. Mean reductions in loss obtained in a previous
study, attempting to estimate tuning factors and using pen-
alties derived assuming a normal distribution of canonical
eigenvalues or inverse Wishart distributions of covariance or
correlation matrices, again were by and large of similar
magnitude (Meyer 2011). Other opportunities to reduce
sampling variation arise through more parsimonious model-
ing, e.g., by estimating SG at reduced rank or assuming a
factor-analytic structure. Future work should examine the
scope for penalization in this context and consider the effects
on model selection.

Application

Practical application of REML estimation using the simple
penalties proposed is illustrated using the data set consid-
ered by Meyer and Kirkpatrick (2010) (available as supple-
mental material in their article). In brief, this was
composed of six traits measured on beef cattle, with 912–
1796 records per trait. Including pedigree information
on parents, grandparents, etc., without records yielded a
total of 4901 animals in the analysis. The model of analy-
sis fitted animals’ additive genetic effects as random and
so-called contemporary group effects, with up to 282 levels
per trait, as fixed. The latter was a subclass representing a
combination of systematic environmental factors to ensure
only animals subject to similar conditions were directly
compared.

Estimates of SG and SE were obtained by REML using
WOMBAT (Meyer 2007), applying penalties on canonical ei-
genvalues and partial correlations (shrinking toward zero)
using PSS of 4 and 8, and contrasted to unpenalized results.
Lower bound sampling errors for estimates of canonical

Figure 3 Distribution of mean estimates of selected ca-
nonical eigenvalues comparing results from unpenalized
analyses and analyses imposing penalties on canonical ei-
genvalues (Pl) and genetic, partial autocorrelations,
shrinking toward phenotypic values [PpðPÞ], with popula-
tion values in the simulation. Both penalties employ a
fixed, prior effective sample size of n ¼ 8; results shown
are for samples with 400 sire families. Centered circles give
mean values across the 78 cases considered.
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eigenvalues were approximated empirically (Meyer and
Houle 2013).

Results are summarized in Table 3. For all penalties and
both levels of PSS, deviations in the unpenalized likelihood
from the maximum (for the “standard” unpenalized analysis)
were small andwell below the significance threshold of –1.92
for a likelihood-ratio test involving a single parameter (at an
error probability of 5%), emphasizing the mildness of penal-
ization even for the larger PSS. Similarly, changes in esti-
mates of canonical eigenvalues were well within their 95%
confidence limits, except for l1 for Pl with n ¼ 8; which was
just outside the lower limit. As expected from simulation
results above (cf. Figure 3), the penalty on canonical eigen-
values affected estimates of the largest values more than
penalties on partial correlations. Conversely, the latter yield-
ed somewhat larger changes in the lowest eigenvalues. Esti-
mates for Pl with n ¼ 8 agreed well with results from Meyer
and Kirkpatrick (2010) (of 0.69, 0.50, 0.38, 0.27, 0.17, and
0.05 for l1–l6; respectively), which were obtained by apply-
ing a quadratic penalty on the canonical eigenvalues and
using cross-validation to determine the stringency of
penalization.

Corresponding changes in individual parameters were
small throughout and again well within the range of �95%
confidence intervals (sampling errors derived from the in-
verse of the average information matrix) for the unpenalized
analysis. The largest changes in correlations occurred for the
pairs of traits with the smallest numbers of records and the
higher PSS. For instance, for Pl the residual correlation be-
tween traits 1 and 4 changed from 0.82 (with standard error
of 0.17) to 0.65, while Ppð0Þ on both genetic and residual
PAC reduced the estimate of the genetic correlation from
0.48 (standard error of 0.25) to 0.37. Plots with detailed
results for individual parameters are given in File S1.

In summary, none of the penalties applied changed esti-
mates significantly and none of the changes in estimates of
individual parameters due to penalizationwere questionable.
Indeed, the larger changes described yielded values more in
linewith literature results for the traits concerned, suggesting
that penalization stabilized somewhat erratic estimates based
on small numbers of observations.

Implementation

Penalized estimation for the penalties proposed for fixed
values of n has been implemented in our mixed-model pack-
age WOMBAT (available at http://didgeridoo.une.edu.au/km/
wombat.php) (MEYER 2007). For Pl a parameterization to the
elements of the canonical decomposition is used for ease of
implementation, while penalties on correlations use the stan-
dard parameterization to elements of the Cholesky factors of
the covariance matrices to be estimated. Maximization of the
likelihood is carried out using the average information algo-
rithm, combined with derivative-free search steps where nec-
essary to ensure convergence. Example runs for a simulated
data set are shown in File S1.

Experience with applications so far has identified small to
moderate effects of penalization on computational require-
ments compared with an unpenalized analysis, with the bulk
ofextracomputationsarising fromderivative-free searchsteps
used to check for convergence. The parameterization to the
elements of the canonical decomposition, however, tended to
increase the number of iterations required even without
penalization. Detrimental effects on convergence behavior
when parameterizing to eigenvalues of covariance matrices
have been reported previously (Pinheiro and Bates 1996).

Convergence rates of iterative maximum-likelihood anal-
yses are dictated by the shape of the likelihood function.
Newton–Raphson-type algorithms, including the average in-
formation algorithm, involve a quadratic approximation of
the likelihood. When this is not the appropriate shape, the
algorithm may become “stuck” and fail to locate the maxi-
mum. This happens quite frequently for standard (unpenal-
ized) multivariate analyses comprising more than a few traits
when estimated covariance matrices have eigenvalues close
to zero. For such cases, additional maximization steps using
alternative schemes, such as expectation maximization-type
algorithms or a derivative-free search, are usually beneficial.
For small data sets, we expect the likelihood surface around
the maximum to be relatively flat. Adding additional “infor-
mation” through the assumed prior distribution (a.k.a. the
penalty) can improve convergence by adding curvature to the
surface and creating a more distinct maximum. Conversely,
too stringent a penalty may alter the shape of the surface
sufficiently so that a quadratic approximation may not be
successful. Careful checking of convergence should be an in-
tegral part of any multivariate analysis, penalized or not.

Conclusion

We propose a simple but effective modification of standard
multivariate maximum-likelihood analyses to “improve” esti-
mates of genetic parameters: Imposing a penalty on the

Table 3 Reduction in unpenalized likelihood (DL) for applied
example together with estimates of canonical eigenvalues

Canonical eigenvalues

Penaltya nb DL l1 l2 l3 l4 l5 l6

Nonec 0 0.887 0.543 0.383 0.239 0.138 0.031
0.097 0.072 0.066 0.058 0.046 0.029

Pl 4 20.195 0.815 0.530 0.378 0.242 0.145 0.046
8 21.395 0.696 0.478 0.348 0.220 0.138 0.055

Ppð0Þ 4 20.117 0.880 0.534 0.377 0.246 0.141 0.049
8 20.628 0.867 0.522 0.370 0.259 0.146 0.069

4,4 20.172 0.836 0.531 0.376 0.244 0.140 0.048
8,8 20.797 0.789 0.520 0.372 0.263 0.148 0.070

aPl; penalty on canonical eigenvalues; Ppð0Þ; penalty on partial correlations,
shrinking toward zero with a single value denoting a penalty on genetic correla-
tions only and two values denoting a penalty on both genetic and residual corre-
lations.

bEffective sample size of the Beta prior.
cSecond line gives approximate sampling errors of estimates of canonical eigen-
values.
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likelihood designed to reduce sampling variation will yield
estimates that are on average closer to the population values
than unpenalized values. There are numerous choices for
such penalties. We demonstrate that those derived under
the assumption of a Beta distribution for scale-free function
of the covariance components to be estimated, namely gen-
eralized heritabilities (a.k.a. canonical eigenvalues) and ge-
netic correlations, are well suited and tend not to distort
estimates of the total, phenotypic variance. In addition, in-
voking a Beta distribution allows the stringency of penaliza-
tion to be regulated by a single, intuitive parameter, known as
effective sample size of the prior in a Bayesian context. Aim-
ing at moderate rather than optimal improvements in esti-
mates, suitable default values for this parameter can be
identified that yield a mild penalty. This allows us to abandon
the laborious quest to identify tuning factors suited to partic-
ular analyses. Choosing the penalty to be sufficiently mild can
all but eliminate the risk of detrimental effects and results in
only minor changes in the likelihood, compared to unpenal-
ized analyses. Mildly penalized estimation is recommended
for multivariate analyses in quantitative genetics consider-
ing more than a few traits to alleviate the inherent effects of
sampling variation.
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Appendix

Population Values

Population values for the 13 sets of heritabilities used are summarized in Table A1. The six constellations of genetic (rG  ij) and
residual (rE  ij) correlations between traits i and j (i 6¼ j) were obtained as

I. rG  ij ¼ rE  ij ¼ 0;
II. rG  ij ¼ 0:5 and rE  ij ¼ 0:3;
III. rG  ij ¼ 0:7ji2jj and rE  ij ¼ 0:5þ 0:05i  ð21Þj;
IV. rG  ij ¼ 2 0:7ji2jj þ 0:02i and rE  ij ¼ 0:5þ ð20:2Þji2jj;
V. rG  ij ¼ rE  ij ¼ 0:7 for i; j 2 ½3; 7� and rG  ij ¼ rE  ij ¼ 0:3 otherwise, and
VI. rG  ij ¼ rE  ij ¼ 0:6 for ji2 jj ¼ 1; and rG  ij ¼ rE  ij computed from (4) with pij ¼ 0:4 otherwise.

Phenotypic varianceswere equal to 1 throughout for correlation I and set to 2, 1, 3, 2, 1, 2, 3, 1, and 2 for traits 1–9 otherwise.

Derivatives of Partial Autocorrelations

Partial autocorrelations [see (3)] can be written as

pij ¼ cij=
ffiffiffiffiffiffiffiffiffi
v1v3

p

with

cij ¼ rij2 r91R
21
2 r3

vx ¼ 12 r9xR
21
2 rx for x ¼ 1; 3:

This gives partial derivatives of pij with respect to parameters uk and um :
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Derivatives of the components are
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Decompose the correlation matrix as R ¼ S21SS21 with S ¼ Diagfsig the diagonal matrix of standard deviations for
covariance matrix S: This gives the required derivatives of the correlation matrix:
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Finally, assuming derivatives of variances sii are available, the required derivatives of standard deviations si ¼ ffiffiffiffiffiffi
sii

p
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When estimating elements of S directly, only @sii=@sii ¼ 1 are nonzero. Derivatives of covariance matrices when employing a
parameterization to the elements of their Cholesky factors are given by Meyer and Smith (1996).

Table A1 Population values (3100) for sets of heritabilities

Trait no.

Set 1 2 3 4 5 6 7 8 9

A 40 40 40 40 40 40 40 40 40
B 60 55 50 45 40 35 30 25 20
C 90 60 50 50 30 30 20 20 10
D 75 70 60 50 40 30 20 10 5
E 70 70 70 40 40 40 10 10 10
F 20 20 20 20 20 20 20 20 20
G 35 30 25 20 20 20 15 10 5
H 60 50 10 10 10 10 10 10 10
I 50 50 20 15 15 10 10 5 5
J 80 40 10 10 10 10 10 5 5
K 30 30 25 25 20 15 15 10 10
L 35 30 30 20 20 15 15 15 10
M 10 10 10 30 30 30 50 50 50

1900 K. Meyer



GENETICS
Supporting Information

www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.186114/-/DC1

Simple Penalties on Maximum-Likelihood Estimates
of Genetic Parameters to Reduce Sampling Variation

Karin Meyer

Copyright © 2016 by the Genetics Society of America
DOI: 10.1534/genetics.115.186114



K.Meyer Penalized REML

Supplement S1 to “Simple penalties on maximum likelihood
estimates of genetic parameters to reduce sampling

variation”

1 Individual results for sets of population values

Reductions in loss for individual sets of population values showed considerable varia-
tion. This is illustrated in a heatmap type plot in Figure S1 for a medium sample size
(s = 400 sire families) and an effective sample size of the prior of ν = 8. The plot also
clearly demonstrates the close relationship between penalties on the improvement in
estimates of the genetic covariance matrix and the strong effect the penalty on canonical
eigenvalues can have on estimates of the residual covariance matrix.

The pattern of PRIAL for Σ̂G can be directly related to differences in the population values
for canonical eigenvalues, summarized in Figure S2. Generally, PRIAL for Σ̂G tended to
be higher for lower levels of heritabilities and thus canonical eigenvalues. Low PRIAL
for heritability sets A, B and F combined with correlation structures I, II or V are clearly
a reflection of the limited spread in population eigenvalues, which for this sample size
does not quite match the range of [0, 1] assumed in deriving the penalty. As discussed
in the manuscript, reducing this interval for penalty Pλ increased PRIAL for these cases
substantially, e.g. from 6 and 7% to 29 and 32% for Σ̂G and Σ̂E, respectively, for case A-I
and from 19 and 11% to 20 and 26% for case B-V. For the smaller sample (s = 100, not
shown), however, sampling variation for these cases was substantial enough for such
‘range effects’ to be much less evident.

For the remaining cases the spread of eigenvalues appeared sufficient not to clash with the
assumption of a distribution over the range [0, 1]. While differences shown in Figure S2
do not seem to be very pronounced, there are two other outliers, namely cases D-VI
and E-VI. Both of these have a wide spread in population eigenvalues, with mean 0.33,
the highest value approximately 0.8 and the three smallest values less than 0.1. This
constellation appeared to lead to overshrinkage. For more stringent penalties, i.e. ν ≥ 12
these were the only two cases for which PRIAL for Σ̂G due to penalty Pλ was negative.
It is not clear what particular feature of the population values was responsible for this
behaviour – other cases had larger ranges or variances among canonical eigenvalues
without being afflicted.

Similar patterns of PRIAL for all penalties (and high correlations shown in the manuscript)
suggest that problematic constellations of canonical eigenvalues translate into corre-
sponding difficulties for penalties on correlations. Corresponding modifications of the
interval on with PAC are assumed to be distributed may be determined, but have not
been investigated so far.
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Genetic Residual

6 9 26 54 45 13 47 55 54 57 36 29 41

31 52 58 46 55 59 52 47 55 47 56 58 58

50 55 55 33 43 52 43 38 46 38 49 52 42

7 13 45 58 61 31 50 55 57 57 48 46 56

6 10 33 57 58 14 49 56 54 56 41 36 52

47 46 31 4 12 40 30 23 40 29 36 39 26

4 4 21 52 41 23 54 63 64 67 45 37 42

33 52 59 46 56 68 56 47 57 49 61 64 60

54 59 57 29 39 58 39 31 42 32 51 55 34

6 10 42 57 59 44 58 63 68 67 58 55 57

4 5 29 53 54 22 53 62 61 64 46 41 52

48 46 31 9 16 47 30 22 44 30 38 42 23

5 5 19 51 42 23 53 63 64 66 45 37 44

34 52 60 46 57 67 56 49 59 51 61 64 60

53 57 57 33 43 60 44 37 47 38 53 57 42

11 13 44 57 61 50 60 64 70 67 61 58 60

5 5 28 54 56 23 55 62 61 64 48 41 54

48 47 29 3 8 48 24 15 39 24 35 39 20

7 10 63 26 24 7 8 11 13 27 8 8 11

36 43 64 60 60 13 13 14 15 40 13 13 36

39 49 40 61 60 12 12 22 26 51 12 13 35

7 11 60 35 33 9 9 12 14 39 9 9 12

7 11 63 34 37 7 9 12 15 41 9 9 13

8 12 59 36 34 9 9 11 14 43 9 9 12

4 2 1 2 2 10 7 6 7 5 8 7 3

9 11 3 9 8 9 8 7 6 7 9 8 9

18 22 8 15 16 11 10 10 12 21 11 11 17

5 4 5 6 7 13 9 7 8 10 10 10 5

3 2 1 2 2 9 6 5 6 4 7 6 3

6 5 9 8 10 12 9 7 8 12 9 9 6

4 2 2 2 2 10 7 6 7 5 8 7 3

15 21 11 22 19 9 9 8 8 12 9 9 9

24 32 17 30 29 11 10 11 13 21 10 11 20

11 9 20 21 22 18 11 9 10 15 13 12 9

4 4 6 9 16 9 8 7 8 10 9 8 7

13 13 26 29 26 17 11 7 7 24 13 12 9

I
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II
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VI

I

II

III

IV

V

VI

P
λ

P
π (p)

P
π (0)

A B C D E F G I H J K L M A B C D E F G I H J K L M

Figure S1 Percentage reduction in average loss for estimates of genetic and residual
covariance matrices for 78 sets of population values for s = 400 sires, applying penalties
on canonical eigenvalues (Pλ) and partial correlations (Pπ(0): shrinking towards zero,
Pπ(P): shrinking towards phenotypic values) with an effective prior sample size of ν = 8
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Figure S2 Population values for canonical eigenvalues ( ) for 78 sets together with
corresponding mean estimates across replicates ( ) for s = 400 applying a penalty on the
canonical eigenvalues (Pλ) with an effective prior sample size of ν = 8
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2 Detailed results for selected sets of population values

The effect of penalization of estimates of canonical eigenvalues and estimates of genetic
correlations is illustrated for two sets of population values, obtained combing heritabil-
ity set L with the compound symmetric correlation structure, II, (L-II) and combining
heritability set H with correlation scenario III (H-III).

2.1 Case L-II

Heritabilities in set L are low to moderate, yielding population canonical eigenvalues
ranging from 0.38 to 0.03 with a mean of 0.17. With all genetic correlations in II set to
0.50, PACs at the genetic level depend on the difference between trait numbers only, with
values equal to 0.50, 0.33, 0.25, 0.20, 0.17, 0.14, 0.13 and 0.11 for 0 to 8 intervening traits,
respectively. Phenotypic correlations for II range from 0.30 to 0.36 with corresponding
PAC from 0.36 to 0.07.

Mean estimates of canonical eigenvalues across replicates from unpenalized and penal-
ized analyses with increasingly stringent penalties are summarized in Table S1, together
with the respective PRIAL. As expected from sampling theory, unpenalized estimates
of eigenvalues are overdispersed with the largest values systematically biased upwards
and the smallest values biased downwards. All penalties reduce the overdispersion but
in a slightly different fashion. The most notable difference is that the penalty on partial
auto-correlations increases the mean eigenvalue slightly, i.e. increases the lowest values
more than it reduces the highest ones. For this case, penalties Pλ and Pπ(P) up ν = 20 are
advantageous. As phenotypic PAC are greater than zero, penalty Pπ(0) is more stringent
than Pπ(P). This is evidenced by larger PRIAL and changes in likelihood at the same
PSS. However, a decreasing PRIAL for Σ̂E for ν > 12 provides some indication that such
values are too stringent – this is supported by the mean estimates of the highest and
lowest eigenvalues being below and above, respectively, the corresponding population
values.

Figure S3 gives the distribution of estimates of genetic correlations, contrasting penalized
and unpenalized estimates. Distributions of unpenalized estimates in the three panels
are not exactly the same as they represent different simulation runs. Correlations are
given in order of the lower triangle of the correlation matrix row-wise. As population
heritabilities decrease with trait number, this means that correlations are also shown in
increasing ordering of sampling variances. Again, the overall pattern is very similar
for all three penalties considered. The effects of penalization are most apparent for
correlations for the higher trait numbers. For these, unpenalized estimates are most
afflicted by constraints on the parameter space and thus have mean below the population
value of 0.5.

2.2 Case H-III

Set H is comprised of two high heritabilities, 0.5 and 0.6, with the remainder equal to
0.1. Genetic correlations for III follow an auto-regressive pattern, from 0.7 to 0.78 = 0.06.
This gives phenotypic correlations for H-III ranging from −0.11 to 0.50, and population
canonical eigenvalues from 0.70 to 0.02. The auto-regressive genetic correlation structure
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scenario II for s = 400, applying penalties with an effective prior sample size of ν = 8 (
unpenalized, penalized estimates; mean values )
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Figure S4 Distribution of estimates of genetic correlations between trait i and j across
replicates for population values obtained by combining heritability set H with correlation
scenario III for s = 400, applying penalties with an effective prior sample size of ν = 8 (
unpenalized, penalized estimates; mean values. Horizontal line shows population
value for traits i and i + 1)

Page 6 of 12



K.Meyer Penalized REML

Table S1 Mean estimates of canonical eigenvalues (×1000) together with correspond-
ing mean change in unpenalized likelihood for population values obtained combining
heritability set L with correlation scenario II for s = 400.

PSSa Canonical eigenvaluesb ∆Lc PRIALd

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ̄ G E

Population values
382 257 234 163 152 117 112 112 73 178

Unpenalized estimates
422 310 250 198 157 120 85 49 13 178 0.000

Penalty on canonical eigenvalues
4 417 308 247 197 156 120 85 51 20 178 -0.070 32 4
6 411 303 245 195 156 120 86 54 23 177 -0.163 40 7
8 409 302 244 195 156 119 87 55 26 177 -0.275 45 10

12 402 298 241 193 155 120 89 59 33 177 -0.478 52 13
16 399 296 240 193 155 121 91 63 37 177 -0.721 57 16
20 393 293 237 192 155 122 93 66 40 177 -0.998 61 19

Penalty on partial correlations: shrink towards phenotypic
4 420 308 248 197 157 121 88 55 25 180 -0.175 42 4
6 417 309 248 197 157 122 89 59 32 181 -0.369 51 7
8 412 307 247 197 157 122 90 62 36 181 -0.567 55 10

12 409 307 247 196 158 123 94 67 43 183 -0.952 61 13
16 404 304 244 195 158 126 97 72 49 183 -1.320 65 17
20 400 300 244 196 157 126 99 75 53 183 -1.752 68 19

Penalty on partial correlations: shrink towards zero
4 412 309 251 199 157 122 88 55 26 180 -0.238 45 6
6 407 310 250 199 160 124 92 62 33 182 -0.546 53 10
8 399 309 251 200 159 125 94 65 38 182 -0.898 58 13

12 388 306 249 200 163 128 100 73 47 184 -1.863 64 15
16 379 304 250 200 162 129 101 75 52 184 -3.318 66 11
20 370 303 248 199 161 130 103 78 55 183 -4.910 66 7

aEffective sample size of prior
bIn descending order with λ̄ denoting their mean
cChange in log likelihood compared to unpenalized analysis
dPercentage reduction in average loss for genetic (G) and residual (E) covariance matrix

gives genetic PAC for H-III that are high for ‘adjacent’ traits (0.7) and zero otherwise. Cor-
responding phenotypic values range from 0.50 (traits 1 and 2) to 0.11, creating differences
between genetic and phenotypic PAC up to 0.81.

Mean estimates of canonical eigenvalues for different penalties for this set of population
values are given in Table S2 and the distribution of estimates of genetic correlations is
shown in Figure S4. In this case, correlations are arranged according to their population
values, with groups equal to the elements of successive subdiagonal of the lower triangle
of the correlation matrix. While the general pattern of results is similar to that observed
for population values L-II, the spread of canonical eigenvalues is larger with more eigen-
values close to zero and the effects of sampling variation are thus more pronounced.
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Table S2 Mean estimates of canonical eigenvalues (×1000) together with correspond-
ing mean change in unpenalized likelihood for population values obtained combining
heritability set H with correlation scenario III for s = 400.

PSSa Canonical eigenvaluesb ∆Lc PRIALd

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ̄ G E

Population values
696 425 287 215 108 41 29 26 23 206

Unpenalized estimates
715 445 305 214 121 67 29 5 1 211

Penalty on canonical eigenvalues
4 699 436 302 209 119 69 34 12 5 209 -0.326 40 10
6 688 433 296 211 120 70 37 17 8 209 -0.712 49 13
8 678 431 296 209 118 71 41 21 12 208 -1.115 54 15

12 664 422 290 207 124 75 46 26 17 208 -1.974 58 17
16 648 415 289 207 123 76 49 30 21 206 -2.888 59 15
20 632 412 289 206 125 81 54 36 25 206 -3.698 57 12

Penalty on partial correlations: shrink towards phenotypic
4 719 445 302 211 122 69 38 18 10 215 -0.739 52 3
6 706 438 300 209 123 74 44 25 16 215 -1.447 57 4
8 712 436 302 208 123 76 50 31 21 218 -2.026 57 6

12 706 429 301 203 123 81 56 38 28 218 -3.260 57 8
16 702 427 297 205 123 84 61 44 34 220 -4.361 54 11
20 697 425 294 202 126 88 66 50 40 221 -5.343 51 11

Penalty on partial correlations: shrink towards zero
4 710 438 303 213 120 69 38 18 10 213 -0.683 51 3
6 709 444 304 207 121 73 44 25 15 216 -1.340 57 5
8 701 440 306 205 124 75 47 29 20 216 -1.997 59 7

12 697 438 303 199 124 79 54 37 27 218 -3.331 58 10
16 689 440 299 194 125 81 58 41 31 218 -4.863 57 10
20 679 441 303 195 125 84 60 45 35 219 -6.267 55 10

aEffective sample size of prior
bIn descending order with λ̄ denoting their mean
cChange in log likelihood compared to unpenalized analysis
dPercentage reduction in average loss for genetic (G) and residual (E) covariance matrix

In particular, bias in unpenalized estimates of genetic correlations between traits i and
i + 1 due to constraints on the parameter space is notable for the traits with low heri-
tability (i ≥ 3). This bias is larger if the corresponding residual correlation is negative.
This results in a substantial difference between genetic and phenotypic values so that
penalization increases bias in estimates of those genetic correlations quite markedly.
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3 Detailed results for applied example

The effect of penalized estimation for the applied example on individual genetic parame-
ters is shown in Figure S5, Figure S6 and Figure S7 for heritabilities, genetic and residual
correlations, respectively, showing values in ascending order of unpenalized estimates.
Figures demonstrate that the effect of penalization was generally very small. Estimates
that changed most, by approximately one standard error, were the heritability for trait
4, the trait with the least number of observation, and the residual correlation between
traits 1 and 4, for a penalty on canonical eigenvalues with PSS of 8.

Pλ ESS=4 Pλ ESS=8 Pπ(0) ESS=8,8
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Figure S5 Effect of penalization on estimates of individual heritabilities ( Unpenalized
Penalized; vertical bars shown the range of plus/minus one standard deviation for

unpenalized estimates)
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Figure S6 Effect of penalization on estimates of individual genetic correlations ( Unpe-
nalized Penalized; vertical bars shown the range of plus/minus one standard deviation
for unpenalized estimates)
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Figure S7 Effect of penalization on estimates of individual residual correlations ( Unpe-
nalized Penalized; vertical bars shown the range of plus/minus one standard deviation
for unpenalized estimates)
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Table S3 Characteristics of convergence behaviour and changes in likelihood for a single,
simulated data set for s = 400 sires with population parameters obtained combining
heritability set H with correlation scenario III.

PSSa Unpenalized Pλ Pπ(0) Pπ(P)

Choleskyb Canonicalc Canonical Cholesky Cholesky

8 Likelihoodd 0 -0.002 -1.397 -1.742 -1.578
AI iteratese 10 25 30 10 8
DF iteratesf 0.000 0.000 0.001 0.058 0.060

20 Likelihood -8.252 -5.979 -4.294
AI iterates 25 11 9
DF iterates 0.000 0.079 0.109

aEffective sample size ν
bStandard parameterisation to elements of the Cholesky factor of covariance matrices to be estimated
cParameterisation to elements of the canonical transformation
dUnpenalized log likelihood, expressed as deviation from standard, unpenalized analysis
eNumber of average information algorithm REML iterates carried out
fChange in penalized log likelihood in subsequent derivative-free maximization steps, expressed as

deviation from value for last AI step

4 Effect of penalization on convergence of REML analyses

We illustrate the effects of penalization on the convergence behaviour of REML analyses
for a data set simulated for population values H-III and s = 400 sires and effective
sample sizes of ν = 8 and ν = 20. Analyses were carried out using our mixed model
package WOMBAT, using an average information algorithm to locate the maximum of
the likelihood, followed by derivative-free search steps (and possibly additional average
information and derivative-free steps) to ensure convergence. Data and parameter files
are available as worked Example 19 for the package.

Figure S8 shows the convergence behaviour for mild penalization (ν = 8) and additional
characteristics are summarized in Table S3. For a simple model with means as the only
fixed effects and all records recorded on all animals, convergence of the standard, unpe-
nalized analysis is rapid in spite of the substantial number of parameters to be estimates
(45 genetic covariances and 45 residual covariances). This uses a parameterisation to the
elements of the Cholesky factors of the two covariance matrices to be estimated. Perform-
ing the same analysis parameterising to estimate the canonical eigenvalues and elements
of the canonical transformation instead increases the number of iterates required. The
effect of parameterisation carries through to penalized analyses. While estimation on
the canonical simplifies implementation , it is relatively slow to converge. Convergence
appeared to be to the maximum of the penalized likelihood, with derivative-free search
steps not increasing it further, even for more stringent penalization for ν = 20. In contrast,
penalties on correlations are implemented using the standard parameterisation to ele-
ments of the Cholesky factor. Thus penalized estimation has little impact on the number
of average information algorithm iterates required. However, for these cases subsequent
derivative-free search steps yield additional, small increases in the likelihood, especially
for the more stringent penalisation for ν = 20.
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Figure S8 Effect of penalization and parameterisation on convergence of REML analyses
for a single replicate of simulated data obtained by combining heritability set H with
correlation scenario III for s = 400, applying penalties with an effective prior sample size
of ν = 8 (Parameterisation: Elements of Cholesky factors of covariance matrices, El-
ements of canonical decomposition; filled symbols: average information, open symbols:
derivative-free maximization steps; Likelihood values are given as deviation from value
starting values and scaled by dividing by 1000)
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