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Abstract
Signaling networks are made up of limited numbers of molecules and yet can code informa-

tion that controls different cellular states through temporal patterns and a combination of sig-

naling molecules. In this study, we used a data-driven modeling approach, the Laguerre filter

with partial least square regression, to describe how temporal and combinatorial patterns of

signaling molecules are decoded by their downstream targets. The Laguerre filter is a time

series model used to represent a nonlinear system based on Volterra series expansion. Fur-

thermore, with this approach, each component of the Volterra series expansion is expanded

by Laguerre basis functions. We combined two approaches, application of a Laguerre filter

and partial least squares (PLS) regression, and applied the combined approach to analysis

of a signal transduction network. We applied the Laguerre filter with PLS regression to iden-

tify input and output (IO) relationships between MAP kinases and the products of immediate

early genes (IEGs). We found that Laguerre filter with PLS regression performs better than

Laguerre filter with ordinary regression for the reproduction of a time series of IEGs. Analysis

of the nonlinear characteristics extracted using the Laguerre filter revealed a priming effect of

ERK and CREB on c-FOS induction. Specifically, we found that the effects of a first pulse of

ERK enhance the subsequent effects on c-FOS induction of treatment with a second pulse

of ERK, a finding consistent with prior molecular biological knowledge. The variable impor-

tance of projections and output loadings in PLS regression predicted the upstream depen-

dency of each IEG. Thus, a Laguerre filter with partial least square regression approach

appears to be a powerful method to find the processing mechanism of temporal patterns and

combination of signaling molecules by their downstream gene expression.
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Introduction
Signal transduction networks have a “bow-tie” architecture. That is, a relatively small set of
molecules comprising the signal network are capable of both receiving information from
diverse environmental sources and inducing a wide variety of gene expression patterns [1].
This raises questions as to how signals are selectively encoded by a limited number of signaling
molecules and selectively decoded by their downstream targets. The recent studies have shown
that different combinations of signaling molecules, as well as the time series of signaling, play
important roles in transmission of complex information [2–7]. Part of understanding a com-
plex system is to decode the relationship between inputs and outputs (IO relationship).
Dynamic modeling is one approach that can be applied to effectively identify IO relationships.
In this study, we focus on using data-driven dynamics to look at IO relationships between
MAP kinases (MAPKs) and CREB (inputs) and the immediate early gene products (IEGs; out-
puts), in PC12 cells. We chose to focus on the signaling system that processes the information
on cell fate decisions in a number of molecular species.

A number of methods for dynamic modeling have been proposed but each method has
advantages and disadvantages. Kinetic modeling based on biochemical reactions from the liter-
ature is a typical modeling approach adopted in systems biology and can perform well when
sufficient knowledge of a signaling network is available [8, 9]. However, kinetic modeling is not
applicable if knowledge of the signaling pathway is insufficient. By contrast, since data-driven
models infer and identify IO relationships by learning from the data sets, they can be suitable
even in cases where knowledge of a signaling pathway is not adequate [10]. Nevertheless, there
remains some problems with data-driven modeling. Although there is often significant nonlin-
earity in biological reactions, identifying nonlinear IO relationships using data-driven model-
ing is not easy as compared to identifying linear IO relationships due to its tendency for having
a large model space to explore. In addition, nonlinear data-driven modeling requires quantita-
tive measurement of signaling activities over time, and under various conditions or following
various perturbations. Thus, nonlinear data-driven modeling based on experimental data
remains a big challenge.

With all this in mind, we sought to develop a nonlinear data-driven modeling approach that
can help address how changes in the time series of signaling, as well as the combination of mul-
tiple signaling inputs, are decoded by downstream targets. We previously used a nonlinear
autoregressive exogenous model (hereafter, “nonlinear ARX model”) to analyze the same sig-
naling network explored in this study [11]. The nonlinear ARX model we developed consists of
a combination of the linear ARX model itself and nonlinear transformation of the input using
the Hill equation. Our nonlinear ARX model was able to reproduce the time series of immedi-
ate early genes (IEGs) in response to signals. However, with this approach, interpretation of
the response function is difficult, as nonlinearity of the ARX is heuristically introduced by non-
linear transformation of the input. Another complication of the approach is that the nonlinear
ARX model includes autoregressive components. In other words, the model reproduces the
time series of each IEG’s response of future time not only based on the inputs pMAPKs and
pCREB of past time, but also based on the IEGs themselves of past time. To avoid such issues,
we would like to establish a more generalized approach for nonlinear-data driven modeling
framework by which parameters can be trained with a limited experimental data.

In this study, we used a Laguerre filter [12] with partial least square (PLS) regression to infer
nonlinear IO relationships from time series data. A Laguerre filter is a time series model that
includes nonlinear IO relationships. The Laguerre filter is yielded by the Volterra expansion of
nonlinear system and consists of linear and nonlinear components, which are expanded by
Laguerre basis functions and correspond to the response functions of linear and nonlinear
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system. The expansion coefficients of the Laguerre basis functions are determined using a PLS
regression method [13]. We applied the Laguerre filter approach to identify the IO relation-
ships among MAP kinases, CREB and IEGs, and found a priming effect of phosphorylated
ERK (pERK) and phosphorylated CREB (pCREB) on c-FOS induction from the second-order
Volterra kernel.

Results

Representation of a nonlinear system using a Laguerre filter approach
A Volterra model is a canonical representation of a nonlinear system. We constructed a model
based on a second-order Volterra model

yðtÞ �
Z

dt1k1ðt1Þuðt � t1Þ þ
Z

dt1dt2k2ðt1; t2Þuðt � t1Þuðt � t2Þ; ð1Þ

where u(t) and y(t) are an input and output, respectively. For simplicity, we set the constant
term to 0 without loss of generality. The above equation consists of the sum of single and dou-
ble convolution integrals, where k1 and k2 are the Volterra kernels. The first-order term, a sin-
gle convolution integral, corresponds to the IO relationship of linear time invariant systems,
and represents a linear component of the Volterra model. The second-order term, a double
convolution integral, represents a nonlinear component of the Volterra model. The second-
order Volterra kernel k2 represents the nonlinear way in which two inputs of pulse affect an
output (Fig 1A). The 2nd order Volterra kernel k2 is interpreted as the interaction of two
impulses, which can be represented by 2 dimensional symmetric functions about the diagonal.
In this study, interactions between different inputs are ignored for simplicity. Thus, the interac-
tion of two impulses with lag τ of the same input is represented by a line through point τ of the
x- or y-axis, in parallel with the diagonal. For example, the response of two impulses with lag τ
can be represented by k1(t)+k1(t−τ)+k2(t,t)+2k2(t,t−τ)+k2(t−τ,t−τ).

The Volterra kernels are determined by truncating the lower order series of the Laguerre
basis expansion. The n-th order Laguerre polynomial function is,

lnðtÞ ¼
ffiffiffiffiffi
2p

p
ept

1

ðn� 1Þ!
d
dt

� �n�1

tn�1e�2pt; ð2Þ

where the time-scale of exponential decline is controlled by parameter p. The complexity of
dynamics is dependent on n-th order of the function (Fig 1B). This function was chosen as a
basis function due to its relaxing dynamics, a property that is appropriate to express the
dynamics of many physiological systems [14]. The Laguerre functions up to k-th order were
used as the basis functions; the n-th order Laguerre basis functions defined in [0,1] are
orthogonal to each other, and each parameters can thus be estimated independently. The Vol-
terra model, combined with Laguerre basis expansion of kernels, comprises the filter itself. The
expansion coefficients of the Laguerre basis functions are estimated by regression.

To assess the applicability of the model for signaling study, we applied this framework to a
number of datasets computationally produced by modeling the network architectures com-
monly found in signaling networks with a simple set of input dynamics adapted from previous
work (Fig 1C) [15]. We used seven network modules which include one- or two-component
regulatory modules with various regulatory mechanisms, thus expected to cover different
types of nonlinearity often found in signaling networks. For each modules, the output X� is
simulated by feeding the input time-series which comprises of 10 different input patterns with
301 data points each. The model is trained with eight input patterns and tested against two
input patterns.
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Fig 1. Development of Laguerre filter with PLS regression. (A) A schematic representation of 1st and 2nd Volterra
kernels. If a nonlinearity exists in a system (such as the negative feedback as illustrated), the non-zero values appears in
2nd kernel. (B) Examples of Laguerre polynomial functions with different parameters. (C) The network modules and input
patterns used to create artificial input-output time series. We used 10 input patterns in total, including 2 input patterns for
test models. 7 modules represent some of the commonly found biochemical network architectures. (D) The log-scale mean
square error (MSE) of the four models for each modules. (E) Heatmap showing MSE of LF-PLS normalized by MSE of
FIR-PLS.

doi:10.1371/journal.pone.0160548.g001
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As we increased k, the number of Laguerre basis functions used for expansion, the mean
square error (MSE) for test inputs of ordinary Laguerre filter (Ordinary LF) increased drasti-
cally (Fig 1D). This implies the difficulty of parameter estimation of ordinary LF under a lim-
ited amount of training data in cell signaling systems. We thus applied partial least square
(PLS) regression to estimate the expansion coefficients, hereafter called LF-PLS model, which
successfully suppressed the over-fitting of the model even with large k. We also adopted the lin-
ear models for comparison, a finite impulse response model with ordinary regression (Ordi-
nary FIR) and a finite impulse response model combined with PLS regression (FIR-PLS).
LF-PLS and the ordinary LF can describe the nonlinear IO relationships based on extension of
the impulse response via the Volterra expansion, whereas the ordinary FIR and FIR-PLS
describe only linear IO relationships based on impulse response. Similarly to the nonlinear LF,
but to a lesser extent, the use of PLS regression reduced the MSE for test inputs for these linear
models (Fig 1D). This result suggests the applicability of the PLS regression in reducing over-
fitting of the parameter estimation particularly for the nonlinear modeling. We further com-
pared the MSE for test inputs of LF-PLS to those of FIR-PLS (Fig 1E). In all of the modules, the
predictability of LF-PLS is comparable or better than those of FIR-PLS, except for the models
with low k. Again, the PLS regression suppresses the over-fitting of the models, and thus MSE
for test inputs seems to converge for the models with k bigger than 4, although there are some
local minima probably caused by initial value problem. Given that, hereafter we set k to 10 and
trained models several times with randomized initial values in order to achieve a robust param-
eter estimation.

The MAPK, CREB, IEG signaling network
Growth factors induce phosphorylation of signal transduction molecules. Subsequently, these
molecules lead to increased levels of IEG proteins, presumably via induction of transcription.
We used quantitative image cytometry (QIC) [16], which integrates a quantitative immunos-
taining technique and a high-precision image-processing algorithm for cell identification, to
measure a set molecules over time. Specifically, we measured levels of the phosphorylated forms
of four signaling molecules, phosphorylated ERK (pERK), JNK (pJNK), p38 (pp38) and CREB
(pCREB), and protein levels of five IEGs, which are c-FOS, EGR1, c-JUN, JUNB and FOSB (Fig
2A and 2B and S1 Fig). Hereafter, we use “pMAPKs” to refer collective to three MAP kinases,
pERK, pJNK and pp38, and “IEGs” to refer to c-FOS, EGR1, c-JUN, JUNB and FOSB. The data
set used to train the model is identical to the data set used in our previous work [11]. The mole-
cules were measured every 3 min up to 177 min in 7 conditions, which are NGF (5 ng/ml,
0.5 ng/ml), PACAP (100 nM, 1 nM), EGF (5 ng/ml, 0.5 ng/m), and anisomycin (50 ng/ml).

Performance of the Laguerre filter combined with PLS regression
We applied the Laguerre filter in combination with PLS regression (LF-PLS) and set each of five
IEGs as outputs and the four molecules, pMAPKs and pCREB, as inputs (Fig 2A). The LF-PLS
successfully reproduced the time series of IEGs (Fig 2B and S1 Fig). To assess the efficacy of this
framework, the LF-PLS model was compared with the other models. To evaluate performance
among the four models, we calculated the MSE of leave-one-out cross-validation (LOO CV)
(Fig 2C). For each round of LOO CV, one out of 7 samples, corresponding to treatment with 4
different growth factors (see Materials and Methods), is chosen as the LOO CV test. The resid-
ual distributions for each LOO CV and estimated parameters of LOO CV and final model are
plotted (S2 and S3 Figs). The MSE of the LOO CV test of LF-PLS was smaller than that of ordi-
nary LF (Fig 2C). Similarly, the MSE of the LOO CV of FIR-PLS was smaller than that of ordi-
nary FIR. This indicates the efficacy of the PLS regression compared to the ordinary regression.
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Fig 2. pMAPKs and pCREB as inputs and immediate early gene expression as outputs. (A) The time series of pMAPKs and
pCREB in response to NGF (5 ng/ml, red), PACAP (100 nM, blue), EGF (5 ng/ml, green), and anisomycin (50 ng/ml, black) were
measured by quantitative image cytometry (QIC) at 3-min intervals for 180 min. One time series with respect to each growth factor is
shown to facilitate visualization. Other time series are shown in S1 Fig. (B) The time series of the immediate early genes (IEGs)
measured by QIC (circles) are shown, together with simulated results of Laguerre filter combined with partial least square (PLS)
regression (LF-PLS) (solid lines). The color codes are same as described for panel A. These data, together with responses to other
doses of the growth factors (S1 Fig), were used for parameter estimation of LF-PLS. The circle plots in panels (A) and (B) were
created based on data from [11]. (C) The MSE of leave one out error of cross validation (LOO CV) for each method. The full MSE of
LOO CV of Laguerre filter is shown in S6 Fig. The numerical value of MSE of training data set and LOO CV are shown in S1 and S2
Tables, respectively.

doi:10.1371/journal.pone.0160548.g002
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The MSEs of LOO CV of the LF-PLS for EGR1 and c-JUN were larger than those obtained
with the FIR-PLS. This suggests that the nonlinearity of EGR1 and c-JUN is relatively weak by
which can be expressed by linear models or the nonlinear models were not trained accurately
with a given training dataset. The ordinary LF and LF-PLS are nonlinear models that include a
linear model and able to reproduce an IO relationship of the linear model. However, a nonlin-
ear model needs to estimate a larger number of parameters than a linear model from the finite
size data set. Thus, the accuracy of parameter estimation of a nonlinear model can sometimes
be lower than a linear model, when small-size data set is used. This indicates that when the IO
relationship is linear, the results obtained using LF are not always better than those obtained
using linear models. However, for c-FOS, JUNB and FOSB, the predictability of LF-PLS was
better than that of FIR-PLS (Fig 2C and S4 Fig). The Mann—Whitney U-test was used to
examine a significant difference of each median of squared residuals, which were obtained
from LOO CV, between LF-PLS and FIR-PLS. The significant differences appeared in c-FOS,
EGR1, c-JUN, and FOSB in significant level 0.05, and JUNB in significant level 0.1 (S3 Table).
This result indicates that, even with a limited amount of training data that we can obtain from
the experiment, our framework using nonlinear LF-PLS can be more appropriate than using
linear models for describing the IO relationship between some of the signaling pathways and
their transcriptional output.

The residual distributions indicate (S2 Fig) that the underestimation and overestimation in
LF-PLS of c-FOS, JUNB and FOSB less frequently occurred and were smaller than those in
FIR-PLS. In FIR-PLS of EGR1 and c-JUN, the relationships is upside down. A few of coefficient
parameters estimated by PLS regression of final model correspond to outliers for the distribu-
tions of coefficient parameters, which was estimated by PLS regression in each LOO CV test
(S3 Fig). The number of corresponding outliers are 8, 11, 7, 0 and 0 for c-FOS, EGR1, c-JUN,
JUNB and FOSB, respectively.

Interpretation of the 1st and 2nd order Volterra kernels
The 1st and 2nd order Volterra kernels k1, k2 of each output are shown in Fig 3. The 1st order
Volterra kernel k1 is equivalent to the impulse response function to the input of just one
impulse whose effect is linear. The 2nd order Volterra kernel k2 represents the nonlinear effect
of the input of two impulses. In response to the impulsive input of pERK, the peak times of 1st
order Volterra kernel k1 of c-FOS, EGR1 and c-JUN were earlier than those of JUNB and
FOSB. This result indicates that c-FOS, EGR1 and c-JUN respond to pERK quicker than
JUNB and FOSB. The 1st order Volterra kernel k1 of EGR1 and c-JUN decayed quickly,
whereas the 1st order Volterra kernel k1 of c-FOS and FOSB decayed slowly. Thus, c-FOS
responds to pERK more quickly and sustained manner. The initial rise of FOSB was slower
than those of c-FOS, EGR1 and c-JUN, and the 1st order Volterra kernel k1 of JUNB was
weaker than those of c-FOS, EGR1 and c-JUN. The different characteristics of FOSB and
JUNB as compared with c-FOS, EGR1 and c-JUN might reflect indirect regulation of FOSB
and JUNB by pMAPKs. Indeed, unlike c-Jun, which is activated by JNK, JUNB is not directly
induced by JNK [17]. In addition, a putative DEF (docking for ERK FXFP) domain is present
in c-FOS but not in FOSB [18].

The 2nd order Volterra kernel k2 of each output is almost everywhere positive, indicating
the IO property of double impulse inputs in which the first impulse enhances second lagged
impulse. This indicates a positive synergistic effect of double impulse inputs, a phenomenon
referred to hereafter as the priming effect. The intensity of the 2nd order Volterra kernel k2
becomes lower with increasing distance from the diagonal, indicating that the nonlinear effect
becomes smaller as the lag between the first and second impulse increases.
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Fig 3. First and second order Volterra kernels. The solid line in upper panels indicates the 1st order
Volterra kernel k1 in the time space. The color in the lower panels indicates the 2nd order Volterra kernel k2 in
the time space.

doi:10.1371/journal.pone.0160548.g003
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In response to the pCREB input, the 1st order Volterra kernel k1 of each output behaved
similarly as compared with the response with pERK as the input, with the exception of the
response of JUNB. In the off-diagonal or around origin of 2nd order Volterra kernel k2 of each
output, again with the exception of JUNB, the 2nd order Volterra kernel k2 was negative. This
indicates that the IO property of double impulse inputs, in which the first impulse reduces the
effect induced by a second, lagging impulse, highlighting that regulation of IEGs by pERK is
distinct from regulation by pCREB.

In response to each of pERK and pCREB inputs, an intricate, multimodal pattern appeared
in the 1st and 2nd order Volterra kernels k1, k2 of EGR1 and c-JUN. This may suggest the over-
fitting in the estimation of EGR1 and c-JUN.

In response to the pp38 or pJNK inputs, the intensities of the 1st order Volterra kernel k1
and the 2nd order Volterra kernels k2 were lower as compared to what is observed for pERK
and pCREB. Thus, the role of pp38 and pJNK in this network seems less important than that of
pERK and pCREB.

c-FOS mainly receives signals from pERK and pCREB. The effect of the 2nd order Volterra
kernels k2 of pERK and pCREB is concentrated in the diagonal band, which corresponds to a
time period of less than 50 minutes. This result allows us to infer that c-FOS reveals a positive
synergistic effect following treatment with two impulsive inputs with a lag-time of 50 minutes
between the two impulsive inputs (the region inside the dashed lines in Fig 3). This might
reflect the priming effect from pERK to c-FOS reported previously [18]. To better illustrate the
nonlinear contribution to the system, for nonlinear LF-PLS and also a model ignoring nonlin-
ear terms, we plotted the simulated and theoretical c-FOS time course in the presence of two
pulses and impulses of pERK and pCREB (Fig 4B). The second pulse or impulse induced a
large increase of c-FOS intensity in the nonlinear model, when the time-interval is short in par-
ticular. In addition to c-FOS, the 1st order Volterra kernels k1 of EGR1 and c-JUN were similar
in their responses to pERK, pCREB and pJNK, whereas the 2nd order Volterra kernel k2 was
stronger in EGR1. This result suggests the nonlinear synergy of pERK and pCREB on EGR1,
which is similar to the priming effect of pERK on c-FOS induction [18]. c-FOS and EGR1 are
known to respond better to intermittent ERK activation as compared with sustained ERK acti-
vation [19], which also agrees with the result obtained for the 2nd order Volterra kernels.
Thus, 2nd order Volterra kernels appear to be able to reveal synergistic regulation of gene
expression by a signal transduction pathway.

Effects of inputs on the VIP score
The upstream dependency of downstream pathway attracts much interest in signaling study.
From a point of view of input-output system, the upstream dependency can be considered as
a selection problem of input variables. A major framework of variable selection is model selec-
tion by use with information criteria, such as AIC. However, a variable importance of projec-
tions (VIP) score [20] has been conventionally used as a measure of variable selection in PLS
regression. We used the average of the VIP scores with respect to upstream molecule (see
methods), which is calculated from regression coefficient of Laguerre filter, as an index of
upstream dependency. The average of the VIP scores shown in Fig 4A indicates that pERK
and pCREB are important for c-FOS induction, consistent with earlier findings [11, 21]. Each
IEG appears to respond to each of the MAPKs and pCREB, although with differing levels of
response to the different inputs. This framework, the comparison of the mean VIP scores
from each inputs, provides the unbiased interpretation of upstream dependency from experi-
mental data.
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Fig 4. Themean VIP score and a dendrogram based on hierarchical clustering of input loading. (A)
Averaged VIP scores of the input. (B) Computational and theoretical c-FOS time course given two pulsatile
and impulsive pERK and pCREB inputs. For the top panels, c-FOS time course was simulated when two
pulses were given as inputs. The bottom panels show the theoretical impulse responses when two impulses
were given as inputs. The amplitude of the second impulse was tuned from 0 to 1. The calculation with
nonlinear model is shown in blue and without nonlinearity is shown in red. (C) Hierarchical clustering as
applied to the input loadings. The distance between two samples is defined as 1-r where r is the Pearson
correlation. The distance between two clusters is defined as the shortest distance between two samples
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Similarity between input loadings reflects decoding characteristics
The LF-PLS yields the input loadings for the input space (S5 Fig). The loading is proportional
to the correlation between the score and the original variable, and can be interpreted as the
contribution of the original variable to the latent variable, which is the principal component.
The input loadings are obtained with respect to each IEG output. Thus, we consider that the
similarity between the input loadings of each output IEG reflects the decoding characteristics
from the inputs, and thus, we applied the hierarchical clustering to the input loadings (Fig 4C).
Namely, we applied the hierarchical clustering to the data set of concatenated input loadings

matrix ½TT
c�FOS;T

T
EGR1;T

T
c�JUN;T

T
JUNB;T

T
FOSB�T , where TIEG is a input loading matrix of IEG. The

two input loadings of JUNB and FOSB are the most similar to one another and to c-FOS. This
suggests that JUNB and FOSB are downstream of c-FOS [11, 22, 23]. The input loadings of
EGR1 are similar to those of c-JUN. This is consistent with our previous finding that EGR1
and c-JUN use pERK as an input [11]. The conclusions, based on the model, that c-FOS uses
pERK and pCREB as inputs and that c-FOS is upstream of JUNB and FOSB, are consistent
with previous experimental observations [11, 21].

Discussion
We constructed the LF-PLS model which can be trained unbiasedly from experimental time-
series data and applied this framework to infer the IO relationship between MAPKs and CREB,
and the IEGs. Our results suggest a priming effect of pERK and pCREB on c-FOS induction.
Notably, this finding was predicted by the model without using specific knowledge of the
mechanisms underlying c-FOS activation [18]. Indeed, an advantage of data-driven modeling
is that the model can extract characteristics of system without the specific knowledge of bio-
chemical networks, even though the IO relationship inferred from the Laguerre filter does not
necessarily mean direct molecular interactions. Furthermore, in this study we used PLS regres-
sion to estimate the parameters of the Laguerre filter, and found that the LF-PLS reproduced
the time series data better than the ordinary LF.

The MSE of LOO CV of LF-PLS was not smaller than that of the FIR-PLS for EGR1 and c-
JUN, despite the higher expression ability of IO relationships of LF-PLS as compared with that
of FIR-PLS. The larger MSE of LOO CV of LF-PLS may be caused by over-fitting. Since the
LF-PLS has a larger number of parameters than the FIR-PLS, the LF-PLS might require a larger
sample size than the FIR-PLS to tune the parameters well. Thus, we consider that if the number
of samples is sufficient, the performance of LF-PLS is either the same or better than that of the
FIR-PLS. Furthermore, combining regularization methods such as l2 norm minimization [24]
with PLS regression might reduce over-fitting of the LF-PLS. Other high-throughput tech-
nique, such as live-cell imaging using signaling reporters, now emerges to produce a lot more
data points, which would be beneficial to apply our framework in the future.

We found a priming effect of pERK and pCREB on c-FOS induction by applying LF-PLS.
Previous work [18] has shown c-FOS is expressed about 30 min after stimulation and degraded,
with a half-life of approximately 30 min; however, its half-life is extended to more than 2 h
when it is phosphorylated by ERK [25–27]. Our analysis of the 2nd order Volterra kernel pre-
dicted two pulses of pERK, with time lags of 50 min or less between them, will induce c-FOS
strongly. This corresponds well to experimentally observed time series of c-FOS induction and

drawn from each of the clusters. The leaf nodes represent the output loadings, and the order of principle
components is described in parenthesis. The loadings and scores of the input and output used for principal
component analysis are shown in S5 Fig.

doi:10.1371/journal.pone.0160548.g004
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degradation. However, although we inferred the findings from the second kernel correspond to
this protein half-life regulation, it also could be other mechanisms such that involved in tran-
scription factor recruitment and chromatin opening. The mechanism underlying the priming
effect remains unknown and, further study is required to address the issue.

We previously used a nonlinear autoregressive exogenous model (nonlinear ARX model)
for analysis of the same signaling network, instead of using the Laguerre filter [11]. A nonlinear
ARX model consists of a combination of a linear ARX model and nonlinear transformation of
the input using the Hill equation. The linear ARX model is a technique of system identification
used in control engineering. Roughly speaking, a linear ARX model predicts the future time
series of outputs based on the linear sum of a past time series of inputs and outputs. Although
the nonlinear ARX model reproduced a time series for IEGs, interpretation of the response
function of the nonlinear ARX model is not easy because the nonlinearity of ARX is heuristi-
cally introduced by the nonlinear transformation of input. By contrast, the nonlinearity of the
Laguerre filter is introduced by the Volterra expansion; thus, the response function of the
Laguerre filter is interpreted as an extension of the impulse response. In addition, the nonlinear
ARX model includes autoregressive components, whereas the Laguerre filter applied in this
study does not include autoregressive components. In other words, the nonlinear ARX model
reproduces the time series of IEGs by pMAPKs, pCREB and each IEG, but the Laguerre filter
reproduces the time series of IEGs by pMAPKs and pCREB without each IEGs. Thus, the
Laguerre filter approach appears to be more widely applicable than use of a nonlinear ARX
model in cases in which monitoring the outputs is not easy.

Statistical model selection by use with information criteria such as Akaike information crite-
rion (AIC) [28] is a straightforward approach to determine inputs. In our previous study [11],
the input was determined by exploring the AIC of all candidates of the models, which includes
all combinations of inputs. (Note that, the number of input variables is at most 4, thus, we can
brute-force explore all combination of inputs for multi input and single output nonlinear ARX
model.) By contrast, we used the VIP score to examine the importance of inputs in this study.
The three IO relationships between pCREB and EGR1, c-JUN, and FOSB, respectively,
appeared only by VIP score (S7 Fig). On the other hand, the IO relationship between pCREB
and JUNB appeared only by AIC of nonlinear ARX model. Thus, the results obtained using the
VIP score analysis seems to show more redundancy in input selections as compared to what
was predicted using the AIC approach.

In the previous study [11], c-FOS were selected because prior knowledge suggested they
were candidate inputs to JUNB and FOSB [22]. In this study, c-FOS was not used as an input
to JUNB and FOSB because we avoided applying prior knowledge. This may lead to a differ-
ence in c-FOS-dependency on JUNB and FOSB induction inferred using our previous
approach versus with the current study. However, the VIP score of pCREB was the largest
for both JUNB and FOSB, although the VIP score of pCREB for JUNB is smaller than 0.6.
Given that c-FOS is downstream of pCREB [29], this result is reasonably consistent with the
results of our previous study using AIC, in which c-FOS was selected as an input to JUNB
and FOSB [11].

For input selection, the AIC is evaluated by eliminating inputs that are assumed not to affect
outputs from the model. However, the VIP score is evaluated based on the full model, contain-
ing all inputs. Thus, AIC is more strict regarding input selection as compared to the VIP score
approach. We reason that this might be one of the reasons the VIP score tends to be redundant.
Furthermore, we propose that the VIP score is useful in the conventional point of view, as the
VIP score has a lower computational cost than input selection by AIC. Together with the VIP
score, the similarity between input loadings might help in selecting candidates of the model to
further explore by AIC.
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Reproducing strong nonlinearity is difficult to do using a Laguerre filter approach since
higher Volterra kernels are required. Using a higher Volterra kernel increases the number of
parameters, possibly leading to over-fitting and a huge computational cost for training of the
model. However, empirical evidence suggests that strong nonlinearity is rare in signal trans-
duction networks. Thus, the LF-PLS can be useful for analysis of many signal transduction
pathways.

In conclusion, using data-driven modeling, we found a priming effect of c-FOS through the
response function. This indicates that data-driven modeling is useful and identification of the
IO relationships can help elucidate a biological mechanism. In addition, tackling the nonlinear-
ity of biological systems remains a big challenge. The Laguerre filter can provide a relatively
simple representation of the nonlinearity of living systems, and yields an interpretable response
function, which can be regarded as a natural extension of the impulse response function.
Parameter estimation of the nonlinear model is often difficult due to the high expression ability
of model. However, we found that applying a Laguerre filter approach combined with PLS
regression works effectively. Thus, we propose that the LF-PLS approach is widely applicable
to a number of biological systems.

Materials

Antibodies
Mouse anti-phospho-ERK1/2 (Thr 202/Tyr 204) monoclonal antibody (mAb) (#9106), rabbit
anti-phospho-CREB (Ser 133) mAb (#9198), rabbit anti-phospho-JNK (Thr183/Tyr185) mAb
(#4668), rabbit anti-EGR1 mAb (#4154), rabbit anti-c-JUN mAb (#9165), rabbit anti-c-FOS
mAb (#2250), rabbit anti-JUNB mAb (#3753) and rabbit anti-FOSB mAb (#2251) were pur-
chased from Cell Signaling Technology (Beverly, MA). Rabbit anti-phospho-p38 mAb (v1211)
was purchased from Promega (Madison, WI).

Cell culture and treatments
PC12 cells (kindly provided by Masato Nakafuku, Cincinnati Children’s Hospital Medical Cen-
ter, Ohio) [8] were cultured at 37°C under 5% CO2 in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum and 5% horse serum (Invitrogen, Carls-
bad, CA), and stimulated by recombinant mouse b-NGF (R&D Systems, Minneapolis, MN),
EGF (Roche, Mannheim, Germany), PACAP (Sigma, Zwijndrecht, The Netherlands), or aniso-
mycin (EMD Biosciences, Inc., San Diego, CA) as previously described [8]. We used a low dose
of anisomycin (50 nM) to activate p38 and JNK without inhibiting translation. For the inhibi-
tor experiment, we stimulated cells with NGF in the presence of 10 nM PD (PD0325901, a
MEK inhibitor, Sigma Zwijndrecht, The Netherlands), 5 mMH89 (PKA inhibitor, Sigma
Zwijndrecht, The Netherlands). The inhibitors were added 30 min before growth factor stimu-
lation. For the QIC assays, cells were seeded at a density of 104 cells per well in 96-well poly-L-
lysine-coated glass-bottomed plates (Thermo Fisher Scientific, Pittsburgh, PA), and then
starved in DMEM containing 25 mMHEPES and 0.1% bovine serum albumin for approxi-
mately 18 h before stimulation. Stimulations for cells seeded in 96-well microplates were per-
formed by replacing the starvation medium with a medium containing the stimulant, using a
liquid handling system (BiomekH NX Span-8, Beckman Coulter, Fullerton, CA) with an inte-
grated heater-shaker (VariomagH, Daytona Beach, FL) and robotic incubator (STX-40, Lico-
nic, Mauren, Liechtenstein). Note that all the cells within a plate were fixed simultaneously to
prevent the exposure of the cells to formaldehyde vapor during the treatment.
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Quantitative Image Cytometry (QIC)
QIC [16] was performed as previously described. Briefly, after stimulation with growth factors,
the cells were fixed, washed with phosphate-buffered saline (PBS), and permeabilised with
blocking buffer (0.1% Triton X-100, 10% fetal bovine serum in PBS). The cells were washed
and then incubated for 2 h with primary antibodies diluted in Can Get Signal immunostain
Solution A (Toyobo, Osaka, Japan). The cells were washed three times and then incubated for
1 h with second antibodies. After immunostaining, the cells were stained with a marker of the
nucleus (Hoechst 33342; Invitrogen) and of the cytoplasm (CellMask Deep Red stain; Invitro-
gen). Images of the stained cells were acquired using a CellWoRx (Thermo Fisher Scientific)
automated microscope with an a610 objective. For QIC analyses, we acquired two different
fields per well, making it possible to obtain data for an average of 1,238 +/- 356 cells per well
(mean +/- 6 SD). All liquid handling for the 96-well microplates was performed using a Bio-
mekH NX Span-8 liquid handling system. Intensities of the signaling activity and the IEGs
between experiments were normalized to an internal control included on each 96-well plate.

Methods

Laguerre filter
A nonlinear single input single output (nonlinear SISO) system with the input u(t) and the out-
put y(t) at time t

yðtÞ ¼ F½t; uðtÞÞ�; ð3Þ
can be expanded using a Volterra series [12]. We assume that the system is approximated by
the second order Volterra model

yðtÞ � k0ðtÞ þ
Z

dt1k1ðt1Þuðt � t1Þ þ
Z

dt1dt2k2ðt1; t2Þuðt � t1Þuðt � t2Þ; ð4Þ

where k0,k1 and k2 are the zero-th order, the first order and the second order Volterra kernel,
respectively. Hereafter, we set k0 to a constant value.

Similarly, a nonlinear multiple input single output (nonlinear MISO) system model withm
input u(i)(t),i = 1,� � �,m and output y(t)

yðtÞ ¼ F½t; uð1ÞðtÞ; � � � ; uðmÞðtÞ�; ð5Þ
is approximated by the second order Volterra model

yðtÞ � k0 þ
Xm
i¼1

Z
dt1k

ðiÞ
1 ðt1ÞuðiÞðt � t1Þ þ

Xm
i;j¼1

Z
dt1dt2k

ði;jÞ
2 ðt1; t2ÞuðiÞðt � t1ÞuðjÞðt � t2Þ: ð6Þ

The kernel is expanded by the Laguerre basis function, which is one of the orthogonal basis
functions

kðiÞ1 ðt1Þ ¼
X1
a¼1

cðiÞa laðt1Þ; kði;jÞ2 ðt1; t2Þ ¼
X1
a;b¼1

dði;jÞ
a;b laðt1Þlbðt2Þ; ð7Þ

where ln(t) is n-th order Laguerre function defined by

lnðtÞ ¼
ffiffiffiffiffi
2p

p
ept

1

ðn� 1Þ!
d
dt

� �n�1

tn�1e�2pt: ð8Þ
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Substituting Eq (7) into Eq (6),

yðtÞ � k0 þ
Xm
i¼1

X1
a¼1

cðiÞa x
ðiÞ
a ðtÞþ

Xm
i;j¼1

X1
a;b¼1

dði;jÞ
a;b x

ðiÞ
a ðtÞxðjÞb ðtÞ; ð9Þ

where xðiÞa ðtÞ �
Z

dtlaðtÞuðiÞðt � tÞ. We truncated the order of the Laguerre basis function at a

finite positive integer atml and ignored the cross term of the second Volterra kernel for sim-
plicity,

yðtÞ � k0 þ
Xm
i¼1

f
Xml

a¼1

cðiÞa x
ðiÞ
a ðtÞ þ

Xml

a;b¼1

dðiÞ
a;bx

ðiÞ
a ðtÞxðiÞb ðtÞg: ð10Þ

This approximation means that the interaction between impulses of input i and j is ignored.

Implementation of the Laguerre filter

The vector xðiÞðtÞ ¼ ðxðiÞ1 ðtÞ; � � � ; xðiÞm ðtÞÞT satisfies the ordinal differential equation

dxðiÞðtÞ
dt

¼ AxðiÞðtÞ þ ffiffiffiffiffi
2p

p 1

..

.

1

0
BB@

1
CCAuðtÞ; ð11Þ

A �

�p 0 � � � � � � 0

�2p �p 0 � � � 0

�2p � � � . .
. � � � 0

..

.
. .
. ..

.

�2p � � � �2p �p

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð12Þ

where p is a scale parameter of the Laguerre basis function [30]. Thus, we obtain the value of
X(i)(t) by solving Eq (11).

Parameter estimation by partial least square regression

The parameters fcðiÞa g; fdðiÞ
a;bg are estimated using the partial least square (PLS) regression

method [13]. The Eq (10) can be rewritten as y = Xβ+ε where

y ¼ ðyðt1Þ; � � � ; yðtnÞÞT ;xð1:mÞ
1:ml

ðtÞ ¼ ðxð1Þ1 ; � � � ; xð1Þml ;
mlml � � � ; xðmÞ

1 ; � � � ; xðmÞ
ml

ml mlÞT ;

X ¼
1 xð1:mÞ

1:ml
ðt1ÞT vecðfxð1:mÞ

1:ml
ðt1Þxð1:mÞ

1:ml
ðt1ÞTgi�j

ÞT

� � � � � � � � �
1 xð1:mÞ

1:ml
ðtkÞT vecðfxð1:mÞ

1:ml
ðtkÞxð1:mÞ

1:ml
ðtkÞTgi�j

ÞT

0
BBB@

1
CCCA;

vec(A)� (a11,� � �,aij,� � �)T, β is a regression coefficient parameter.
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This formulation can easily be applied to multiple samples of input and outputs, fXr;yrgnr¼1

by redefining X and y as ~X ¼ ðXT
1 ; � � � ;XT

n ÞT ,~y ¼ ðyT
1 ; � � � ;yT

n ÞT , where

Xr ¼
1 xð1:mÞ

1:ml ;r
ðt1ÞT vecðfxð1:mÞ

1:ml ;r
ðt1Þxð1:mÞ

1:ml ;r
ðt1ÞTgi�j

ÞT

� � � � � � � � �
1 xð1:mÞ

1:ml ;r
ðtkÞT vecðfxð1:mÞ

1:ml ;r
ðtkÞxð1:mÞ

1:ml ;r
ðtkÞTgi�j

ÞT

0
BBB@

1
CCCA;

yr = (yr(t1),� � �,yr(tn))T, r represents the sample number for the time series. We determined the
regression coefficient parameter β using the PLS regression method.

Determining the number of PLS components
Experimental data for all 7 conditions were used to implement the Laguerre filter in order to
determine the number of PLS components. Laguerre basis functions up to the 9th order,
including the 0th order (ml = 10 in the Eq (10)), were used in this study, with the assumption
that 10 Laguerre basis functions would be sufficient to represent the system. The scale parame-
ter p and the regression coefficient β were estimated by alternately minimizing the training
MSE until it had converged. To avoid over-fitting, the initial value of the scale parameter p in
Eq (11) was estimated using only the 0th and 1st order Laguerre basis functions. As the number
of PLS components increases, the percent increase of variance explained in outputs generally
gets smaller. We determined the number of components such that the percent increase of vari-
ance falls below 2% with the addition of the last component.

PLS regression model
In case of single output y andm input variables, PLS regression model with k latent variables
ðk 	 ~mÞ can be described as follows

X ¼ TPT þ E

y ¼ Tbþ ε ;
ð13Þ

where X,T,P,y,b are data matrix, input score matrix, input loading matrix, output vector and
regression coefficient of input score matrix, respectively. E,ε are residual matrix and vector,
respectively.

VIP score
The VIP score for j-th variable is defined as

VIPj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m
Xh

k¼1

bkt
T
k tk

wjk

kwkk
� �2

Xh

k¼1

bkt
T
k tk

vuuuuuuut ; ð14Þ

where ~m, tk, bk are the number of variables, k-th input score vector, regression coefficients of
input score matrix T, respectively. wjk is the PLS weight of the k-th variable for the j-th latent
variable.
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The network modules and input patterns for artificial data production
The seven network modules and ten input patterns were used. Most of the parameters used for
the network modules and input patterns are adapted from previous work [15], with a few alter-
ations. 0.5 was used for a steady state value for input pattern 4, and the logistic function

F7ðtÞ ¼
1

1þ e�0:05ðt�150Þ ; ð15Þ

was used for input pattern 7. Each modules was simulated using the input patterns to produce
301 output time points. Then each models was trained using input patterns 1–8 and tested
against input patterns 9 and 10 in order to calculate MSE.

Computational and theoretical pulse and impulse responses
For the computational simulation, a triangular pulse of either pERK or pCREB with the maxi-
mum amplitude 0.5 were used as input. This pulse was given at time 0 and at 18 min or 90 min.
For the model without nonlinearity, the corresponding parts of the regression coefficient
parameters β were set to zero. For the impulse responses, output is calculated by

yðtÞ ¼ Ak1ðtÞ þ Bk1ðt � tÞ þ A2k2ðt; tÞ þ 2ABk2ðt; t � tÞ þ B2k2ðt � t; t � tÞ; ð16Þ
where A indicates an amplitude of an impulse at time 0 and B indicates an amplitude of an
impulse at time τ. In our case, A is set to 0.5 and B is ranged from 0 to 1. For the model without
nonlinearity, any terms having k2 are ignored.

Supporting Information
S1 Fig. pMAPKs and pCREB as inputs, and immediate early gene expression as outputs.
(A) Time series of responses of pMAPKs and pCREB (circles) to NGF (0.5 ng/ml, red),
PACAP (1 nM, blue), or EGF (0.5 ng/ml, green). Responses were measured by QIC at 3-min
intervals over a total period of 180 min. (B) Time series showing the expression of immediate
early genes (IEGs) (circles), together with results of a simulation of the Laguerre filter com-
bined with PLS regression (solid lines). The color code is that same as that used in panel A.
(TIF)

S2 Fig. Boxplots of Residuals of LOO CVs. (A) For each IEGs, a boxplot of residual distribu-
tion against each round of LOO CV dataset over seven conditions is shown in a panel. A red line,
blue box and whisker indicate the median, the interquartile range (IQR), the end point of data
point, which is not outlier. A red marker + indicates the outlier. A data point, which is smaller
than Q1-1.5�IQR, or larger than Q3+1.5�IQR is detected as outlier, where Q1 and Q3 are 1st
quartile and 3rd quartile, respectively. (B) The full scale box plot of ordinary LF is shown.
(TIF)

S3 Fig. Boxplots of coefficient parameters of LOO CV and parameters of the final LF-PLS
model. For each regression coefficients, distribution over LOO CVs are plotted as a box plot. The
parameters from the final model that were trained with all the datasets are shown as green circles.
(TIF)

S4 Fig. The boxplot of squared residuals of LOO CV. (A) For each IEGs, the squared residual
of LF-PLS and FIR-PLS against LOC CVs over seven conditions are shown by boxplot. (B) For
each IEGs, the logarithm of squared residual of each model against LOC CVs over seven condi-
tions is shown by boxplot.
(TIF)
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S5 Fig. Loadings and scores for the inputs and outputs. In all panels, the vertical axis is the
1st principal component (PC1) and the horizontal axis is the 2nd principal component (PC2).
For the panels showing input and output scores, a red circle indicates 5ng/ml NGF; red dia-
mond, 0.5 ng/ml NGF; blue circle, 100 nM PACAP; blue diamond, 1 nM PACAP; green circle,
5 ng/ml EGF; green diamond, 0.5 ng/ml EGF; and black circle, 50 ng/ml Anisomycin. The
color gradation of each marker changed from low to high over time. For the panels showing
input and output loadings, blue indicates pERK; green, pCREB; red, pJNK; and cyan, pp38.
Circle, 1st Volterra kernel; diamond, 2nd Volterra kernel.
(TIF)

S6 Fig. The mean square error of training data set and leave one out error of cross valida-
tion of the four models. Blue, c-FOS; cyan, EGR1; green, c-JUN; orange, JUNB; red, FOSB.
Ordinary FIR, a finite impulse response model combined with ordinary regression; FIR-PLS, a
finite impulse response model combined with partial least square (PLS) regression; ordinary
LF, an ordinary Laguerre filter combined with ordinary regression; LF-PLS, a Laguerre filter
combined with PLS regression.
(TIF)

S7 Fig. The IO relationships between signaling molecules and IEGs estimated by VIP score.
Black solid line, gray solid line, dashed line are the IO relationship estimated by both VIP score
and AIC of nonlinear ARX model, only VIP score, and only AIC of nonlinear ARX model,
respectively. Dotted line is IO relationship estimated by AIC of nonlinear ARX model. c-FOS is
used as input for output of JUNB and FOSB only in nonlinear ARX model. We regarded that
the IO relationship exists if the average VIP score is more than 0.6.
(TIF)

S1 Table. The mean square error (MSE) of the training data set.
(TIF)

S2 Table. The mean square error (MSE) of leave one out error of cross validation (LOO
CV).
(TIF)

S3 Table. The p-values of the Mann—Whitney U-test for squared residuals between LF-PLS
and FIR-PLS are shown.
(TIF)
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