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Abstract

A growing body of evidence suggests that the amygdala is central to handling the demands of 

complex social life in primates. In this paper, we synthesize extant anatomical and functional data 

from rodents, monkeys, and humans to describe the topography of three partially distinct large-

scale brain networks anchored in the amygdala that each support unique functions for effectively 

managing social interactions and maintaining social relationships. These findings provide a 

powerful componential framework for parsing social behavior into partially distinct neural 

underpinnings that differ among healthy people and disintegrate or fail to develop in 

neuropsychiatric populations marked by social impairment, such as autism, antisocial personality 

disorder, and frontotemporal dementia.
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1. Introduction

The ability to forge and maintain diverse social relationships is critical for primates to 

survive. Social abilities are particularly crucial for humans. Social relationships are 

protective in humans, predicting a plethora of positive health outcomes ranging from lower 

rates of mortality (House, Landis, & Umberson, 1988) to increased survival from heart 

attacks (Seeman, 1996). On the flipside, loneliness kills (Hawkley & Cacioppo, 2010). Yet 

humans differ markedly from one another in the size of their social networks (Dunbar & 
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Spoors, 1995; Hill & Dunbar, 2003). Before 2011, comparative studies between non-human 

primate species linked larger social networks with larger brain regions providing a greater 

functional capacity for handling the demands of complex social life, including the amygdala 

(e.g. Barton, 2006; 1988; Barton and Aggleton, 2000). Based on this research, we examined 

and found that in humans, individual differences in amygdala volume predicted variations in 

social network size and complexity (Bickart, Wright, Dautoff, Dickerson, & Barrett 2011). 

Since our initial findings, three papers provided additional support for this link (Kanai, 

Bahrami, Roylance, & Rees 2011; Sallet et al., 2011; Von Der Heide, Vyas, & Olson 2014), 

indicating that the amygdala plays a central role in the social life of both human and 

nonhuman primates. It is clear from these studies and from a wealth of neuroanatomical, 

neuroimaging and neuropsychology research that the amygdala does not play this role in 

social life alone. Instead, the amygdala works in conjunction with a broad array of other 

brain regions that are also important to social cognition, often referred to collectively as the 

“social brain”. In this review, we synthesize connectional experiments in rodents, monkeys, 

and humans to develop a neuroanatomical framework wherein the amygdala anchors three 

partially distinct brain networks that each subserve a distinct domain of social behavior (see 

Fig. 1). We review the anatomical basis for these networks as well as their putative role in 

social function. We examine their convergent as well as their discriminant validity for 

predicting social network size and complexity. Finally, we discuss future directions for 

research on the amygdala and the social brain with clinical application and multilevel 

analysis in mind.

2. The amygdala as a hub for large-scale networks in the social brain

Over the last 20 years of rising scientific interest in the neural basis of social cognition, there 

have been at least 10 review articles summarizing the brain regions that make up the “social 

brain” (Adolphs, 1999, 2001, 2009; Blakemore & Frith, 2004; Frith, 2007; Frith & Frith, 

2007; Lieberman, 2007; Ochsner & Lieberman, 2001; Saxe, 2006) (for a discussion of the 

social brain, see Box 1). The amygdala and several of its strongly connected targets 

[particularly the ventromedial prefrontal cortex (vmPFC) and superior temporal sulcus 

(STS)] are consistently implicated within this broad neural workspace for social cognition 

(brain regions included in the social brain are tabulated across review articles in the table in 

Box 1). Tract-tracing work in nonhuman primates (synthesized in the final column of the 

table in Box 1) reveals that the amygdala shares anatomical connections with almost every 

other brain region implicated in the social brain, and these connections are especially 

prominent for less laminated “limbic” cortices and other subcortical structures. Based on the 

broadly distributed topography of the amygdala’s anatomical connections (Freese & Amaral, 

2009), it can be considered a hub within the social brain. Consistent with this view, 

individuals with amygdala damage have deficits in diverse aspects of social processing (Box 

2).

The amygdala’s connectional organization within the social brain places it in a central 

position to modulate a variety of brain networks that are important to normal social 

cognition. For example, the amygdala shares connections with visual association areas in the 

ventral and lateral temporal cortex implicated in processing social signals from others, such 

as facial actions (Freese & Amaral, 2005, 2006). The amygdala also connects with 
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prefrontal and striatal areas (McDonald, 1991a) implicated in guiding affiliation with or 

avoidance of social partners, such as entrusting people based on their approachable 

appearance or rejecting cooperation with an unfair partner. In our research, we have used the 

amygdala’s connectional organization as a guide to understand the putative organization of 

large-scale brain networks within the social brain. By synthesizing connectional experiments 

in nonhuman animals and functional experiments in human and nonhuman primates, we 

developed a neuroanatomical framework in which the amygdala anchors three partially 

distinct corticolimbic networks with dissociable social functions (see Fig. 1): (1) a network 

supporting perception, performing the sensory processes involved in detecting, decoding and 

interpreting social signals from others in the context of past experience and current goals, (2) 

a network supporting affiliation, important for the processes associated with motivating 

prosocial or affiliative behaviors, such as comforting a loved one in distress and (3) a 

network supporting aversion, important for the processes enabling avoidant behaviors, such 

as avoiding an untrustworthy-appearing stranger. In Box 3, we describe how we derived 

these networks in three samples of healthy adults (Bickart, Hollenbeck, Barrett, & 

Dickerson, 2012). In the next section, we discuss the existing anatomical and functional 

research that gives evidence for these three networks.

3. An amygdala-based network supporting social perception

3.1. Anatomical tracing evidence

The network supporting perception (Fig. 1 in yellow) is anchored by the ventrolateral sector 

of the amygdala (including its lateral and basolateral nuclei) and the lateral orbitofrontal 

cortex (lOFC) and includes connectional targets in sensory association areas of the ventral 

and lateral temporal cortex (Barbas & De Olmos, 1990; Carmichael & Price, 1995). The 

ventrolateral amygdala and lOFC receive afferents from sensory association areas of the 

temporal cortex including the mid to rostral sectors of the temporal gyri, superior temporal 

sulcus, fusiform gyrus, and ventral temporal pole, as well as the sensory insula that together 

convey a panoramic view of the external and internal environment (Aggleton, Burton, & 

Passingham, 1980; Ghashghaei & Barbas, 2002; Hoistad & Barbas, 2008). The ventrolateral 

amygdala and lOFC send feedback-like glutamatergic projections into sensory association 

cortices; the amygdala’s projections reach as far back as primary sensory cortices, in a 

manner capable of modulating perceptual processing of relevant stimuli in accordance with 

the current affective state and situational context (Barbas, Zikopoulos, & Timbie, 2010; 

Freese & Amaral, 2006).

3.2. Intrinsic functional connectivity evidence

Recent evidence supports the hypothesis that regions within the network supporting 

perception share anatomical connections in humans. Using a connectionally-defined 

ventrolateral subregion of the amygdala (Bickart et al., 2012), we identified an intrinsic 

connectivity network that includes sensory association areas of the temporal lobe and 

orbitofrontal cortex (Box 3 panel C). The topography of intrinsic connectivity bears strong 

resemblance to the underlying anatomical topography of the network in nonhuman animals 

(Fig. 1). This intrinsic network also contains many of the brain regions that make up an 
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intrinsic network recently referred to as “limbic” (Yeo et al., 2011). These findings suggest 

that regions within the perception network might function as a unit.

3.3. Functional neuroimaging and electrophysiology evidence

Regions in the network supporting perception are important for detecting and decoding 

relevant or ambiguous stimuli in the environment. In the social realm, there is perhaps 

nothing more relevant or ambiguous than the features or actions of conspecifics. Indeed, 

featural and expressive aspects of faces and bodies including facial identity, facial actions, 

eye gaze, and lip movement selectively activate neurons within the macaque ventrolateral 

amygdala, OFC, inferotemporal cortex, superior temporal sulcus, and medial temporal lobe 

(Baylis, Rolls, & Leonard, 1985; Hasselmo, Rolls, & Baylis, 1989; Haxby Hoffman, & 

Gobbini, 2002; Leonard, Rolls, Wilson, & Baylis, 1985; Rolls, 1984, 2007; Rolls, Critchley, 

Browning, & Inoue, 2006). Task-based fMRI studies in humans demonstrate a similar 

topography of brain responses to socially salient stimuli including facial expressions 

(Allison, Puce, & McCarthy, 2000; Haxby, Hoffman, & Gobbini, 2000; Morris et al., 1996; 

Phillips et al., 1997; Winston, O’Doherty, & Dolan, 2003), eye gaze (George, Driver, & 

Dolan 2001; Kawashima et al. 1999; Richeson, Todd, Trawalter, & Baird, 2008), facial 

identity (Gobbini & Haxby, 2006; Iidaka et al., 2003; Pourtois et al., 2005; Schwartz et al., 

2003; Wright & Liu, 2006), racial or group identity (Cunningham et al., 2004; Freeman, 

Schiller, Rule, & Ambady, 2010; Hart et al., 2000; Phelps, 2001; Phelps et al., 2000), social 

hierarchy (Kumaran, Melo, & Duzel, 2012), and trustworthiness (Allison et al., 2000; Bzdok 

et al., 2011; Cunningham et al., 2004; Engell, Haxby, & Todorov, 2007; George et al., 2001; 

Gobbini & Haxby, 2006; Hart et al., 2000; Morris et al., 1996; Phelps et al., 2000; Richeson 

et al., 2008; Said, Baron, & Todorov, 2009; Todorov & Engell, 2008; Todorov et al., 2008; 

Winston et al., 2002).

3.4. Lesion neuropsychology evidence

In a recent study (Bickart et al., 2013), we reported that the network supporting perception 

appears to play a necessary role in social perceptual abilities by examining impairments in 

these abilities in frontotemporal dementia (FTD) patients. Using measures of network-level 

atrophy derived from structural MRI and a novel clinician-based structured interview and 

rating scale, the Social Impairment Rating Scale (SIRS), we found that patients with the 

greatest atrophy in the perception network exhibited a selective lack of awareness or 

understanding of others’ social and emotional behavior. For example, these patients no 

longer made as frequent eye-contact, had difficulty following and interpreting body language 

and gestures, and were relatively insensitive to others’ facial expressions in response to 

signals such as those indicating a breach in personal boundaries or interruption in 

conversation. This profile of symptoms is consistent with prior behavioral studies of social 

perception in FTD patients who demonstrate abnormal eye-contact (Sturm et al., 2010) and 

deficits in interpreting others’ facial expressions (Keane, Calder, Hodges, & Young 2002; 

Rosen et al., 2002), eye-gaze (Keane et al., 2002; Kessels et al., 2007; Kipps, Mioshi, & 

Hodges, 2009a; Kipps, Nestor, Acosta-Cabronero, Arnold, & Hodges, 2009b; Lough et al., 

2006; Rankin et al., 2009; Rosen et al., 2002; Snowden et al., 2008; Werner et al., 2007), 

vocal prosody (Keane et al., 2002; Rankin et al., 2009; Snowden et al., 2008), and body 

language (Kipps et al., 2009b; Kosmidis, Aretouli, Bozikas, Giannakou, & Ioannidis, 2008; 
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Rankin et al., 2009). In support of our brain-behavior findings, two of these studies traced 

impairments in the perception of facial expressions (Rosen et al., 2002a) and sarcasm 

comprehension (Kipps et al., 2009b) back to morphometric changes to regions within the 

network supporting perception, including the amygdala, lateral orbitofrontal cortex, and 

temporal pole. Neither examined other key structures within this network, such as the 

superior temporal sulcus or fusiform gyrus.

4. An amygdala-based network supporting social affiliation

4.1. Anatomical tracing evidence

The network supporting affiliation (Fig. 1, in red) is anchored by nuclei within the medial 

sector of the macaque amygdala and the vmPFC and includes their connectional mesolimbic 

targets in the rostral and subgenual anterior cingulate cortices, ventromedial striatum, 

ventromedial hypothalamus, dorsomedial temporal pole, and medial temporal lobe (An, 

Bandler, Ongur, & Price, 1998; Carmichael & Price, 1996; Ferry, Ongur, An, & Price, 2000; 

Fudge, Kunishio, Walsh, Richard, & Haber, 2002; Haber & Calzavara, 2009; Haber & 

Knutson, 2010; Haber, Kim, Mailly, & Calzavara, 2006; Hsu & Price, 2007; Kondo, Saleem, 

& Price, 2003, 2005; Kunishio & Haber, 1994; McDonald, 1991b, 1991a; Ongur, An, & 

Price, 1998; Ongur & Price, 2000; Ongur, Ferry, & Price, 2003; Price, 2007; Price & 

Drevets, 2010; Saleem, Kondo, & Price 2008). Nodes within this network share convergent 

connections with nuclei situated in the medial sector of the macaque amygdala including its 

cortical nuclei, the magnocellular subdivision of the accessory basal nucleus, the medial 

extent of the parvicellular subdivision of the basolateral nucleus, the amygdalohippocampal 

transition area, and parts of the medial nucleus (Fudge et al., 2002; McDonald, 1987, 1991b, 

1991a).

4.2. Intrinsic functional connectivity evidence

Recent evidence supports the hypothesis that regions within the network supporting 

affiliation share anatomical connections in humans. Using a connectionally-defined medial 

subregion of the amygdala (Bickart et al., 2012), we identified an intrinsic connectivity 

network that includes mesolimbic reward-related areas of the ventromedial prefrontal, 

anterior cingulate, and medial temporal cortices as well as their connectional targets in the 

ventro-medial striatum and hypothalamus (Box 3 panel C). The topography of intrinsic 

connectivity bears strong resemblance to the underlying anatomical topography of the 

network in nonhuman animals (Fig. 1). The network also contains many of the medial 

cortical regions of the so-called default mode network (Buckner, Andrews-Hanna, & 

Schacter, 2008; Greicius, Krasnow, Reiss, & Menon, 2003; Yeo et al., 2011) with additional 

mesolimbic subcortical regions of the recently-defined limbic network (Yeo et al., 2011). 

These findings suggest that regions within the network supporting social affiliation might 

function as a unit.

4.3. Functional neuroimaging and electrophysiology evidence

Regions within this network are involved in goal-directed (instrumental) learning and 

behavior in rodents, monkeys, and humans (Balleine & O’Doherty, 2010; Knapska, 

Radwanska, Werka, & Kaczmarek, 2007; Murray, 2007; Waraczynski, 2006), functions that 
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might preferentially subserve learning about and responding to appetitive stimuli (Balleine 

& O’Doherty, 2010; Knapska et al., 2007; Murray, 2007; Waraczynski, 2006). Within the 

social realm, regions within the network supporting affiliation are responsive to pictures of 

loved ones and positive social feedback (e.g., complimentary peer reviews or cooperation 

from a partner) that elicit prosocial sentiments (e.g., compassion or empathy) and in turn 

motivate decisions to behave altruistically and cooperate (e.g., donation to charities or 

repaying trust in kind). For example, in neuroimaging studies when people look at pictures 

of their own babies or romantic partners the ventral tegmental and striatal areas (Aron et al., 

2005; Bartels & Zeki, 2004) as well as the amygdala (Leibenluft, Gobbini, Harrison, & 

Haxby, 2004) demonstrate increased activity. Stimuli and scenarios that elicit prosocial 

sentiments like compassion, guilt, pity, gratitude, and pride also activate structures within 

the social affiliation network including the ventromedial prefrontal cortex, subgenual 

anterior cingulate cortex, ventral striatum, as well as septal and hypothalamic areas (Moll et 

al., 2007; Takahashi et al., 2004; Zahn et al., 2009a, 2009b). Similarly, receiving fair 

treatment from other people in simulated social interactions or positive peer evaluation 

evokes neural responses in ventromedial prefrontal and mesolimbic structures (Izuma, Saito, 

& Sadato, 2008) as well as the amygdala (Tabibnia, Satpute, & Lieberman, 2008). These 

regions also demonstrate increases in activity when people make prosocial decisions such as 

choosing to treat others fairly or cooperate with them during simulated social interactions 

(Delgado, Frank, & Phelps, 2005; King-Casas et al., 2005; Li, Xiao, Houser, & Montague, 

2009; Rilling et al., 2002, 2004) or when deciding to donate money to charitable causes 

(Harbaugh, Mayr, & Burghart, 2007; Izuma, Saito, & Sadato, 2009; Moll et al., 2006).

4.4. Lesion neuropsychology evidence

Work with FTD and focal brain lesion patients indicates that the network supporting social 

affiliation plays a causal role in motivating warm and cooperative behavior towards others. 

We found that FTD patients with the greatest atrophy in this network exhibited the most 

severe social and emotional detachment from other people (Bickart et al., 2013). These 

patients hardly comforted, helped, or showed affection to their friends and loved ones, which 

in all cases was a substantial departure from their premorbid state. Many became indifferent 

and unresponsive to the feelings, desires, and needs of other people, often including their 

closest family members and spouses. Our findings build upon three recent studies in FTD 

patients that have mapped impairments in prosocial or attachment behavior onto brain 

regions in the network supporting affiliation. In two of these studies, decreased gray matter 

in the right ventromedial prefrontal cortex, subgenual anterior cingulate cortex, and the 

dorsomedial temporal pole correlated with symptoms of diminished empathy (Rankin et al., 

2006) and interpersonal warmth (Sollberger et al., 2009), both using voxel-based 

morphometry (VBM) analyses in large samples of patients with FTD as well as other forms 

of dementia. The latter study found additional gray matter reductions in the amygdala, 

anterior hippocampus, entorh-inal cortex, parahippocampus, putamen, caudate, and middle 

insula mostly in the right hemisphere that correlated with diminished interpersonal warmth 

(Sollberger et al., 2009). Similarly, in a third study decreases in right ventromedial prefrontal 

cortex volume correlated with diminished agreeableness in a sample of FTD patients 

(Rankin et al., 2004). Like FTD patients, vmPFC-damaged patients, who often also have 

damage to the subgenual and rostral anterior cingulate cortices also demonstrate severely 
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diminished empathy, based on caregiver reports (Hornak et al., 2003; Shamay, Tomer, & 

Aharon-Peretz 2002; Shamay-Tsoory, Tomer, Berger, & Aharon-Peretz, 2003b; Shamay-

Tsoory, Aharon-Peretz, & Perry, 2009). These patients have also exhibited frankly cold 

behaviors as marked by their untrustworthy and unfair treatment of others in simulated 

social interactions (Krajbich, Adolphs, Tranel, Denburg, & Camerer, 2009).

5. An amygdala-based network supporting social aversion

5.1. Anatomical tracing evidence

The network supporting social aversion (Fig. 1, in blue) is anchored by nuclei within the 

rostrodorsal sector of the macaque amygdala and the caudal ACC (cACC) and includes their 

connectional interoceptive and pain-sensitive targets in the anterior insula and its rostrally 

adjacent orbitofrontal extension, somato-sensory operculum, ventrolateral striatum, 

caudolateral hypothalamus, as well as autonomic and dopaminergic nuclei of the brainstem 

(An et al., 1998; Carmichael & Price, 1996; Ferry et al., 2000; Fudge et al., 2002; Haber & 

Calzavara, 2009; Haber & Knutson, 2010; Haber et al., 2006; Hsu & Price, 2007; Kondo et 

al., 2003, 2005; McDonald, 1991b, 1991a; Kunishio & Haber, 1994; Ongur & Price, 2000; 

Ongur et al., 1998, 2003; Price, 2007; Price & Drevets, 2010; Saleem et al., 2008). Nodes 

within this network share convergent connections with nuclei situated in the rostrodorsal 

sector of the macaque amygdala including the central and medial nuclei their cellular 

extensions into the substantia innominata and the magnocellular subdivision of the 

basolateral nucleus including its rostral-most sector (Fudge et al., 2002; McDonald, 1987, 

1991b, 1991a; Mufson, Mesulam, & Pandya, 1981; Stefanacci & Amaral, 2002).

5.2. Intrinsic functional connectivity evidence

Recent evidence is consistent with the hypothesis that regions within the network supporting 

social aversion share anatomical connections in humans. Using a connectionally-defined 

dorsal subregion of the amygdala (Bickart et al., 2012), we identified an intrinsic 

connectivity network that includes interoceptive pain-related areas of the insula and caudal 

anterior cingulate cortex as well as their connectional targets in the ventrolateral striatum, 

hypothalamus, and brainstem (Box 3 panel C). The topography of intrinsic connectivity 

bears strong resemblance to the underlying anatomical topography of the network (Fig. 1). 

This intrinsic network also bears strong resemblance to the so-called salience network 

derived from a seed region in the frontoinsula that is thought to subserve detecting and 

responding to motivationally relevant stimuli in the environment (Seeley et al., 2007). The 

strength of intrinsic connectivity within this network is correlated with the intensity of 

affective experience when viewing aversive images (Touroutoglou, Hollenbeck, Dickerson, 

& Feldman Barrett, 2012). These findings suggest that regions within the network 

supporting social aversion functions as a unit.

5.3. Functional neuroimaging and electrophysiology evidence

Regions within the network supporting aversion play a role in habit learning (Pavlovian) and 

behavior (Balleine & O’Doherty, 2010; Knapska et al., 2007; Murray, 2007; Waraczynski, 

2006). These functions preferentially subserve learning about and responding to aversive 

stimuli (Balleine & O’Doherty, 2010; Hayes & Northoff, 2011; Knapska et al., 2007; 
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Murray, 2007; Waraczynski, 2006). Within the social realm, regions within the network 

supporting aversion (listed in Fig. 1, in blue) are responsive to untrustworthy-appearing 

faces and negative social feedback (e.g. disapproval or violations of trust) that elicit 

sentiments of social aversion (e.g. disgust or contempt) and in turn motivate decisions to not 

cooperate with an individual or to disengage from a group. For example, stimuli or scenarios 

that elicit sentiments of social aversion like disgust, contempt, and anger or indignation 

preferentially activate areas within this network (Buckholtz et al. 2008a; Decety, Jackson, 

Sommerville, Chaminade, & Meltzoff, 2004; Moll et al., 2005, 2007; Phillips et al., 1998; 

Rizzolatti et al., 2003; Zahn et al., 2009b). Negative social feedback activates the caudal 

anterior cingulate cortex and ventral anterior insula (Klucharev, Hytonen, Rijpkema, Smidts, 

& Fernandez, 2009), and participants who exhibit the greatest increases in caudal anterior 

cingulate cortex activity change their behavior most in response to the negative social 

feedback. Similarly, activity in the ventral anterior insula, which is elicited by unfairness 

(Sanfey, 2007), social exclusion (Eisenberger, Lieberman, & Williams, 2003), and 

unreciprocated cooperation (Rilling, King-Casas, & Sanfey, 2008) predicts the likelihood 

that participants will reject cooperation with someone who has treated them unfairly in a 

previous simulated interaction (Sanfey, Rilling, Aronson, Nystrom, & Cohen 2003). The 

frontoinsula and neighboring ventral anterior insula display activation when participants 

decide not to donate to charitable causes (Moll et al., 2006). Regions in this network appear 

to subserve general avoidance responses in part through their response to pain. Recent 

neuroimaging studies reveal that—in addition to responding to direct physical pain—areas 

in the caudal anterior cingulate cortex and anterior thalamus, dorsal and posterior sectors of 

the insula and its neighboring parietal operculum (including the secondary somatosensory 

cortex) also respond to second-hand pain and the pain of social rejection (Akitsuki & 

Decety, 2009; Benuzzi, Lui, Duzzi, Nichelli, & Porro, 2008; Cheng et al., 2007; Cheng, 

Yang, Lin, Lee, & Decety, 2008; Decety, Jackson, Brunet, & Meltzoff, 2006; Decety & 

Lamm, 2008; Eisenberger, Jarcho, Lieberman, & Naliboff, 2006; Kross, Egner, Ochsner, 

Hirsch, & Downey, 2007; Moriguchi et al., 2007).

5.4. Lesion neuropsychology evidence

Supporting a role for this network in motivating apprehensive behavior towards others, we 

found that FTD patients with the greatest atrophy in this network exhibited the most severe 

lack of social apprehension (Bickart et al., 2013). These patients became less cautious 

around strangers and more willing to trust, approach, and strike up conversations with them. 

They also tended to indiscriminately donate to charities, fall for scams from salesmen, and 

were more easily taken advantage of by others. Our findings build on previous studies that 

have traced impairments in social aversion back to morphometric abnormalities in the 

temporal lobe based on SPECT and PET scans (Snowden et al., 2001; Mendez, Chen, 

Shapira, Lu, & Miller, 2006). Our finding that patients with atrophy in the aversion network 

demonstrate diminished social apprehension supports the notion that structures in this 

network play a necessary role in appropriately judging others as untrustworthy, unfair, or 

deceptive and in turn making decisions to avoid, punish, or reject them. Furthermore, the 

finding that patients with the greatest atrophy in this network still tended to seek social 

rewards or make prosocial decisions to approach others suggests that they had relatively 

preserved social affiliative behaviors, likely attributable to a relative preservation of 
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affiliative circuitry. In addition, recent fcMRI and neuroanatomical studies in FTD patients 

have proposed the selective vulnerability of these regions as part of the “salience network” 

in the pathology of FTD (Seeley, 2008; Seeley et al., 2006, 2008; Zhou et al., 2010).

6. Connectional strength in intrinsic networks subserving social perception 

and affiliation predict larger, more complex social networks in healthy 

individuals

In the context of previous neuroimaging and neuropsychology experiments in humans, our 

fcMRI findings (Bickart et al., 2012) indicate that the amygdala-based networks supporting 

perception, affiliation, and aversion are separable both via their topography and functional 

roles. Importantly, we found stronger intrinsic amygdala connectivity within the networks 

supporting perception and affiliation, but not in the network supporting aversion, in people 

who fostered and maintained larger and more complex social networks (Fig. 2). These 

relations held over and above individual differences in amygdala volume. In fact, individual 

differences in intrinsic connectivity (along with amygdala volume) predicted 42% of the 

variance in social network size. Furthermore, people with the largest social networks had 

stronger connectivity between medial amygdala and vmPFC within the network supporting 

affiliation, as well as between the ventrolateral amygdale and a number of social brain 

regions in the temporal cortex including the STS, fusiform gyrus, and hippocampus within 

the network supporting perception (Fig. 3). These findings indicate that greater functional 

coherence within amygdala-based networks confers some advantage for handling the 

demands of complex social life. For example, individuals with stronger connectivity in the 

network supporting perception might have enhanced ability to detect and decode social 

signals from others, or as in a recent study (Edelson, Sharot, Dolan, & Dudai, 2011), these 

individuals may rely more on what others say when recalling events. Those with stronger 

connectivity in the network supporting affiliation might have an increased tendency or 

motivation to cooperate with or form bonds with others. Furthermore, the intrinsic 

connectivity-social network size link was anatomically specific to the two networks. Other 

networks important for social cognition but not anchored in the amygdala [the mentalizing 

network (Van Overwalle & Baetens, 2009), the dorsal subsystem of the default mode 

network (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010), and the mirror 

network (Van Overwalle & Baetens, 2009)], as seen in Fig. 4], did not explain significant 

variance in social network size or complexity.

7. Non-amygdala networks within the social brain

Taken together, our fcMRI findings in healthy adults (Bickart et al., 2012), our 

neuropsychological results in FTD patients (Bickart et al., 2013) along with the existing 

findings from anatomical tracing, functional, and lesion studies suggest a broad division of 

labor within the social brain between networks that are anchored in the amygdala and 

networks that are important for social cognition, but that routinely do not include the 

amygdala. Regions in the mentalizing network play a common role in inferring others’ 

thoughts, intentions, and beliefs (Buckner et al., 2008; Saxe, 2006; Van Overwalle, 2011; 

Van Overwalle & Baetens, 2009), which appears dissociable from the role of brain regions 
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in the network supporting perception that is implicated in understanding others’ feelings 

(Baron-Cohen et al., 1999; Saxe, 2006; Shamay-Tsoory & Aharon-Peretz, 2007; Shamay-

Tsoory, Tomer, Berger, & Aharon-Peretz, 2003a; Shamay-Tsoory, Tomer, Berger, Goldsher, 

& Aharon-Peretz, 2005; Shaw et al., 2005; Stone, Cosmides, Tooby, Kroll, & Knight, 2002; 

Zaki & Ochsner, 2012). It is believed that regions within the mirror network support a social 

cognitive strategy, different from mentalizing, that grounds individuals’ ability to know 

about others’ goals and intentions by simulating their behaviors (Blakemore & Frith, 2004; 

Frith, 2007; Frith & Frith, 2007; Saxe, 2006) or their affective experience that is linked to 

their internal physical state (Zaki, Hennigan, Weber, & Ochsner, 2010). Investigators have 

previously contrasted the function of this network with that of regions in the network 

supporting aversion, including the caudal anterior cingulate cortex and insula, that are 

preferentially involved in simulating others’ feelings, studied largely in the context of 

representing others’ pain, as opposed to their intentions (Blakemore & Frith, 2004; Frith, 

2007; Frith & Frith, 2007; Saxe, 2006).

The amygdala-based and non-amygdala networks within the social brain can be thought of 

in anatomical terms as being more or less representative of information from the body’s 

internal milieu. The mentalizing and mirror networks, which are composed mostly of 

regions with more granular cortex and less amygdala connectivity, appear to support social 

cognitive functions that draw less on affective input from the body, whereas the amygdala-

based networks supporting perception, affiliation, and aversion are composed moreso of 

regions with less granular “limbic” cortex and appear to support functions that draw more 

heavily on visceral input. For example, the medial prefrontal cortex exhibits a ventro-dorsal 

gradient of increasing lamination and decreasing amygdala connectivity (for a discussion, 

see Barbas, 2007). Perhaps this anatomical gradient reflects a functional gradient in 

decreasing affective influence on the control of behavior via the medial prefrontal cortex 

(e.g., (Roy et al., 2012)). Indeed, in the social realm, the ventromedial prefrontal cortex is 

more consistently involved in motivating decisions to cooperate with or trust others based on 

moral sentiments (for discussion, see Moll et al., 2005; Schulkin and Moll, 2009) or others’ 

emotional behavior or appearance (e.g., visually attractive faces: O’Doherty et al., 2003). In 

contrast, the dorsomedial prefrontal cortex is more consistently involved in thinking about 

others’ beliefs and intentions based on their behavior (Buckner et al., 2008; Saxe, 2006; Van 

Overwalle, 2011; Van Overwalle & Baetens, 2009), which may not motivate an adaptive 

interpersonal response.

A compelling finding from a recent study (Becker et al., 2012) prompts the idea that 

amygdala-based and non-amygdala networks of the social brain may not only play distinct 

roles, but they can perform similar functions. In that study, one sister of monozygotic twins, 

who both have bilateral amygdala lesions, has the ability to maintain a social network and 

identify caricatured facial poses of fear while the other has neither of these abilities. The 

authors attributed this difference to a finding on fMRI that showed activation within regions 

of the mirror network in the twin that has more social function.
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8. The amygdala, social cognition, and social connectedness

Evidence from multiple methodologies across species supports a central role for the 

amygdala in large-scale neural networks that make up the social brain. These findings 

provide a powerful framework for beginning to parse social cognition into its component 

processes that have at least partially distinct neural underpinnings. A componential approach 

allows future research to investigate how separable domains of social cognition and their 

neurobiological correlates differ among healthy people and disintegrate or fail to develop in 

neuropsychiatric populations marked by social impairment, such as autism, antisocial 

personality disorder, and frontotemporal dementia.

Future research on the amygdala’s role in brain networks that support social life will 

undoubtedly attempt to determine whether, to what degree, and on what timescale 

connectional differences in amygdalar networks support (or are caused by) social functions. 

A preliminary finding in macaques suggests that intrinsic connectivity strength between 

social brain regions (not including the amygdala) might increase as a result of living in 

larger social groups (Sallet et al., 2011), although more work is needed to bear this out 

(because the animals were not randomly assigned to living conditions). Longitudinal studies 

with randomly assigned social group sizes are needed to more carefully track brain changes 

that might be caused by changes in social network size.

It would also be important to determine the social advantages conferred by greater 

functional coherence or larger structures within amygdala-based networks that might 

mediate their link with social network size. This could be accomplished using behavioral 

analyses that probe multiple social cognitive functions, like the SIRS (Bickart et al., 2013), 

in combination with social network data, and measures of brain structure and function. The 

only study of this kind combined measures of cortical volume, mentalizing ability, and 

social network size (Powell, Lewis, Roberts, Garcia-Finana, & Dunbar 2012). According to 

that study, mentalizing ability mediates a positive relationship between orbitofrontal cortex 

volume and social network size.

9. Towards a molecular basis for the amygdala in social life

Elucidating the neuromolecular mechanisms underlying the link between amygdala-based 

networks and social behavior will likely be required to translate this research to the clinical 

care of patient populations marked by amygdala dysfunction and associated social 

disruptions. Studies employing neuropeptide delivery, imaging genetics, and optogenetics 

provide exciting tools that have already begun mounting evidence for a cellular and 

molecular understanding of the amygdala-based circuits that make up the social brain.

Members of the nonapeptide family, particularly oxytocin (OXT), are promising targets for 

treatment of disruptions in social behavior given that the amygdala is one of the core nodes 

of OXT action in the brain (Meyer-Lindenberg, Domes, Kirsch, & Heinrichs, 2011). In the 

context of the evidence discussed in this review, recent studies on OXT highlight one 

potential neuromolecular mechanism by which separate subregions and subnetworks of the 

amygdala might modulate diverse social functions. For example, OXT-enhanced fMRI 
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signal in the ventrolateral amygdala and functional coupling with the superior colliculus 

relates to increases in participants’ frequency of fixating their gaze on the eye regions of 

others’ faces (Gamer, Zurowski, & Buchel, 2010), suggesting a role for OXT in the 

amygdala network supporting social perception. In response to fearful faces, OXT 

diminishes activity in the rostral amygdala in the vicinity of a nuclear group that includes the 

central nucleus (Gamer et al., 2010) and suppresses amygdala coupling with regions of the 

brainstem (Kirsch et al., 2005), suggesting a role for OXT in the amygdala network 

supporting social aversion. OXT also potentiates amygdala-dependent socially reinforced 

learning and emotional empathy (Hurlemann et al., 2010) as well as activity in reward 

circuitry in response to viewing a female partner’s face (Scheele et al., 2013), suggesting a 

role for OXT in the network supporting social affiliation. Further support for this latter role, 

in particular, comes from studies in rodent and avian species. Such studies have exciting 

potential in this domain given that these species share similarities with humans in the 

diversity and makeup of group structures, social behaviors, and nonapeptides. According to 

fMRI work in rodents, OXT may also modulate social behavior by strengthening mother-

infant bonds through its action on nuclei in the medial sector of the amygdala and its 

connectional targets (Febo, Numan, & Ferris, 2005). Increases in nonapeptide activity in a 

similar circuit across avian species predicts higher degrees of gregariousness and, within 

species, higher degrees of affiliation with larger groups of birds as well as with birds who 

are familiar, “friendly”, or mates (Goodson & Wang, 2006; Goodson, Rinaldi, & Kelly, 

2009a; Goodson, Schrock, Klatt, Kabelik, & Kingsbury, 2009b; Kelly et al., 2011). Taken 

together, these studies suggest that anatomical structures of similar size and connectivity can 

support social groups of different sizes as a function of the underlying neurochemistry. 

Nevertheless, the interplay between OXT, the amygdala, and social behavior remains quite 

complex. For example, OXT-related changes in amygdala activity might depend in part on 

gender (Domes et al., 2010), suggesting there is still much to learn about the conditions that 

determine the direction of OXT’s effect on the amygdala.

Studies employing imaging genetics have begun to reveal allelic variations that underlie 

differences in regional brain activation, connectivity, and associated aspects of human 

sociality. Findings relevant to the amygdala’s role in the social brain have investigated 

genetic variations encoding such proteins as the oxytocin receptor OXTR (Tost et al., 2010), 

vasopressin receptor subtype AVPR1A (Meyer-Lindenberg et al., 2009), monoamine oxidase 

A (Buckholtz & Meyer-Lindenberg, 2008), and the serotonin receptor 5-HTT (Canli & 

Lesch, 2007). These variations have been found to drive differences in amygdala structure 

(Good et al., 2003; Meyer-Lindenberg et al., 2006), reactivity (Furmark et al., 2004; Meyer-

Lindenberg et al., 2006; Tost et al., 2010), and connectivity (Buckholtz et al., 2008b), which 

have been linked to differences in aspects of sociality, such as social phobia (Furmark et al., 

2004) and various components of social temperament (Buckholtz et al., 2008b; Meyer-

Lindenberg et al., 2009; Tost et al., 2010). One study that is particularly relevant to the 

framework discussed here showed that males with lower expression of monoamine oxidase 

A demonstrate functional dysregulation within a circuit including the amygdala, rACC, and 

vmPFC, components of the amygdala network supporting social affiliation, which in turn 

relates to a tendency toward enhanced reactivity to threatening cues and reduced sensitivity 

to cues that reinforce prosocial behavior (Buckholtz et al., 2008b).
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Optogenetics offers yet another approach for furthering the discovery of neural systems that 

underlie social behavior, one that enables an unparalleled anatomic precision in delineating 

the function of specific brain circuits (Yizhar, 2012). For example, one study using 

optogenetics in rodents revealed a circuit between the basolateral complex of the amygdala 

and ventral hippocampus that confers bidirectional control over intruder exploration and 

sociability in general (Felix-Ortiz & Tye, 2014). Future research would benefit from 

integrating neuropeptide, imaging genetics, and optogenetics with clinical methods for 

measuring social behavior along with the resting-state fcMRI techniques and the 

neuroanatomical framework discussed in this review.

Finally, it will be important to understand how the amygdala and its connections support 

social connectedness in the context of its role in affective reactivity and enhanced anxiety. 

Structural abnormalities of the amygdala have been related to a range of neurodevelopmental 

disorders involving disruptions in affect and anxiety and their interactions with social 

behavior (Schumann, Bauman, & Amaral, 2010). Of course, amygdala function is not 

specific to social cognition or even to anxiety per se. Many of the structures within 

amygdala-based networks play a number of roles in other mental processes including a 

range of emotions such as anger, disgust, happiness, and sadness (Lindquist et al., 2012), as 

well as other processes involved in learning (Dolan, 2007), object perception (Haxby et al., 

2001), attention (Duncan & Barrett, 2007), and memory (Wang et al., 2010). Such findings 

remind us that an integrated model of how the brain creates the mind, and allows individual 

minds to function as a social group, requires that we explicitly understand these 

dependencies. In the social realm, the amygdala can be considered a hub where these 

processes converge and are used to decode the multimodal, dynamic, and often ambiguous 

streams of information from other people. In this position, the amygdala and its connections 

within the social brain appear to be particularly important for discriminating signal from 

noise, threat from reward, or friend from foe and thereby guiding adaptive interpersonal 

behavior.
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Box 1

The “the social brain” typically refers to brain regions that consistently show an increase 

in activation in neuroimaging studies of healthy adults engaging in a variety of social 

cognitive tasks (e.g., recognizing familiar people, evaluating whether they are trustworthy 

or not, or making inferences about their thoughts and intentions), or whose damage has 

been linked to impairments in social cognition (e.g., diminished empathy or warmth 

towards others, lack of understanding others’ intentions, or disrupted social 

apprehension). Although there is substantial variability across review papers as to which 

brain regions play a role in social cognition (Adolphs, 1999, 2001, 2009; Blakemore & 

Frith, 2004; Brothers, 1990; Frith, 2007; Frith & Frith, 2007; Lieberman, 2007; Ochsner 

& Lieberman, 2001; Saxe, 2006), there is a relatively high consensus on the importance 

of the amygdala, as well as connected target regions including the vmPFC, STS, sectors 

of the orbital and medial surfaces of the prefrontal cortex, divisions of the cingulate 

cortex, visual association areas of the temporal cortex, the insular cortex, and a region at 

the junction of the temporal and parietal lobes (see the Table and Figure).

Brain regions
implicated in
social cognition

Percent agreement
across 10 review
articles

Strength of
connectivity with

the amygdala

Amygdala 100%

Superior temporal
  sulcus 100% + + +

Ventromedial
  prefrontal cortex 100% + + +

Caudal anterior
  cingulate cortex   80% + +

Rostral anterior
  cingulate cortex   80% + + +

Temporoparietal
  junction/Angular
  gyrus

  60%

Insula   60% + + +

Dorsomedial
  prefrontal cortex   60% +

Fusiform gyrus   50% + + +

Subgenual
  anterior
  cingulate cortex

  50% + + +

Posterior
  cingulate cortex   50%

Temporal pole   40% + + +

Lateral
  orbitofrontal
  cortex

  40% + +

Ventral premotor
  cortex   40%

Ventrolateral
  prefrontal cortex   30% +

Somatosensory
  cortex   30% +
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Brain regions
implicated in
social cognition

Percent agreement
across 10 review
articles

Strength of
connectivity with

the amygdala

Intraparietal
  sulcus   30%

Striatum   30% + +

Dorsolateral
  prefrontal cortex   20% +

Hypothalamus   20% + +

Brainstem nuclei   20% + +

Medial temporal
  lobe   10% + + +

A schematic of brain regions cited as components of the “social brain”.

List of ROIs with abbreviations – cACC, caudal anterior cingulate cortex; dmPFC, 

dorsomedial prefrontal cortex; dTP, dorsomedial temporal pole; Ent, entorhinal cortex; 

FG, fusiform gyrus; Ins, insula; IPS, intraparietal sulcus; lOFC, lateral orbito-frontal 

cortex; PHip, parahippocampal cortex; PCC, posterior cingulate cortex; pSTS, posterior 

superior temporal sulcus; Precun, precuneus; PreMC, premotor cortex; rACC, rostral 

anterior cingulate cortex; sgACC, subgenual anterior cingulate cortex; SII, 

somatosensory operculum; STS, superior temporal sulcus; TPJ/AngG, temporoparietal 

junction/angular gyrus; vlSt, ventrolateral striatum; vlTP, ventrolateral temporal pole; 

vmPFC, ventromedial prefrontal cortex; vmSt, ventromedial striatum.

Gradients in the density of amygdala connectivity appear to mark a broad functional 

division within the social brain. The amygdala shares the most prominent connections 

with limbic structures (i.e., less granular cortex and connected subcortical structures), and 

the density of amygdala connectivity within cortical structures decreases with increasing 

lamination. This connectional and architectonic gradient suggests a broad division of 

labor within the social brain. That is, less granular cortex with more prominent amygdala 

connectivity appears to subserve social behaviors that draw moreso on information from 

the body (e.g., inferring emotions, as compared to intentions, from the eye region of faces 

(Stone et al., 2002) or solving moral dilemmas that are personal rather than impersonal 

(Shamay-Tsoory et al., 2005)). This type of information is typically described as affective 
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in nature (Barrett & Bliss-Moreau, 2009). In contrast, the more granular cortex that is 

found in other social cognitive networks (e.g., mentalizing and mirror networks) 

subserves functions that draw less heavily on affective information.
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Box 2

Based on studies in amygdala-damaged patients, it is clear that the amygdala plays a role 

in perceptual and motivational aspects of social behavior. In line with the view that the 

amygdala is important for directing attentional resources to relevant social stimuli, 

amygdala-damaged patients tend to make less eye-contact (Spezio et al., 2007), are 

insensitive to personal boundaries (Kennedy, Glascher, Tyszka, & Adolphs, 2009), and 

have difficulty spontaneously orienting to (Adolphs et al., 2005) and interpreting signals 

from the eye region of others’ faces (Kennedy & Adolphs, 2010; Young et al., 1995). 

Furthermore, such patients do not exhibit the normal enhancement of fMRI signal in the 

fusiform gyrus and superior temporal sulcus to facial expressions (Vuilleumier et al., 

2004). In fact, the magnitude of reduced fMRI signal in these regions compared to 

controls correlated with the degree of amygdalar damage. Deficient eye-gaze 

interpretation has also been attributable to damage in the orbitofrontal cortex (Vecera & 

Rizzo, 2004) and superior temporal gyrus (Akiyama et al., 2006).

Amygdala-damaged patients also exhibit markedly diminished social apprehension, 

which is a deficit in motivated interpersonal behavior (Adolphs, Tranel, Damasio, & 

Damasio, 1995; Bechara, Damasio, Damasio, & Lee, 1999; Tranel & Hyman, 1990). 

Such patients tend to judge even the most seemingly untrustworthy people as trustworthy 

and approachable (Adolphs, Tranel, & Damasio, 1998) and cooperate with other people 

despite apparent violations in trust to which healthy controls respond to in kind (e.g., by 

rejecting cooperation with the violator) (Koscik & Tranel, 2011). Such deficits in social 

avoidance judgments and decisions relate to these patients’ real-world impairments 

where, for example, they exhibit flirtatiousness and inappropriate familiarity with 

strangers (Adolphs et al., 1995; Bechara et al., 1999; Tranel & Hyman, 1990). As another 

example, an amygdala-damaged patient who was impaired at detecting cheaters in an 

experimental task also had difficulty making financial decisions and according to his 

family, did not realize if someone was taking advantage of him (Stone et al., 2002). He 

was liked by coworkers, was socially interactive, but sometimes he found social 

interactions puzzling. The authors of this study further explain that in daily life, such 

patients are “often vulnerable to scams, bad business deals, and exploitative relationships, 

a vulnerability that may be affected by deficits in specific aspects of social cognition”.
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Box 3

In a recent study (Bickart et al., 2012), we used resting-state functional connectivity 

analysis (fcMRI) to identify our topographic model of amygdala-based social brain 

networks. It is a relatively new method for delineating large-scale networks in the living 

human brain that are composed of regions that tend to function together and share 

anatomical connections (Deco, Jirsa, & McIntosh, 2011; Fox & Raichle, 2007). In 

validating fcMRI results against nonhuman animal tract-tracing studies, the topography 

of putative origins and terminations of large-scale networks is often defined using an 

iterative seed-target-seed approach (Vincent et al., 2006; Vincent, Kahn, Snyder, Raichle, 

& Buckner, 2008; Yeo et al., 2011). In our study (Bickart et al., 2012), we used a similar 

approach to delineate intrinsic networks of the amygdala. After identifying three brain 

regions of interest (ROIs) outside the amygdala that represent core nodes within each of 

our amygdala-based networks (lOFC for the perception network, vmPFC for the 

affiliation network, and cACC, for aversion network), (panel a) (Barbas et al., 2010; 

Haber & Knutson, 2010; Price & Drevets, 2010), we then identified three voxel clusters 

within the amygdala (panel b) in a resting-state analysis from a discovery sample of 

young adults (N=89). Next, we used these connectionally-defined subregions of the 

amygdala as seeds in another fcMRI analysis of the whole brain to reveal three partially-

distinct large-scale networks (panel c) that bear strong resemblance to the known 

anatomical organization of the amygdala’s connectivity in nonhumans (Fig. 1b). We then 

replicated these findings in an independent sample (N=31). Since that publication 

(Bickart et al., 2012), we replicated the networks in three additional independent samples 

(N=81, 150, and 150) and made further topographic comparisons with other previously 

established canonical networks. Of eight canonical networks, we found that the ventral 

attention/salience network (Seeley et al., 2007; Yeo et al., 2011) contains the most tissue 

in common with the dorsal amygdala network (36% overlap), and the default mode 

network, especially its medial temporal lobe subsystem (Andrews-Hanna et al., 2010), 

overlaps most heavily with the medial (60% overlap) and ventrolateral (44% overlap) 

amygdala networks.

Three connectionally-defined subregions of the amygdala.
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(a) A priori seed regions were placed within the ventro-medial prefrontal cortex 

(vmPFC), caudal anterior cingulate cortex (cACC), and lateral orbitofrontal cortex 

(lOFC). (b) Each voxel in the amygdala was assigned to the seed region with which it 

demonstrated the strongest connectivity in the discovery sample (N=89). (c) Seeds are 

localized within the connectionally-defined amygdala subregions shown in panel b. One 

sample group mean significance maps for each amygdala seed are displayed in standard 

views (N=89). The maps are binarized at p<10−5 and overlaid on a T1 MNI152 0.5 mm 

template brain in radiologic convention to demonstrate the distinct and shared 

connectivity across maps.
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Fig. 1. 
Topographic schematic of amygdala subregions and their affiliated large-scale networks 

subserving social cognition. A schematic of (a) the amygdala subregions in coronal view 

that are anchors for (b) three large-scale networks subserving processes important for social 

cognition. Abbreviations: Ins, insula; SS, somatosensory operculum; STS, superior temporal 

sulcus; dTP, dorsal temporal pole; OFC, orbitofrontal cortex; cACC, caudal anterior 

cingulate cortex; rACC, rostral anterior cingulate cortex; sgACC, subgenual anterior 

cingulate cortex; vmPFC, ventromedial prefrontal cortex; MTL, medial temporal lobe; FG, 

fusiform gyrus; vTP, ventral temporal pole; vlSt, ventrolateral striatum; vmSt, ventromedial 

striatum. (For interpretation of the references to color in this figure, the reader is referred to 

the web version of this article.)
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Fig. 2. 
A larger social network is predicted by stronger connectivity between amygdala subregions 

and corticolimbic regions important for perception and affiliative behavior. (a) Each 

amygdala subregion and its intrinsic connectivity network were independently defined in the 

discovery sample (shown here) and then used in the test sample to compute the connectivity 

strength between each amygdala subregion and the rest of the network. (b) Scatter plots 

show that social network size (y-axis) is predicted by the strength of connectivity between 

two of the three amygdala subregions and their respective networks (x-axis), over and above 

amygdala volume, in the test sample. *p<0.05; †p=0.06; **The x-axis displays the residual 

variance in the strength of the resting-state connectivity measure (Fisher’s r-to-z) after 

partialling out its shared variance with amygdala volume.
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Fig. 3. 
Exploratory analyses revealed that the connectivity between amygdala and specific regions 

within the perception and affiliation networks are the best predictors of social network size. 

(a) Brain images show location of voxels within the medial and ventrolateral amygdala’s 

intrinsic connectivity networks (defined in the discovery sample) that correlated with social 

network size at p <0.01 in the test sample, uncorrected with a cluster size constraint of 10 

voxels. Color bars indicate the p-values (10−2–10−4) of correlated voxels, which are overlaid 

on slices of a T1 MNI152 0.5 mm template brain in radiologic convention. (b) Scatter plots 

show the effects for peak voxels with the strength of intrinsic connectivity on the y-axis and 

social network size on the x-axis. **p< 0.001.
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Fig. 4. 
A schematic of five large-scale brain networks subserving processes important for social 

behavior. Here, we show three networks that are anchored in the amygdala (amygdala-based 

networks) and two that are not (control networks). The amygdala is displayed in white 

indicating that it is the hub of the three amygdala-based networks. List of ROIs with 

abbreviations–Perception network: lOFC, lateral orbitofrontal cortex; vTP, ventrolateral 

temporal pole; FG, fusiform gyrus; STS, superior temporal sulcus. Affiliation network: dTP, 

dorsomedial temporal pole; rACC, rostral anterior cingulate cortex; sgACC, subgenual 

anterior cingulate cortex; vmPFC, ventromedial prefrontal cortex; Ent, entorhinal cortex; 

PHip, parahippocampal cortex; vmSt, ventromedial striatum. Aversion network: cACC, 

caudal anterior cingulate cortex; Ins, insula; SII, somatosensory operculum; vlSt, 

ventrolateral striatum. Mentalizing network: dmPFC, dorsomedial prefrontal cortex; PCC, 

posterior cingulate cortex; Precun, precuneus; AngG, angular gyrus (temporoparietal 

junction). Mirror network: pSTS, posterior superior temporal sulcus; IPS, intraparietal 

sulcus; PreMC, premotor cortex.
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